Нейтронные звезды состоят из. Насколько большой может быть нейтронная звезда? Она возникает после взрыва Сверхновой

Гипотезу о существовании нейтронных звезд выдвинули астрономы В.Бааде и Ф.Цвикки сразу после открытия нейтрона в 1932. Но подтвердить эту гипотезу наблюдениями удалось лишь после открытия пульсаров в 1967.

Нейтронные звезды образуются в результате гравитационного коллапса нормальных звезд с массами в несколько раз больше солнечной. Плотность нейтронной звезды близка к плотности атомного ядра, т.е. в 100 млн. раз выше плотности обычного вещества. Поэтому при своей огромной массе нейтронная звезда имеет радиус всего ок. 10 км.

Из-за малого радиуса нейтронной звезды сила тяжести на ее поверхности чрезвычайно велика: примерно в 100 млрд. раз выше, чем на Земле . От коллапса эту звезду удерживает «давление вырождения» плотного нейтронного вещества, не зависящее от его температуры. Однако если масса нейтронной звезды станет выше примерно 2 солнечных, то сила тяжести превысит это давление и звезда не сможет противостоять коллапсу .

У нейтронных звезд очень сильное магнитное поле, достигающее на поверхности 10 12 –10 13 Гс (для сравнения: у Земли ок. 1 Гс). С нейтронными звездами связывают небесные объекты двух разных типов.

Пульсары

(радиопульсары). Эти объекты строго регулярно излучают импульсы радиоволн. Механизм излучения до конца не ясен, но считают, что вращающаяся нейтронная звезда излучает радиолуч в направлении, связанном с ее магнитным полем, ось симметрии которого не совпадает с осью вращения звезды. Поэтому вращение вызывает поворот радиолуча, периодически направляющегося на Землю.

Рентгеновские двойные.

С нейтронными звездами, входящими в двойную систему с массивной нормальной звездой, связаны также пульсирующие рентгеновские источники. В таких системах газ с поверхности нормальной звезды падает на нейтронную звезду, разгоняясь до огромной скорости. При ударе о поверхность нейтронной звезды газ выделяет 10–30% своей энергии покоя, тогда как при ядерных реакциях этот показатель не достигает и 1%. Нагретая до высокой температуры поверхность нейтронной звезды становится источником рентгеновского излучения. Однако падение газа не происходит равномерно по всей поверхности: сильное магнитное поле нейтронной звезды захватывает падающий ионизованный газ и направляет его к магнитным полюсам, куда он и падает, как в воронку. Поэтому сильно нагреваются только районы полюсов, которые на вращающейся звезде становятся источниками рентгеновских импульсов. Радиоимпульсы от такой звезды уже не поступают, поскольку радиоволны поглощаются в окружающем ее газе.

Состав.

Плотность нейтронной звезды растет с глубиной. Под слоем атмосферы толщиной всего несколько сантиметров находится жидкая металлическая оболочка толщиной несколько метров, а ниже – твердая кора километровой толщины. Вещество коры напоминает обычный металл, но гораздо плотнее. В наружной части коры это в основном железо; с глубиной в его составе увеличивается доля нейтронов. Там, где плотность достигает ок. 4Ч 10 11 г/см 3 , доля нейтронов увеличивается настолько, что некоторые из них уже не входят в состав ядер, а образуют сплошную среду. Там вещество похоже на «море» из нейтронов и электронов, в которое вкраплены ядра атомов. А при плотности ок. 2Ч 10 14 г/см 3 (плотность атомного ядра) вообще исчезают отдельные ядра и остается сплошная нейтронная «жидкость» с примесью протонов и электронов. Вероятно, нейтроны и протоны ведут себя при этом как сверхтекучая жидкость, подобная жидкому гелию и сверхпроводящим металлам в земных лабораториях.

С момента зарождения Вселенной прошло уже более десятка миллиарда лет, в течение которых происходит звездная эволюция , осуществляется изменение состава космического пространства. Одни космические объекты исчезают, а на их месте появляются другие. Этот процесс происходит постоянно, однако из-за огромных временных промежутков, мы в состоянии наблюдать только один единственный кадр колоссальной и увлекательной мультисессии.

Мы видим Вселенную во всей красе, наблюдая жизнь звезд, этапы эволюции и момент предсмертной агонии. Смерть звезды – это всегда грандиозное и яркое событие. Чем крупнее и массивнее звезда, тем масштабнее катаклизм.

Нейтронная звезда является ярким примером такой эволюции, живым памятником былого звездного могущества. В этом и заключается весь парадокс. На месте массивной звезды, размеры и масса которой в десятки и сотни раз превышают аналогичные параметры нашего Солнца, возникает крошечное небесное тело диаметром в пару десятков километров. Такое превращение не происходит в один момент. Образование нейтронных звезд — результат длинного эволюционного пути развития космического монстра, растянутого в пространстве и во времени.

Физика нейтронных звезд

Подобные объекты немногочисленны во Вселенной, как может показаться на первый взгляд. Как правило, нейтронная звезда может быть одна на тысячу звезд. Секрет такого небольшого числа заключается в уникальности эволюционных процессов, которые предшествуют рождению нейтронных звезд. Все звезды по-разному проживают свою жизнь. По-разному выглядит и финал звездной драмы. Масштабы действа определяются массой звезды. Чем больше масса космического тела, чем массивнее звезда, тем выше вероятность того что ее смерть будет быстрой и яркой.

Постоянно увеличившиеся силы гравитации приводят к трансформации звездного вещества в тепловую энергию. Этот процесс невольно сопровождается колоссальным выбросом – взрывом Сверхновой. Результатом такого катаклизма становится новый космический объект – нейтронная звезда.

Проще говоря, звездная материя перестает быть топливом, термоядерные реакции утрачивают свою интенсивность и не в состоянии поддерживать в недрах массивного тела необходимые температуры. Выходом из создавшегося состояния становится коллапс — обрушение звездного газа на центральную часть звезды.

Все это приводит к мгновенному высвобождению энергии, разбрасывающей внешние слои звездной материи во все стороны. На месте звезды возникает расширяющаяся туманность. Такая трансформация может произойти с любой звездой, однако при этом результаты коллапса могут быть разными.

Если масса космического объекта невелика, к примеру, мы имеем дело с желтым карликом вроде Солнца , на месте вспышки остается белый карлик . В том случае, если масса космического монстра превышает солнечную массу в десятки раз, в результате обрушения мы наблюдаем вспышку Сверхновой. На месте былого звездного величия образуется нейтронная звезда. Сверхмассивные звезды, масса которых в сотни раз больше массы Солнца, завершают свой жизненный цикл, нейтронная звезда является промежуточным этапом. Продолжающееся гравитационное сжатие приводит к тому, что жизнь нейтронной звезды завершается появлением черной дыры.

В результате коллапса от звезды остается только ядро, продолжающееся сжиматься. В связи с этим, характерной особенностью нейтронных звезд являются высокая плотность и огромная масса при мизерных размерах. Так масса нейтронной звезды диаметром 20 км. в 1,5-3 раза больше массы нашей звезды. Происходит уплотнение или нейтронизация электронов и протонов в нейтроны. Соответственно, при уменьшении объема и размеров, стремительно увеличивается плотность и масса звездного вещества.

