Найти статистический вес наиболее вероятного распределения. Второе начало термодинамики

η = A / Q 1 = 1 – Q 2 /Q 1 ,

где Q 1 - тепло, получаемое рабочим телом; Q 2 - отдаваемое тепло.

    К.п.д. цикла Карно:

где T 1 , T 2 - температуры нагревателя и холодильника.

    Неравенство Клаузиуса:

где δQ - элементарное тепло, полученное системой.

    Приращение энтропии системы:

    Основное уравнение термодинамики для обратимых процессов:

T dS = dU + p dV

    Свободная энергия:

F = U - TS , A T = - ΔF

    Связь между энтропией и статистическим весом Ω (термодинами­ческой вероятностью):

S = k∙ lnΩ ,

где k - постоянная Больцмана.

3.1. У тепловой машины, работающей по циклу Карно, температура нагревателя в п = 1,6 раза больше температуры холодильника. За один цикл машина производит работу А = 12 кДж. Какая работа за цикл затрачивается на изотермическое сжатие вещества? (Рабочее вещество - идеальный газ.)

Ответ : А" = А/(п - 1) = 20 кДж.

3.2. В каком случае к.п.д. цикла Карно повысится больше: при увеличении температуры нагревателя на ΔТ или при уменьшении температу­ры холодильника на такую же величину?

Ответ : при уменьшении температуры холодильника Т 2 .

3.3. Водород совершает цикл Карно. Найти к.п.д. цикла, если при адиабатическом расширении:

а) объем газа увеличивается в п = 2,0 раза;

б) давление уменьшается в n = 2,0 раза.

Ответ : a) η = 1 – n 1-γ = 0,25; б) η = 1 – n 1/(γ-1) = 0,18

3.4. Холодильная машина, работающая по обратному циклу Карно, должна поддерживать в своей камере температуру - 10° С при темпера­туре окружающей среды 20° С. Какую работу надо совершить над ра­бочим веществом машины, чтобы отвести от ее камеры Q 2 = 140 кДж тепла?

Ответ : А" = Q 2 (T 1/ T 2 - 1) = 16 кДж.

3.5. Тепловую машину. работающую по циклу Карно с к.п.д. η 10% используют при тех же тепловых резервуарах как холодильную машину. Найти ее холодильный коэффициент ε.

Ответ : ε = (1 - η)/η = 9

3.6. Найти к.п.д. цикла, состоящего из двух изобар и двух адиабат, если в пределах цикла давление изменяется в п раз. Рабочее вещество идеальный газ с показателем адиабаты γ.

Ответ : η = 1 – η -(γ - 1)/γ.

3.7. Идеальный газ с показателем адиабаты γ, совершает цикл, со­стоящий из двух изохор и двух изобар. Найти к.п.д. такого цикла, если температура Т газа возрастает в п раз как при изохорическом нагреве, так и при изобарическом расширении.

Ответ : η = 1 – (n + γ)/(1 + γn ).

3.8. Идеальный газ совершает цикл, состоящий из:

а) изохоры, адиабаты и изотермы;

б) изобары, адиабаты и изотермы,

причем изотермический процесс происходит при минимальной тем­пературе цикла. Найти к.п.д. каждого цикла, если температура в его пределах изменяется в п раз.

Ответ : в обоих случаях η = 1 – lnn /(n - 1)

3.9. Идеальный газ с показателем адиабаты γ совершает прямой цикл, состоящий из адиабаты. изобары и изохоры. Найти к.п.д. цикла, если при адиабатическом процессе объем идеального газа:

а) увеличивается в n раз:

б) уменьшается в n раз.

Ответ : a)η= 1– γ(n – 1)/(n γ – 1); б)η= 1– (n γ – 1)/γ(n – 1)n γ –1 .

3.10. Воспользовавшись неравенством Клаузиуса, показать, что к.п.д. всех циклов, у которых одинакова максимальная температура Т max и одинакова минимальная температура Т min , меньше, чем у цикла Карно при Т max и Т min . Указание : Учесть, что неравенство ∫δQ 1 /T 1 - ∫δQ 2 / T 2 0 только усиливается при замене Т 1 на Т max и Т 2 на Т min .

3.11. Какую максимальную работу может произвести тепловая ма­шина, если в качестве нагревателя используется кусок железа массы m = 100 кг с начальной температурой Т 1 = 1500 К. а в качестве хо­лодильника вода океана с температурой Т 2 = 285 К?