Состав нейтронных звезд

Точная информация о составе нейтронных звезд отсутствует. На сегодняшний день ученые-астрофизики при изучении подобных объектов пользуются рабочей моделью, предложенной физиками – ядерщиками.

Предположительно, звездное вещество в результате коллапса трансформируется в нейтронную, сверхтекучую жидкость. Этому способствует огромное гравитационное притяжение, оказывающее постоянное давление на вещество. Такая «ядерная жидкая субстанция» называется вырожденный газ и в 1000 раз плотнее воды. Атомы вырожденного газа состоят из ядра и электронов, вращающихся вокруг него. При нейтронизации внутреннее пространство атомов под воздействием сил гравитации исчезает. Электроны сливаются с ядром, образуя нейтроны. Устойчивость сверхплотной субстанции придает внутренняя гравитация. В противном случае неизбежно началась бы цепная реакция, сопровождающаяся ядерным взрывом.

Чем ближе к внешнему краю звезды, тем меньше температура и давление. В результате сложных процессов происходит «остывание» нейтронной субстанции, из которой интенсивно выделяются ядра железа. Коллапс и последующий взрыв является фабрикой планетарного железа, которое распространяется в космическом пространстве, становясь строительным материалом при формировании планет.

Именно вспышкам сверхновых Земля обязана тем, что в ее строении и структуре присутствуют частицы космического железа.

Условно рассматривая строение нейтронной звезды в микроскоп, можно выделить в строении объекта пять слоёв:

  • атмосфера объекта;
  • внешняя кора;
  • внутренние слои;
  • внешнее ядро;
  • внутреннее ядро нейтронной звезды.

Атмосфера нейтронной звезды имеет толщину всего несколько сантиметров и является самым тонким слоем. По своему составу – это слой плазмы, отвечающий за тепловое облучение звезды. Далее идет внешняя кора, которая имеет толщину в несколько сот метров. Между внешней корой и внутренними слоями — царство вырожденного электронного газа. Чем глубже к центру звезды, тем быстрее этот газ становится релятивистским. Другими словами, внутри звезды происходящие процессы связаны с уменьшением доли атомных ядер. При этом количество свободных нейтронов увеличивается. Внутренние области нейтронной звезды представляют собой внешнее ядро, где нейтроны продолжают соседствовать с электронами и протонами. Толщина этого слоя субстанции составляет несколько километров, при этом плотность материи в десятки раз выше, чем плотность атомного ядра.

Весь этот атомарный супчик существует благодаря колоссальным температурам. В момент вспышки Сверхновой, температура нейтронной звезды составляет 1011К. В этот период новый небесный объект обладает максимальной светимостью. Сразу после взрыва наступает этап стремительного остывания, температура за несколько минут падает до отметки 109К. Впоследствии процесс остывания замедляется. Несмотря на то, что температура звезды все еще велика, светимость объекта снижается. Звезда продолжает светиться только за счет теплового и инфракрасного излучения.

Классификация нейтронных звезд

Такой специфический состав звездно-ядерной субстанции обуславливает высокую ядерную плотность нейтронной звезды 1014-1015 г/см³, при этом средний размер образовавшегося объекта составляет не менее 10 и не более 20 км. Дальнейшее увеличение плотности стабилизируется силами взаимодействия нейтронов. Другими словами, вырожденный звездный газ находится в состоянии равновесия, удерживая звезду от очередного коллапса.

Довольно сложная природа таких космических объектов, какими являются нейтронные звезды, стала причиной последующей классификации, которая объясняет их поведение и существование на просторах Вселенной. Основными параметрами, на основании которых осуществляется классификация, являются период вращения звезды и масштабы магнитного поля. В процессе своего существования нейтронная звезда утрачивает энергию вращения, уменьшается и магнитное поле объекта. Соответственно, небесное тело переходит из одного состояния в другое, среди которых наиболее характерными выделяются следующие типы:

  • Радиопульсары (эжекторы) представляют собой объекты, которые имеют малый период вращения, однако сила магнитного поля у них остается достаточно большой. Заряженные частицы, совершая движение вдоль силовых полей, в местах обрыва покидают оболочку звезды. Небесное тело данного типа эжектирует, периодически наполняя Вселенную радиоимпульсами, фиксируемыми в радиочастотном диапазоне;
  • Нейтронная звезда – пропеллер. В данном случае у объекта крайне малая скорость вращения, однако, магнитное поле не обладает достаточной силой, чтобы притягивать из окружающего пространства элементы материи. Звезда не излучает импульсов, не происходит в данном случае и аккреция (падение космической материи);
  • Рентгеновский пульсар (аккретор). Такие объекты имеют малую скорость вращения, но ввиду сильного магнитного поля звезда интенсивно поглощает материал из космического пространства. В результате в местах падения звездной материи на поверхности нейтронной звезды скапливается плазма, разогретая до миллионов градусов. Эти точки на поверхности небесного тела становятся источниками пульсирующего теплового, рентгеновского излучения. С появлением мощных радиотелескопов, способных заглянуть в глубину космоса в инфракрасном и рентгеновском диапазоне, стало возможным быстрее выявлять довольно много обычных рентгеновских пульсаров;
  • Георотатор – объект, который имеет малую скорость вращения, при этом на поверхности звезды в результате аккреции происходит скапливание звездной материи. Сильное магнитное поле препятствует образованию в поверхностном слое плазмы, и звезда постепенно набирает свою массу.

Как видно из существующей классификации, каждая из нейтронных звезд ведет себя по-разному. Отсюда вытекают и различные способы их обнаружения, и возможно, различна будет судьба этих небесных тел в будущем.

Парадоксы рождения нейтронных звезд

Первая версия о том, что нейтронные звезды — продукты взрыва Сверхновой, сегодня не является постулатом. Существует теория, что здесь может быть использован и другой механизм. В двойных звездных системах пищей для новых звезд становятся белые карлики. Звездное вещество постепенно перетекает из одного космического объекта на другой, увеличивая его массу до состояния критической. Другими словами, в будущем один из пары белый карлик – это нейтронная звезда.

Нередко одиночная нейтронная звезда, пребывая в тесном окружении звездных скоплений, обращает свое внимание на ближайшую соседку. Компаньонами нейтронных звезд могут стать любые звезды. Эти пары возникают довольно часто. Последствия такой дружбы зависят от массы компаньона. Если масса нового компаньона невелика, то украденное звездное вещество будет скапливаться вокруг в виде аккреционного диска. Этот процесс, сопровождаемый большим периодом вращения, приведет к тому, что звездный газ разогреется до температуры в миллион градусов. Нейтронная звезда вспыхнет потоком рентгеновского излучения, становясь рентгеновским пульсаром. У этого процесса есть два пути:

  • звезда остается в космосе тусклым небесным телом;
  • тело начинает излучать короткие рентгеновские вспышки (барстеры).

Во время рентгеновских вспышек яркость звезды стремительно увеличивается, делая такой объект в 100 тысяч раз ярче Солнца.

История изучения нейтронных звезд

Нейтронный звезды стали открытием второй половины XX века. Ранее обнаружить подобные объекты в нашей галактике и во Вселенной было технически невозможно. Тусклый свет и малые размеры таких небесных тел не позволяли их обнаружить с помощью оптических телескопов. Несмотря на отсутствие визуального контакта, существование подобных объектов в космосе предсказывали теоретически. Первая версия о существовании звезд с огромной плотностью появилась с подачи советского ученого Л. Ландау в 1932 году.

Через год, в 1933 году уже за океаном было сделано серьезное заявление о существовании звезд с необычным строением. Астрономы Фриц Цвикки и Вальтер Бааде выдвинули обоснованную теорию, что на месте вспышки Сверхновой обязательно остается нейтронная звезда.

В 60-е годы XX столетия обозначился прорыв в астрономических наблюдениях. Этому способствовало появление рентгеновских телескопов, способных выявлять в космосе источники мягкого рентгеновского излучения. Используя в наблюдениях теорию о существовании в космосе источников сильного теплового излучения, астрономы пришли к выводу, что мы имеем дело с новым типом звезд. Весомым дополнением теории о существовании нейтронных звезд стало открытие в 1967 году пульсаров. Американец Джоселин Белл с помощью своей радиоаппаратуры обнаружил поступающие из космоса радиосигналы. Источником радиоволн являлся стремительно вращающийся объект, который действовал подобно радиомаяку, посылая сигналы во все стороны.

Такой объект непременно имеет большую скорость вращения, что для обычной звезды стало бы фатальным. Первым пульсаром, который был открыт астрономами, является PSR В1919+21, находящийся на расстоянии 2283,12 св. года от нашей планеты. По мнению ученых, ближайшей нейтронной звездой к Земле является космический объект RX J1856.5-3754, расположенный в созвездии Южная Корона, который был открыт в 1992 году в обсерватории Чандра. Расстояние от Земли до ближайшей нейтронной звезды составляет 400 световых лет.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

В астрофизике, как, впрочем, и в любой другой отрасли науки, наиболее интересны эволюционные проблемы, связанные с извечными вопросами «что было?» и «что будет?». Что случится со звездной массой, примерно равной массе нашего Солнца, мы уже знаем. Такая звезда, пройдя через стадию красного гиганта , станет белым карликом . Белые карлики на диаграмме Герцшпрунга - Рессела лежат в стороне от главной последовательности.

Белые карлики - конец эволюции звезд солнечной массы. Они являются своеобразным эволюционным тупиком. Медленное и спокойное угасание - конец пути всех звезд с массой, меньше солнечной. А что можно сказать о более массивных звездах? Мы увидели, что их жизнь полна бурными событиями. Но возникает естественный вопрос о том, чем же заканчиваются чудовищные катаклизмы, наблюдаемые в виде вспышек сверхновых?

В 1054 году на небе вспыхнула звезда-гостья. Она была видна на небе даже днем и погасла лишь через несколько месяцев. Сегодня мы видим остатки этой звездной катастрофы в виде яркого оптического объекта, обозначенного в каталоге туманностей Месье под номером M1. Это знаменитая Крабовидная туманность - остаток взрыва сверхновой.

В 40-х годах нашего столетия американский астроном В. Бааде начал изучать центральную часть «Краба» для того, чтобы попытаться отыскать в центре туманности звездный остаток от взрыва сверхновой. Кстати говоря, название «краб» этому объекту дал в XIX веке английский астроном лорд Росс. Бааде нашел кандидата на звездный остаток в виде звездочки 17т.

Но астроному не повезло, у него не было подходящей техники для детального исследования, и поэтому он не смог заметить, что звездочка эта мерцает, пульсирует. Будь период этих пульсаций яркости не 0,033 секунды, а, скажем, несколько секунд, Бааде, несомненно, заметил бы это, и тогда честь открытия первого пульсара принадлежала бы не А. Хьюишу и Д. Белл.

Лет за десять до того, как Бааде направил свой телескоп в центр Крабовидной туманности , физики-теоретики начали исследовать состояние вещества при плотностях, превышающих плотность белых карликов (106 - 107 г/см3). Интерес к этому вопросу возник в связи с проблемой конечных стадий эволюции звезд. Интересно, что одним из соавторов этой идеи был все тот же Бааде, который как раз и связал сам факт существования нейтронной звезды с взрывом сверхновой.

Если вещество сжимается до плотностей больших, чем плотность белых карликов, начинаются так называемые процессы нейтронизации. Чудовищное давление внутри звезды «вгоняет» электроны в атомные ядра. В обычных условиях ядро, поглотившее электроны, будет неустойчивым, поскольку оно содержит избыточное количество нейтронов. Однако в компактных звездах это не так. С увеличением плотности звезды электроны вырожденного газа постепенно поглощаются ядрами, и мало-помалу звезда превращается в гигантскую нейтронную звезду - каплю. Вырожденный электронный газ сменяется вырожденным нейтронным газом с плотностью 1014-1015 г/см3. Другими словами, плотность нейтронной звезды в миллиарды раз больше плотности белого карлика.

Долгое время эта чудовищная конфигурация звезды считалась игрой ума теоретиков. Понадобилось более тридцати лет, чтобы природа подтвердила это выдающееся предсказание. В те же 30-е годы было сделано еще одно важное открытие, которое оказало решающее влияние на всю теорию звездной эволюции. Чандрасекар и Л. Ландау установили, что для звезды, исчерпавшей источники ядерной энергии, существует некоторая предельная масса, когда звезда еще сохраняет устойчивость. При этой массе давление вырожденного газа еще в состоянии противостоять силам гравитации. Как следствие у массы вырожденных звезд (белые карлики, нейтронные звезды) существует конечный предел (предел Чандрасекара), превышение которого вызывает катастрофическое сжатие звезды, ее коллапс.

Отметим, что, если масса ядра звезды заключена между 1,2 М и 2,4 М, конечным «продуктом» эволюции такой звезды должна быть нейтронная звезда. При массе ядра менее 1,2 М эволюция приведет в конце концов к рождению белого карлика.

Что же представляет собой нейтронная звезда? Массу ее мы знаем, знаем также, что она состоит в основном из нейтронов, размеры которых также известны. Отсюда легко определить радиус звезды. Он оказывается близким к... 10 километрам! Определить радиус такого объекта действительно несложно, но очень трудно наглядно представить себе, что массу, близкую к массе Солнца, можно разместить в объекте, диаметр которого чуть больше длины Профсоюзной улицы в Москве. Это гигантская ядерная капля, сверхядро элемента, который не укладывается ни в какие периодические системы и имеет неожиданное, своеобразное строение.

Вещество нейтронной звезды обладает свойствами сверхтекучей жидкости! В этот факт на первый взгляд трудно поверить, но это так. Сжатое до чудовищных плотностей вещество напоминает в какой-то мере жидкий гелий. К тому же не следует забывать, что температура нейтронной звезды - порядка миллиарда градусов, а, как мы знаем, сверхтекучесть в земных условиях проявляется лишь при сверхнизких температурах.