Ответ : А max = mc [T 1 – T 2 – T 2 ∙ln(T 1 /T 2)] = 34 МДж, где с - удельная теплоемкость железа.

3.12. В качестве основных переменных, характеризующих состояние тела, можно принять его температуру и энтропию. Изобразить графиче­ски цикл Карно на диаграмме, откладывая по оси абсцисс энтропию, а по оси ординат температуру. Вычислить с помощью этого графика к.п.д. цикла.

3.13. Найти изменения энтропии моля идеального газа при изохорическом, изотермическом и изобарическом процессах.

3.14. Найти изменение энтропии при переходе 80 г кислорода от объема 10 л при температуре 80 о C к объему в 40 л при температуре 300 о C.

Ответ:

3.15. Один кубический метр воздуха, находящегося при температуре 0 о C и давлении 19,6 Н/cм 2 , изотермически расширяется от объема V 1 до объема V 2 = 2V 1 . Найти изменение эн­тропии при этом процессе.

Ответ:

3.16. Доказать, что энтропия v молей идеального газа может быть представлена в виде: S = v [c V lnT + R ln(V /v ) + const], где аддитивная постоянная в скобках не зависит от числа частиц газа.

3.17. В двух сосудах одного и того же объема находятся различные идеальные газы. Масса газа в первом сосуде m 1 во втором – m 2 , давление газов и температуры их одинаковы. Сосуды соединили друг с другом, и начался процесс диффузии. Определить суммарное изменение ΔS энтро­пии рассматриваемой системы, если относительная молекулярная масса первого газа μ 1, а второго μ 2 .

Ответ : ΔS = R ln2(m 1 /μ 1 + m 2 /μ 2).

3.18. Теплоизолированный цилиндрический сосуд разделен поршнем пренебрежимо малой массы на две равные части. По одну сторону порш­ня находится идеальный газ с массой m , относительной молекулярной массой μ и молярными теплоемкостями C p и С v , не зависящими от темпе­ратуры, а по другую сторону поршня создан высокий вакуум. Начальные температура и давление газа T 0 и p 0 . Поршень отпускают, и он, свободно двигаясь, дает возможность газу заполнить весь объем цилиндра. После этого, постепенно увеличивая давление на поршень, медленно доводят объем газа до первоначальной величины. Найти изменение внутренней энергии н энтропии газа при таком процессе.

Ответ : ΔU = U - U 0 = (m /η)∙C V T 0 (2 γ -1 - 1);

ΔS = S - S 0 = (m /μ)∙C V (γ - 1)ln2.

3.19. Зная зависимость свободной энергии от температуры и объ­ема F (T , V), показать, что давление р = -(д F V ) T и энтропия S = -(д F T) V .

3.20. Наряду с внутренней энергией U и свободной энергией F в тер­модинамике широко используют функции Н = U + р V - энтальпию и Ф = F + р V - свободную энергию Гиббса. Доказать, что эти функции удовлетворяют соотношениям:

dU = TdS – pdV,

dF = -SdT – pdV,

d Ф = -SdT + Vdp,

dH = TdS + Vdp,

3.21. Доказать соотношения Максвелла:

3.22. В чем ошибочность следующего рассуждения? Элементарное количество тепла dQ , полученное физически однород­ным телом при квазистатическом процессе, равно

dQ = dU + pdV = dH Vdp ,

или

Отсюда


Приравнивая оба выражения, получим (∂V /∂T ) p = 0. Отсюда следует, что тепловое расширение тел невозможно.

3.23. Показать, что внутренняя энергия вещества с уравнением состо­яния в форме р = f (V )T не зависит от объема.

3.24. Внутренняя энергия и единицы объема является функцией толь­ко от T , а уравнение состояния газа имеет вид р = и (Т )/ 3 Определить функциональную форму и (Т ).

Ответ : u (T ) = const T 4 - (фотоновый газ)

3.25. Для идеального электронного газа имеет место соотношение: PV = 2 / 3 U . Найти для этого газа уравнение адиабаты: а) в перемен­ных (Р, V ); б) в переменных (V, Т ).

Ответ : а) Р V 5/3 = const; б) TV 2/3 = const.

3.26. Показать, что для веществ, у которых давление является линей­ной функцией температуры Т, теплоемкость С v не зависит от объема.

3.27. Используя соотношения Максвелла найти выражение для энтро­пии моля газа Ван-дер-Ваальса.

Ответ :

3.28. Вычислить плотность энтропии S поля теплового излучения.

Ответ : S = 4 / 3 aT 3 +const. (см. задачу 2.32).