Правда, для поведения самой нейтронной звезды температура особой роли не играет, поскольку устойчивость ее определяется давлением вырожденного нейтронного газа - жидкости. Строение нейтронной звезды во многом напоминает строение планеты. Помимо «мантии», состоящей из вещества с удивительными свойствами сверхпроводящей жидкости, такая звезда имеет тонкую твердую кору толщиной примерно в километр. Предполагается, что кора обладает своеобразной кристаллической структурой. Своеобразной потому, что в отличие от известных нам кристаллов, где строение кристалла зависит от конфигурации электронных оболочек атома, в коре нейтронной звезды атомные ядра лишены электронов. Поэтому они образуют решетку, напоминающую кубические решетки железа, меди, цинка, но, соответственно при неизмеримо более высоких плотностях. Далее идет мантия, о свойствах которой мы уже говорили. В центре нейтронной звезды плотности достигают 1015 граммов в кубическом сантиметре. Другими словами, чайная ложка вещества такой звезды весит миллиарды тонн. Предполагается, что в центре нейтронной звезды происходит непрерывное образование всех известных в ядерной физике, а также еще не открытых экзотических элементарных частиц.

Нейтронные звезды довольно быстро остывают. Оценки показывают, что за первые десять - сто тысяч лет температура падает от нескольких миллиардов до сотен миллионов градусов. Нейтронные звезды быстро вращаются, и это приводит к целому ряду очень интересных следствий. Кстати говоря, именно малые размеры звезды позволяют ей при быстром вращении оставаться целой. Будь ее диаметр не 10, а, скажем, 100 километров, она была бы просто разорвана центробежными силами.

Мы уже говорили об интригующей истории открытия пульсаров. Сразу же была высказана мысль, что пульсар - быстро вращающаяся нейтронная звезда, поскольку из всех известных звездных конфигураций лишь она одна могла бы остаться устойчивой, вращаясь с большой.скоростью. Именно изучение пульсаров позволило прийти к замечательному выводу о том, что открытые «на кончике пера» теоретиками нейтронные звезды действительно существуют в природе и возникают они в результате вспышек сверхновых. Трудности их обнаружения в оптическом диапазоне очевидны, поскольку из-за малого диаметра большинство нейтронных звезд нельзя увидеть в самые мощные телескопы, хотя, как мы видели, здесь есть и исключения - пульсар в Крабовидной туманности .

Итак, астрономы открыли новый класс объектов - пульсары , быстро вращающиеся нейтронные звезды. Возникает естественный вопрос: что является причиной столь быстрого вращения нейтронной звезды, почему, собственно говоря, она должна крутиться вокруг своей оси с огромной скоростью?

Причина этого явления проста. Мы хорошо знаем, как может увеличить скорость вращения фигурист, когда прижимает руки к телу. При этом он использует закон сохранения момента количества движения. Этот закон не нарушается никогда, и именно он при взрыве сверхновой во много раз увеличивает скорость вращения ее остатка - пульсара.

Действительно, в процессе коллапса звезды ее масса (то, что осталось после взрыва) не меняется, а радиус уменьшается примерно в сто тысяч раз. Но момент количества движения, равный произведению экваториальной скорости вращения на массу и на радиус, остается прежним. Масса не меняется, следовательно, скорость должна увеличиваться в те же сто тысяч раз.

Рассмотрим простой пример. Наше Солнце довольно медленно вращается вокруг собственной оси. Период этого вращения составляет примерно 25 суток. Так вот, если бы Солнце вдруг стало нейтронной звездой, период его вращения уменьшился бы до одной десятитысячной доли секунды.

Второе важное следствие из законов сохранения состоит в том, что нейтронные звезды должны быть очень сильно намагничены. В самом деле, в любом природном процессе мы не можем просто так взять и уничтожить магнитное поле (если оно уже существует). Магнитные силовые линии навсегда связаны с обладающим прекрасной электропроводностью веществом звезды. Величина магнитного потока на поверхности звезды равна произведению величины напряженности магнитного поля на квадрат радиуса звезды. Эта величина строго постоянна. Вот почему при сжатии звезды магнитное поле должно очень сильно увеличиться. Остановимся на этом явлении несколько подробнее, поскольку именно оно обусловливает многие удивительные свойства пульсаров.

На поверхности нашей Земли можно измерить напряженность магнитного поля. Мы получим небольшую величину около одного гаусса. В хорошей физической лаборатории можно получить магнитные поля величиной в миллион гаусс. На поверхности белых карликов напряженность магнитного поля достигает ста миллионов гаусс. Вблизи поля еще сильнее - до десяти миллиардов гаусс. Но на поверхности нейтронной звезды природа достигает абсолютного рекорда. Здесь напряженность поля может составлять сотни тысяч миллиардов гаусс. Пустота в литровой банке, содержащей внутри себя такое поле, весила бы около тысячи тонн.

Столь сильные магнитные поля не могут не повлиять (разумеется, в сочетании с гравитационным полем) на характер взаимодействия нейтронной звезды с окружающим веществом. Ведь мы пока еще не говорили о том, почему пульсары обладают огромной активностью, почему они излучают радиоволны. Да и не только радиоволны. На сегодняшний день астрофизикам хорошо известны рентгеновские пульсары, наблюдающиеся только в двойных системах, гамма-источники с необычными свойствами, так называемые рентгеновские барстеры.

Чтобы представить себе различные механизмы взаимодействия нейтронной звезды с веществом, обратимся к общей теории медленного изменения режимов взаимодействия нейтронных звезд с окружающей средой. Рассмотрим вкратце основные этапы такой эволюции. Нейтронные звезды - остатки вспышек сверхновых - вначале очень быстро вращаются с периодом 10 -2 - 10 -3 секунды. При таком быстром вращении звезда испускает радиоволны, электромагнитное излучение, частицы.

Одним иа наиболее удивительных свойств пульсаров является чудовищная мощность их излучения, в миллиарды раз превосходящая мощность излучения звездных недр. Так, например, мощность радиоизлучения пульсара в «Крабе» достигает 1031 эрг/сек, в оптике- 1034 эрг/сек, что гораздо больше, чем мощность излучения Солнца. Еще больше излучает этот пульсар в рентгеновском и гамма-диапазонах.

Как же устроены эти природные генераторы энергии? Все радиопульсары обладают одним общим свойством, которое и послужило ключом к разгадке механизма их действия. Это свойство заключается в том, что период излучения импульсов не остается постоянным, он медленно, увеличивается. Стоит отметить, что и это свойство вращающихся нейтронных звезд было сначала предсказано теоретиками, а затем очень быстро подтверждено экспериментально. Так, в 1969 году было установлено, что период излучения импульсов пульсара в «Крабе» растет на 36 миллиардных долей секунды в день.

Не будем сейчас говорить, каким образом измеряются столь малые промежутки времени. Для нас важен сам факт увеличения периода между импульсами, который, кстати говоря, дает возможность оценивать и возраст пульсаров. Но все-таки почему пульсар излучает импульсы радиоизлучения? Полностью это явление не объяснено в рамках какой-либо законченной теории. Но качественную картину явления можно тем не менее обрисовать.

Все дело в том, что ось вращения нейтронной звезды не совпадает с ее магнитной осью. Из электродинамики хорошо известно, что если вращать в вакууме магнит вокруг оси, которая не совпадает с магнитной, то возникнет электромагнитное излучение как раз на частоте вращения магнита. Одновременно будет тормозиться скорость вращения магнита. Это понятно из общих соображений, поскольку, если бы торможения не происходило, мы имели бы просто-напросто вечный двигатель.

Таким образом, наш передатчик черпает энергию радиоимпульсов из вращения звезды, а магнитное поле ее является как бы приводным ремнем машины. Реальный процесс намного сложнее, поскольку вращающийся в вакууме магнит лишь частично является аналогом пульсара. Ведь нейтронная звезда вращается отнюдь не в вакууме, она окружена мощной магнитосферой, плазменным облаком, а это хороший проводник, вносящий свои коррективы в нарисованную нами простую и довольно схематичную картину. В результате взаимодействия магнитного поля пульсара с окружающей его магнитосферой и образуются узкие пучки направленного излучения, которое при благоприятном «расположении светил» может наблюдаться в различных участках галактики, в частности на Земле.

Быстрое вращение радиопульсара в начале его жизни вызывает не только радиоизлучение. Значительная часть энергии уносится также релятивистскими частицами. По мере уменьшения скорости вращения пульсара давление излучения падает. До этого излучение отбрасывало плазму от пульсара. Теперь же окружающее вещество начинает падать на звезду и гасит ее излучение. Этот процесс может быть особенно эффективен, если пульсар входит в двойную систему. В такой системе, особенно если она достаточно тесная, пульсар перетягивает на себя вещество «нормального» компаньона.

Если пульсар молод и полон сил, его радиоизлучение еще в состоянии «пробиться» к наблюдателю. Но старый пульсар уже не в состоянии бороться с аккрецией, и она «тушит» звезду. По мере замедления вращения пульсара начинают проявляться и другие замечательные процессы. Поскольку гравитационное поле у нейтронной звезды очень мощное, при аккреции вещества выделяется значительное количество энергии в виде рентгеновского излучения. Если в двойной системе нормальный компаньон отдает пульсару заметное количество материи, примерно 10 -5 - 10 -6 М в год, нейтронная звезда будет наблюдаться не как радиопульсар, а как рентгеновский пульсар.

Но это еще не все. В некоторых случаях, когда магнитосфера нейтронной звезды находится близко к ее поверхности, вещество начинает там накапливаться, образуя своего рода оболочку звезды. В этой оболочке могут создаться благоприятные условия для прохождения термоядерных реакций, и тогда мы можем увидеть на небе рентгеновский барстер (от английского слова burst - «вспышка»).

Собственно говоря, этот процесс не должен выглядеть для нас неожиданным, мы уже говорили о нем применительно к белым карликам. Однако условия на поверхности белого карлика и нейтронной звезды сильно отличаются, и поэтому рентгеновские барстеры однозначно связываются именно с нейтронными звездами. Термо ядерные взрывы наблюдаются нами в виде рентгеновских вспышек и, быть может, гамма-всплесков. И действительно, некоторые гамма-всплески могут быть, по всей видимости, обусловлены термоядерными взрывами на поверхности нейтронных звезд.

Но вернемся к рентгеновским пульсарам. Механизм их излучения, естественно, совершенно иной, нежели у барстеров. Ядерные источники энергии здесь уже не играют никакой роли. Кинетическая энергия самой нейтронной звезды также не может быть согласована с данными наблюдений.

Возьмем для примера рентгеновский источник Центавр Х-1. Его мощность составляет 10 эрг/сек. Стало быть, запаса этой энергии могло бы хватить только на один год. Кроме того, вполне очевидно, что период вращения звезды в этом случае должен был бы увеличиваться. Однако у многих рентгеновских пульсаров в отличие от радиопульсаров период между импульсами со временем уменьшается. Значит, здесь дело не в кинетической энергии вращения. Как же работают рентгеновские пульсары?

Мы помним, что проявляются они в двойных системах. Именно там процессы аккреции особенно эффективны. Скорость падения вещества на нейтронную звезду может достигать одной трети скорости света (100 тысяч километров в секунду). Тогда один грамм вещества выделит энергию 1020 эрг. А чтобы обеспечить энерговыделение в 1037 эрг/сек, необходимо, чтобы поток вещества на нейтронную звезду составлял 1017 граммов в секунду. Это, в общем-то, не очень много, около одной тысячной массы Земли в год.

Поставщиком материала может быть оптический компаньон. С части поверхности его по направлению к нейтронной звезде будет непрерывно течь струя газа. Она и будет снабжать и энергией, и веществом аккреционный диск, образующийся вокруг нейтронной звезды.

Поскольку у нейтронной звезды огромное магнитное поле, газ будет «стекать» по магнитным силовым линиям к полюсам. Именно там, в сравнительно небольших «пятнах» размером порядка всего лишь одного километра, разыгрываются грандиозные по своим масштабам процессы рождения мощнейшего рентгеновского излучения. Излучают рентген релятивистские и обычные электроны, движущиеся в магнитном поле пульсара. Падающий на него газ может и «подпитывать» его вращение. Поэтому-то именно у рентгеновских пульсаров наблюдается в ряде случаев уменьшение периода вращения.

Рентгеновские источники, входящие в двойные системы,- одно из самых замечательных явлений в космосе. Их немного, вероятно, не более сотни в нашей Галактике, но значение их огромно не только с точки зрения , в частности для понимания I типа. Двойные системы обеспечивают наиболее естественный и эффективный путь перетекания вещества от звезды к звезде, и именно здесь (за счет сравнительно быстрого изменения массы звезд) мы можем столкнуться с различными вариантами «ускоренной» эволюции.

Еще одно интересное соображение. Мы знаем, как трудно, практически невозможно оценить массу одиночной звезды. Но поскольку нейтронные звезды входят в двойные системы, может оказаться, что рано или поздно удастся эмпирически (а это чрезвычайно важно!) определить предельную массу нейтронной звезды, а также получить прямую информацию о ее происхождении.

Нейтронные звезды, которые часто называют «мертвыми», являются удивительнейшими объектами. Их изучение в последние десятилетия превратилось в одну из самых увлекательных и богатых открытиями областей астрофизики. Интерес к нейтронным звездам обусловлен не только загадочностью их строения, но и колоссальной плотностью, и сильнейшими магнитными и гравитационными полями. Материя там находится в особом состоянии, напоминающем огромное атомное ядро, и эти условия невозможно воспроизвести в земных лабораториях.