3.29. Найти отношение средних квадратичных скоростей молекул гелия и азота при одинаковых температурах.

Ответ:

3.30. Определить температуру смеси CO 2 и H 2 , если разность средних кинетических энергий на одну молекулу того и другого газа равна 2,07·10 -14 эрг. Газ считать идеальным.

Ответ:
300 о К.

3.31. N атомов газообразного гелия находятся при комнатной темпе­ратуре в кубическом сосуде объемом 1,0 см 3 . (Cреднее время пролета атомов гелия расстояния порядка размера сосуда τ ~ 10 -5 c).Найти:

а) вероятность того, что все атомы соберутся в одной половине сосуда;

б) примерное числовое значение N , при котором это событие можно ожидать на протяжении t = 10 10 лет (возраст Вселенной).

Ответ : a) p = 1 / 2 N ; б) N = 1g(t /τ)/ 1g2 = 80. где

3. 32 . Найти статистический вес наиболее вероятного распределения N = 10 одинаковых молекул по двум одинаковым половинам сосуда. Определить вероятность такого распределения.

Ответ : Ω вер = N !/[(N /2)!] 2 =252, p N /2 = Ω вер /2 N = 24,6%.

3.33. Какое количество тепла необходимо сообщить макроскопической системе, находящейся при температуре Т = 290 K, чтобы при неизменном объеме ее статистический вес увеличился на Δη = 0,1%?

Ответ : δQ = kT Δη = 4·10 -23 Дж.

3.34. Один моль идеального газа, состоящего из одноатомных моле­кул, находится в сосуде при температуре T 0 = 300 K. Как и во сколько раз изменится статистический вес этой системы (газа), если ее нагреть изохорически на ΔT = 1,0 K?

Ответ : Увеличится в Ω/Ω 0 = (1 + ΔT /T 0) iNa /2 = 10 1,31·10ˆ21 раз.

Максвелл открыл путь, который со временем превратился в широкую столбовую дорогу. В течение последующих ста лет было воздвигнуто грандиозное здание статистической механики, в частности благодаря работам Людвига Больцмана и Дж. Вилларда Гиббса. (Гиббс был первым великим американским физиком-теоретиком, который, как и другие «пророки», был признан в собственном университете в последнюю очередь. Говорят, что президент Йельского университета, решив создать физический факультет, обращался за помощью к нескольким европейским ученым. Они отсылали его к Вилларду Гиббсу, которого президент не знал. Гиббс в это время числился в штате Йельского университета.)

Суть статистической гипотезы, сформулированной для газов, состоит в том, что мы отказываемся от попыток узнать точное положение и скорость каждой из множества частиц, образующих систему, а вместо этого предполагаем, если нет никакой дополнительной информации, что для каждой частицы системы все возможные положения и направления скорости равновероятны (следует особо подчеркнуть слово равновероятны). Некоторую информацию мы все-таки имеем: предполагается, что полная энергия системы Е и полное число частиц в ней N фиксированы (мы считаем, что энергия и число частиц сохраняются). Поэтому некоторые комбинации скоростей и положений совокупности частиц запрещены; в качестве примера запрещенной системы укажем такую комбинацию, когда хотя бы одна частица обладает энергией, большей Е: в таком случае полная энергия системы превышала бы Е.

Можно было бы представить себе ситуацию, когда вся энергия газа вложена в одну частицу, которая движется с чрезвычайно большой скоростью, соответствующей энергии , а остальные частицы стоят неподвижно. Мы чувствуем, однако, что такая конфигурация вряд ли «жизнеспособна», так как можно ожидать, что быстро движущаяся частица будет сталкиваться с другими частицами и отдавать им при этом часть своей энергии. Возможна и другая комбинация, когда полная энергия газа поделена поровну между всеми молекулами, которые движутся равным строем одна за другой с одинаковыми скоростями; но и эта ситуация, как подсказывает нам интуиция, выглядит маловероятной, так как столкновения приведут в конце концов к хаотизации движения.

Рассмотрим все возможные (и различающиеся между собой) распределения молекул в пространстве и по скоростям, удовлетворяющие условиям, что энергия Е и число частиц N остаются неизменными, когда все молекулы находятся в одном углу сосуда и имеют одну скорость, когда они находятся в другом углу и имеют другую скорость и т. д., т. е. примем во внимание абсолютно все возможные комбинации. Найдем теперь наиболее вероятное распределение положений и скоростей молекул. Эта задача при перечисленных выше условиях разрешима. Основная идея статистики заключена в гипотезе, что, если система

находится при заданной температуре (в тепловом равновесии, как, например, газ в сосуде), скорости и положения молекул описываются наиболее вероятным распределением. Зная это наиболее вероятное распределение молекул, можно вычислить коэффициент вязкости, давление и другие величины.