Рождение на кончике пера

Открытие в 1932 году новой элементарной частицы — нейтрона заставило астрофизиков задуматься над тем, какую роль он может играть в эволюции звезд. Два года спустя было высказано предположение о том, что взрывы сверхновых звезд связаны с превращением обычных звезд в нейтронные. Затем были выполнены расчеты структуры и параметров последних, и стало ясно, что если небольшие звезды (типа нашего Солнца) в конце своей эволюции превращаются в белых карликов, то более тяжелые становятся нейтронными. В августе 1967 года радиоастрономы при изучении мерцаний космических радиоисточников обнаружили странные сигналы — фиксировались очень короткие, длительностью около 50 миллисекунд, импульсы радиоизлучения, повторявшиеся через строго определенный интервал времени (порядка одной секунды). Это было совершенно не похоже на обычную хаотическую картину случайных нерегулярных колебаний радиоизлучения. После тщательной проверки всей аппаратуры пришла уверенность, что импульсы имеют внеземное происхождение. Астрономов трудно удивить объектами, излучающими с переменной интенсивностью, но в данном случае период был столь мал, а сигналы — столь регулярны, что ученые всерьез предположили, что они могут быть весточками от внеземных цивилизаций.

А потому первый пульсар получил название LGM-1 (от английского Little Green Men — «Маленькие Зеленые Человечки»), хотя попытки найти какой-либо смысл в принимаемых импульсах окончились безрезультатно. Вскоре были обнаружены еще 3 пульсирующих радиоисточника. Их период опять оказался много меньше характерных времен колебания и вращения всех известных астрономических объектов. Из-за импульсного характера излучения новые объекты стали называть пульсарами. Это открытие буквально всколыхнуло астрономию, и из многих радиообсерваторий начали поступать сообщения об обнаружении пульсаров. После открытия пульсара в Крабовидной Туманности, возникшей из-за взрыва сверхновой в 1054 году (эта звезда была видна днем, о чем упоминают в своих летописях китайцы, арабы и североамериканцы), стало ясно, что пульсары каким-то образом связаны с вспышками сверхновых звезд.

Скорее всего, сигналы шли от объекта, оставшегося после взрыва. Прошло немало времени, прежде чем астрофизики поняли, что пульсары — это и есть быстро вращающиеся нейтронные звезды, которые они так долго искали.

Крабовидная туманность
Вспышка этой сверхновой звезды (фото вверху), сверкавшей на земном небосклоне ярче Венеры и видимой даже днем, произошла в 1054 году по земным часам. Почти 1 000 лет — это очень маленький срок по космическим меркам, и тем не менее за это время из остатков взорвавшейся звезды успела образоваться красивейшая Крабовидная туманность. Данное изображение является композицией двух картинок: одна из них получена космическим оптическим телескопом «Хаббл» (оттенки красного), другая — рентгеновским телескопом «Чандра» (голубой). Хорошо видно, что высокоэнергичные электроны, излучающие в рентгеновском диапазоне, очень быстро теряют свою энергию, поэтому голубые цвета превалируют только в центральной части туманности.
Совмещение двух изображений помогает более точно понять механизм работы этого удивительнейшего космического генератора, излучающего электромагнитные колебания широчайшего частотного диапазона — от гамма-квантов до радиоволн. Хотя большинство нейтронных звезд было обнаружено по радиоизлучению, все же основное количество энергии они испускают в гамма- и рентгеновском диапазонах. Нейтронные звезды рождаются очень горячими, но достаточно быстро охлаждаются, и уже в тысячелетнем возрасте имеют температуру поверхности около 1 000 000 К. Поэтому только молодые нейтронные звезды сияют в рентгеновском диапазоне за счет чисто теплового излучения.


Физика пульсара
Пульсар — это просто огромный намагниченный волчок, крутящийся вокруг оси, не совпадающей с осью магнита. Если бы на него ничего не падало и он ничего не испускал, то его радиоизлучение имело бы частоту вращения и мы никогда бы его не услышали на Земле. Но дело в том, что данный волчок имеет колоссальную массу и высокую температуру поверхности, да и вращающееся магнитное поле создает огромное по напряженности электрическое поле, способное разгонять протоны и электроны почти до световых скоростей. Причем все эти заряженные частицы, носящиеся вокруг пульсара, зажаты в ловушке из его колоссального магнитного поля. И только в пределах небольшого телесного угла около магнитной оси они могут вырваться на волю (нейтронные звезды обладают самыми сильными магнитными полями во Вселенной, достигающими 10 10 —10 14 гаусс, для сравнения: земное поле составляет 1 гаусс, солнечное — 10—50 гаусс). Именно эти потоки заряженных частиц и являются источником того радиоизлучения, по которому и были открыты пульсары, оказавшиеся в дальнейшем нейтронными звездами. Поскольку магнитная ось нейтронной звезды необязательно совпадает с осью ее вращения, то при вращении звезды поток радиоволн распространяется в космосе подобно лучу проблескового маяка — лишь на миг прорезая окружающую мглу.


Рентгеновские изображения пульсара Крабовидной туманности в активном (слева) и обычном (справа) состояниях

Ближайший сосед
Данный пульсар находится на расстоянии всего 450 световых лет от Земли и является двойной системой из нейтронной звезды и белого карлика с периодом обращения 5,5 дня. Мягкое рентгеновское излучение, принимаемое спутником ROSAT, испускают раскаленные до двух миллионов градусов полярные шапки PSR J0437-4715. В процессе своего быстрого вращения (период этого пульсара равен 5,75 миллисекунды) он поворачивается к Земле то одним, то другим магнитным полюсом, в результате интенсивность потока гамма-квантов меняется на 33%. Яркий объект рядом с маленьким пульсаром — это далекая галактика, которая по каким-то причинам активно светится в рентгеновском участке спектра.

Всесильная гравитация

Согласно современной теории эволюции массивные звезды заканчивают свою жизнь колоссальным взрывом, превращающим большую их часть в расширяющуюся газовую туманность. В итоге от гиганта, во много раз превышавшего размерами и массой наше Солнце, остается плотный горячий объект размером около 20 км, с тонкой атмосферой (из водорода и более тяжелых ионов) и гравитационным полем, в 100 млрд. раз превышающим земное. Его и назвали нейтронной звездой, полагая, что он состоит главным образом из нейтронов. Вещество нейтронной звезды — самая плотная форма материи (чайная ложка такого суперядра весит около миллиарда тонн). Очень короткий период излучаемых пульсарами сигналов был первым и самым главным аргументом в пользу того, что это и есть нейтронные звезды, обладающие огромным магнитным полем и вращающиеся с бешеной скоростью. Только плотные и компактные объекты (размером всего в несколько десятков километров) с мощным гравитационным полем могут выдерживать такую скорость вращения, не разлетаясь на куски из-за центробежных сил инерции.

Нейтронная звезда состоит из нейтронной жидкости с примесью протонов и электронов. «Ядерная жидкость», очень напоминающая вещество из атомных ядер, в 1014 раз плотнее обычной воды. Это огромное различие вполне объяснимо — ведь атомы состоят в основном из пустого пространства, в котором вокруг крошечного тяжелого ядра порхают легкие электроны. Ядро содержит почти всю массу, так как протоны и нейтроны в 2 000 раз тяжелее электронов. Экстремальные силы, возникающие при формировании нейтронной звезды, так сжимают атомы, что электроны, вдавленные в ядра, объединяются с протонами, образуя нейтроны. Таким образом рождается звезда, почти полностью состоящая из нейтронов. Сверхплотная ядерная жидкость, если ее принести на Землю, взорвалась бы, подобно ядерной бомбе, но в нейтронной звезде она устойчива благодаря огромному гравитационному давлению. Однако во внешних слоях нейтронной звезды (как, впрочем, и всех звезд) давление и температура падают, образуя твердую корку толщиной около километра. Как полагают, состоит она в основном из ядер железа.