Распределение Максвелла - Больцмана требует, чтобы частицы были однородно распределены в пространстве, а их скорости - как показано на фиг. 385.

Это и есть наиболее вероятное распределение частиц по положениям и скоростям при условии, что все конфигурации равновероятны, а полное число частиц и их полная энергия фиксированы.

Таким образом, мы обходимся без допущения о равенстве скоростей частиц и не решаем уравнений движения, из которых мы могли бы получить точные значения координат и скоростей каждой частицы, но вводим наиболее вероятное распределение по положениям в пространстве и по скоростям для всех частиц. Это весьма радикальное предположение выходит далеко за рамки законов механики, недаром его долго и интенсивно обсуждали и анализировали уже после Максвелла и Больцмана. Это допущение формулировали по-разному. Но по существу все сводится к чисто интуитивной догадке, что в любой реальной физической ситуации маловероятные распределения молекул (как по пространству, так и по скоростям) не могут возникать настолько часто, чтобы оказывать хоть какое-то влияние на равновесные свойства системы.

Проиллюстрируем смысл этой гипотезы на нескольких примерах. Рассмотрим газ, состоящий из большого числа частиц, заключенных в сосуде. Вполне возможно такое распределение частиц, когда все частицы движутся в одну сторону, ударяются в какой-то момент об одну стенку сосуда и ни одна из них не ударяется о противоположную

стенку (фиг. 386). В результате такого движения к одной стенке сосуда будет приложена значительная сила, а на другую стенку сила действовать не будет, поэтому весь сосуд отскочит вбок, пока противоположная стенка не столкнется с молекулами, после чего сосуд отскочит назад. Это возможно, но маловероятно. Вряд ли молекул смогут на мгновение упорядочить свое движение и начать двигаться в одном направлении вместо того, чтобы беспорядочно метаться во все стороны.

Фиг. 386. Все молекулы движутся в одном направлении.

Может также случиться, что в какой-то момент все молекулы вдруг очутятся в одном углу сосуда, а все другие части сосуда окажутся пустыми (фиг. 387). В это мгновение плотность газа в одном углу сосуда станет очень большой, тогда как в других его частях плотность будет равна нулю. Такая ситуация тоже возможна, но маловероятна.

Предположим, что на автомобильной стоянке находится 10 000 машин и стоянка имеет лишь один выезд; когда заканчивается футбол, все владельцы машин садятся за руль. Спрашивается: возможна ли такая ситуация, когда все машины непрерывным потоком выедут со стоянки, не образуя «пробок» или скоплений машин в некоторых местах?

Фиг. 387. Все молекулы собрались в одном углу.

Конечно, это возможно, но крайне маловероятно, если на месте не окажется большого количества дорожных полицейских. Как правило же, при освобождении стоянки образуется немыслимая каша из машин, поскольку каждая из них перемещается почти случайным образом, пытаясь выехать со стоянки.

Предположение, содержащееся в работах Максвелла, Больцмана и Гиббса, равнозначно утверждению, что большое количество частиц, подчиняющихся ньютоновским законам движения, при наличии тех или иных внешних ограничений (например, постоянства полной энергии и полного числа частиц) в результате взаимных соударений в конечном итоге переходят в некое среднее состояние. Из знаменитой теоремы Больцмана (-теоремы) следует, что при заданных начальных условиях столкновения частиц приводят к постепенному установлению

наиболее вероятного состояния. Статистическая механика избавляет нас от всех неудобств, связанных с решением уравнений движения. Она основывается на предположении, что распределение частиц в равновесном состоянии является наиболее вероятным, и выводит затем все следствия, вытекающие из этого распределения. Очевидно, что могут возникать и такие распределения, которые не являются наиболее вероятными. Не менее очевидно, однако, что такие распределения быстро исчезнут, если потрясти сосуд или ввести беспорядок каким-либо иным способом.

Рассмотрим систему, состоящую из большого количества молекул. Назовем ее макроскопической системой. Состояние такой системы можно описать двумя способами:

1. С помощью средних характеристик системы, например, давления P , объёма V , температуры T , энергии Е . Состояние, заданное характеристиками, усреднёнными по большому числу молекул, будем называть макросостоянием.