Вспышка
Колоссальная рентгеновская вспышка 5 марта 1979 года, оказывается, произошла далеко за пределами нашей Галактики, в Большом Магеллановом Облаке — спутнике нашего Млечного Пути, находящемся на расстоянии 180 тыс. световых лет от Земли. Совместная обработка гаммавсплеска 5 марта, зафиксированного семью космическими кораблями, позволила достаточно точно определить положение данного объекта, и то, что он находится именно в Магеллановом Облаке, сегодня практически не вызывает сомнений.

Событие, случившееся на данной далекой звезде 180 тыс. лет назад, трудно представить, но вспыхнула она тогда, как целых 10 сверхновых звезд, более чем в 10 раз превысив светимость всех звезд нашей Галактики. Яркая точка в верхней части рисунка — это давно и хорошо известный SGR-пульсар, а неправильный контур — наиболее вероятное положение объекта, вспыхнувшего 5 марта 1979 года.

Происхождение нейтронной звезды
Вспышка сверхновой звезды — это просто переход части гравитационной энергии в тепловую. Когда в старой звезде заканчивается топливо и термоядерная реакция уже не может разогреть ее недра до нужной температуры, происходит как бы обрушение — коллапс газового облака на его центр тяжести. Высвобождающаяся при этом энергия разбрасывает внешние слои звезды во все стороны, образуя расширяющуюся туманность. Если звезда маленькая, типа нашего Солнца, то происходит вспышка и образуется белый карлик. Если масса светила более чем в 10 раз превышает Солнечную, то такое обрушение приводит к вспышке сверхновой звезды и образуется обычная нейтронная звезда. Если же сверхновая вспыхивает на месте совсем большой звезды, с массой 20—40 Солнечных, и образуется нейтронная звезда с массой большей трех Солнц, то процесс гравитационного сжатия приобретает необратимый характер и образуется черная дыра.

Внутренняя структура
Твердая корка внешних слоев нейтронной звезды состоит из тяжелых атомных ядер, упорядоченных в кубическую решетку, с электронами, свободно летающими между ними, чем напоминает земные металлы, но только намного более плотные.

Открытый вопрос

Хотя нейтронные звезды интенсивно изучаются уже около трех десятилетий, их внутренняя структура доподлинно неизвестна. Более того, нет твердой уверенности и в том, что они действительно состоят в основном из нейтронов. С продвижением вглубь звезды давление и плотность увеличиваются и материя может быть настолько сжата, что она распадется на кварки — строительные блоки протонов и нейтронов. Согласно современной квантовой хромодинамике кварки не могут существовать в свободном состоянии, а объединяются в неразлучные «тройки» и «двойки». Но, возможно, у границы внутреннего ядра нейтронной звезды ситуация меняется и кварки вырываются из своего заточения. Чтобы глубже понять природу нейтронной звезды и экзотической кварковой материи, астрономам необходимо определить соотношение между массой звезды и ее радиусом (средняя плотность). Исследуя нейтронные звезды со спутниками, можно достаточно точно измерить их массу, но определить диаметр — намного труднее. Совсем недавно ученые, используя возможности рентгеновского спутника «XMM-Ньютон», нашли способ оценки плотности нейтронных звезд, основанный на гравитационном красном смещении. Необычность нейтронных звезд состоит еще и в том, что при уменьшении массы звезды ее радиус возрастает — в результате наименьший размер имеют наиболее массивные нейтронные звезды.

Черная вдова
Взрыв сверхновой звезды достаточно часто сообщает новорожденному пульсару немалую скорость. Такая летящая звезда с приличным собственным магнитным полем сильно возмущает ионизированный газ, заполняющий межзвездное пространство. Образуется своеобразная ударная волна, бегущая впереди звезды и расходящаяся широким конусом после нее. Совмещенное оптическое (сине-зеленая часть) и рентгеновское (оттенки красного) изображение показывает, что здесь мы имеем дело не просто со светящимся газовым облаком, а с огромным потоком элементарных частиц, испускаемых данным миллисекундным пульсаром. Линейная скорость Черной Вдовы равна 1 млн. км/ч, оборот вокруг оси она делает за 1,6 мс, лет ей уже около миллиарда, и у нее есть звезда-компаньон, кружащаяся около Вдовы с периодом 9,2 часа. Свое название пульсар B1957+20 получил по той простой причине, что его мощнейшее излучение просто сжигает соседа, заставляя «кипеть» и испаряться образующий его газ. Красный сигарообразный кокон позади пульсара — это та часть пространства, где испускаемые нейтронной звездой электроны и протоны излучают мягкие гамма-кванты.

Результат компьютерного моделирования позволяет очень наглядно, в разрезе, представить процессы, происходящие вблизи быстро летящего пульсара. Расходящиеся от яркой точки лучи — это условное изображение того потока лучистой энергии, а также потока частиц и античастиц, который исходит от нейтронной звезды. Красная обводка на границе черного пространства вокруг нейтронной звезды и рыжих светящихся клубов плазмы — это то место, где поток релятивистских, летящих почти со скоростью света, частиц встречается с уплотненным ударной волной межзвездным газом. Резко тормозя, частицы испускают рентгеновское излучение и, потеряв основную энергию, уже не так сильно разогревают налетающий газ.

Судороги гигантов

Пульсары считаются одной из ранних стадий жизни нейтронной звезды. Благодаря их изучению ученые узнали и о магнитных полях, и о скорости вращения, и о дальнейшей судьбе нейтронных звезд. Постоянно наблюдая за поведением пульсара, можно точно установить: сколько энергии он теряет, насколько замедляется, и даже то, когда он прекратит свое существование, замедлившись настолько, что не сможет излучать мощные радиоволны. Эти исследования подтвердили многие теоретические предсказания относительно нейтронных звезд.

Уже к 1968 году были обнаружены пульсары с периодом вращения от 0,033 секунды до 2 секунд. Периодичность импульсов радиопульсара выдерживается с удивительной точностью, и поначалу стабильность этих сигналов была выше земных атомных часов. И все же по мере прогресса в области измерения времени для многих пульсаров удалось зарегистрировать регулярные изменения их периодов. Конечно, это исключительно малые изменения, и только за миллионы лет можно ожидать увеличения периода вдвое. Отношение текущей скорости вращения к замедлению вращения — один из способов оценки возраста пульсара. Несмотря на поразительную стабильность радиосигнала, некоторые пульсары иногда испытывают так называемые «нарушения». За очень короткий интервал времени (менее 2 минут) скорость вращения пульсара увеличивается на существенную величину, а затем через некоторое время возвращается к той величине, которая была до «нарушения». Полагают, что «нарушения» могут быть вызваны перегруппировкой массы в пределах нейтронной звезды. Но в любом случае точный механизм пока неизвестен.

Так, пульсар Вела примерно раз в 3 года подвергается большим «нарушениям», и это делает его очень интересным объектом для изучения подобных явлений.