2. Путем описания состояния всех образующих тело молекул, для этого необходимо знать координаты q и импульсы p всех молекул. Состояние, заданное таким образом, назовём микросостоянием.

Пусть макроскопическая система является частью какой – либо большой замкнутой системы, будем называть ее средой. Найдём микроскопическое распределение Гиббса, т.е. функцию распределения вероятностей различных состояний макроскопической системы, не взаимодействующей с окружающими телами и имеющей постоянную энергию. Различные состояния системы, имеющие одну и ту же энергию, имеют одинаковую вероятность.

Каждому значению энергии макроскопической системы могут соответствовать различные микросостояния, число таких состояний называется статистическим весом.

Пусть задано макросостояние системы из 4 молекул с помощью параметров: P, V, T, E. Молекулы находятся в сосуде, разделенном проницаемой перегородкой (рис. 10.1а). Cосуд находится в некоторой среде, но не взаимодействует с ней.

Рис. 10.1а. Рис. 10.1б. Рис. 10.1в.

Если все 4 молекулы находятся в правой половине сосуда, то макросостояние системы (0 - 4) можно записать с помощью одного микросостояния, перечислив номера молекул. В этом случае статистический вес .

Пусть теперь одна из молекул перешла в левую половину сосуда (рис. 10.1б). Это может быть молекула 1, тогда в правой половине останутся молекулы 2, 3, 4 или это молекула 2, тогда справа останутся молекулы 1, 3, 4 и т.д. Всего возможны 4 различных микросостояния, следовательно, статистический вес макросостояния (1 - 3) .

Вероятности всех микросостояний одинаковы. Состояние, когда молекула 1 слева, а 2, 3, 4 справа, имеет такую же вероятность, как состояние, когда молекула 2 слева, а 1, 3, 4 справа. Этот вывод основан на предположении, что все молекулы неотличимы друг от друга.

Равномерное распределение молекул по обеим половинам сосуда становится очевидным при большом количестве молекул. Мы знаем, что давление выравнивается со временем в обеих половинах сосуда: а поскольку концентрация молекул то и при постоянной температуре одинаковым будет число молекул слева и справа:

Поскольку наибольшему статистическому весу соответствует наибольшая вероятность состояния w , то очевидно, вероятность пропорциональна числу состояний. Состояние (2 - 2) является наиболее вероятным, т.к. имеет наибольший статистический вес (рис. 10.1в).

где
общее число молекул,
число молекул в 1 – ой части сосуда,
во второй. Термодинамическая вероятность в рассматриваемом примере.

Аналогично для распределения
:

.

Для
.

Заметим, что наибольшая термодинамическая вероятность у равномерного распределения , оно может осуществляться наибольшим числом способов.

Связь энтропии с вероятностью была установлена Больцманом , постулировавшим, что энтропия пропорциональна логарифму вероятности состояния

(энтропия определяется с точностью до константы

const), где
константа Больцмана,
термодинамическая вероятность.

Второе начало термодинамики и его статистическое толкование

    Формулировка Больцмана:

Все процессы в природе протекают в направлении, приводящим к увеличению вероятности состояния .

    Формулировка Клаузиуса:

Невозможны такие процессы, единственным конечным результатом которых был бы переход тепла от тела менее нагретого, к телу более нагретому .

С точки зрения формулировки Больцмана переход от холодного тела к нагретому принципиально возможен , но маловероятен .

Пример . Пользуясь формулой Больцмана, вычислим по изменению энтропии 2-х тел, находящихся при температурах 301 К и 300 К соответственно, отношение вероятности пребывания тел в этих состояниях, если от одного тела к другому передаётся количество теплоты в
. Обозначим вероятность пребывания при температуре 300 К
, 301 К
.

.

Ввиду малости передаваемой энергии разность
можно оценить используя соотношение:
.

, тогда

Это означает, что на каждый
случаев переходов
от тела с температурой 301 К к телу с температурой 300 К может произойти один случай перехода того же количества теплоты от тела с температурой 300 К к телу с температурой 301 К. (Заметим, что для совсем малого количества теплоты
вероятности становится сравнимыми и для таких случаев второе начало применить уже нельзя.).

Вообще же, говоря если в системе имеется многовариантность путей, процессов, то, рассчитав энтропию конечных состояний, можно теоретически определить вероятность того или иного пути, процесса , не производя их реально и в этом важное практическое применение формулы, связывающей термодинамическую вероятность с энтропией.

Вопросы для самоконтроля