Магнетары

Некоторые нейтронные звезды, названные источниками повторяющихся всплесков мягкого гамма-излучения — SGR, испускают мощные всплески «мягких» гамма-лучей через нерегулярные интервалы. Количество энергии, выбрасываемое SGR при обычной вспышке, длящейся несколько десятых секунды, Солнце может излучить только за целый год. Четыре известные SGR находятся в пределах нашей Галактики и только один — вне ее. Эти невероятные взрывы энергии могут быть вызваны звездотрясениями — мощными версиями землетрясений, когда разрывается твердая поверхность нейтронных звезд и из их недр вырываются мощные потоки протонов, которые, увязая в магнитном поле, испускают гамма- и рентгеновское излучение. Нейтронные звезды были идентифицированы как источники мощных гамма-всплесков после огромной гаммавспышки 5 марта 1979 года, когда было выброшено столько энергии в течение первой же секунды, сколько Солнце излучает за 1 000 лет. Недавние наблюдения за одной из наиболее «активных» в настоящее время нейтронных звезд, похоже, подтверждают теорию о том, что нерегулярные мощные всплески гамма- и рентгеновского излучений вызваны звездотрясениями.

В 1998 году внезапно очнулся от «дремоты» известный SGR, который 20 лет не подавал признаков активности и выплеснул почти столько же энергии, как и гамма-вспышка 5 марта 1979 года. Больше всего поразило исследователей при наблюдении за этим событием резкое замедление скорости вращения звезды, говорящее о ее разрушении. Для объяснения мощных гамма и рентгеновских вспышек была предложена модель магнетара — нейтронной звезды со сверхсильным магнитным полем. Если нейтронная звезда рождается, вращаясь очень быстро, то совместное влияние вращения и конвекции, которая играет важную роль в первые несколько секунд существования нейтронной звезды, может создать огромное магнитное поле в результате сложного процесса, известного как «активное динамо» (таким же способом создается поле внутри Земли и Солнца). Теоретики были поражены, обнаружив, что такое динамо, работая в горячей, новорожденной нейтронной звезде, может создать магнитное поле, в 10 000 раз более сильное, чем обычное поле пульсаров. Когда звезда охлаждается (секунд через 10 или 20), конвекция и действие динамо прекращаются, но этого времени вполне достаточно, чтобы успело возникнуть нужное поле.

Магнитное поле вращающегося электропроводящего шара бывает неустойчивым, и резкая перестройка его структуры может сопровождаться выбросом колоссальных количеств энергии (наглядный пример такой неустойчивости — периодическая переброска магнитных полюсов Земли). Аналогичные вещи случаются и на Солнце, во взрывных событиях, названных «солнечными вспышками». В магнетаре доступная магнитная энергия огромна, и этой энергии вполне достаточно для мощи таких гигантских вспышек, как 5 марта 1979 и 27 августа 1998 годов. Подобные события неизбежно вызывают глубокую ломку и изменения в структуре не только электрических токов в объеме нейтронной звезды, но и ее твердой коры. Другим загадочным типом объектов, которые испускают мощное рентгеновское излучение во время периодических взрывов, являются так называемые аномальные рентгеновские пульсары — AXP. Они отличаются от обычных рентгеновских пульсаров тем, что излучают только в рентгеновском диапазоне. Ученые полагают, что SGR и AXP являются фазами жизни одного и того же класса объектов, а именно магнетаров, или нейтронных звезд, которые излучают мягкие гамма-кванты, черпая энергию из магнитного поля. И хотя магнетары на сегодня остаются детищами теоретиков и нет достаточных данных, подтверждающих их существование, астрономы упорно ищут нужные доказательства.

Кандидаты в магнетары
Астрономы уже так основательно изучили нашу родную галактику Млечный Путь, что им ничего не стоит изобразить ее вид сбоку, обозначив на нем положение наиболее замечательных из нейтронных звезд.

Ученые полагают, что AXP и SGR — это просто две стадии жизни одного и того же гигантского магнита — нейтронной звезды. Первые 10 000 лет магнетар— это SGR — пульсар, видимый в обычном свете и дающий повторяющиеся вспышки мягкого рентгеновского излучения, а последующие миллионы лет он, уже как аномальный пульсар AXP, исчезает из видимого диапазона и попыхивает только в рентгеновском.

Самый сильный магнит
Анализ данных, полученных спутником RXTE (Rossi X-ray Timing Explorer, NASA) при наблюдениях необычного пульсара SGR 1806-20, показал, что этот источник является самым мощным из известных на сегодняшний день магнитов во Вселенной. Величина его поля была определена не только на основании косвенных данных (по замедлению пульсара), но и практически прямо — по измерению частоты вращения протонов в магнитном поле нейтронной звезды. Магнитное поле вблизи поверхности этого магнитара достигает 10 15 гаусс. Находись он, например, на орбите Луны, все магнитные носители информации на нашей Земле были бы размагничены. Правда, с учетом того, что его масса примерно равна Солнечной, это было бы уже неважно, поскольку даже если бы Земля и не упала на эту нейтронную звездочку, то вертелась бы вокруг нее как угорелая, делая полный оборот всего за час.

Активное динамо
Все мы знаем, что энергия любит переходить из одной формы в другую. Электричество легко превращается в тепло, а кинетическая энергия — в потенциальную. Огромные конвективные потоки электропроводящей магмы плазмы или ядерного вещества, оказывается, тоже могут свою кинетическую энергию преобразовать во что-нибудь необычное, например в магнитное поле. Перемещение больших масс на вращающейся звезде в присутствии небольшого исходного магнитного поля могут приводить к электрическим токам, создающим поле того же направления, что и исходное. В результате начинается лавинообразное нарастание собственного магнитного поля вращающегося токопроводящего объекта. Чем больше поле, тем больше токи, чем больше токи, тем больше поле — и все это из-за банальных конвективных потоков, обусловленных тем, что горячее вещество легче холодного, и потому всплывает…

Беспокойное соседство

Знаменитая космическая обсерватория «Чандра» обнаружила сотни объектов (в том числе и в других галактиках), свидетельствующих о том, что не всем нейтронным звездам предназначено вести жизнь в одиночестве. Такие объекты рождаются в двойных системах, которые пережили взрыв сверхновой, создавший нейтронную звезду. А иногда случается, что одиночные нейтронные звезды в плотных звездных областях типа шаровых скоплений захватывают себе компаньона. В таком случае нейтронная звезда будет «красть» вещество у своей соседки. И в зависимости от того, насколько массивная звезда составит ей компанию, эта «кража» будет вызывать разные последствия. Газ, текущий с компаньона, массой, меньшей, чем у нашего Солнца, на такую «крошку», как нейтронная звезда, не сможет сразу упасть из-за слишком большого собственного углового момента, поэтому он создает вокруг нее так называемый аккреционный диск из «украденной» материи. Трение при накручивании на нейтронную звезду и сжатие в гравитационном поле разогревает газ до миллионов градусов, и он начинает испускать рентгеновское излучение. Другое интересное явление, связанное с нейтронными звездами, имеющими маломассивного компаньона, — рентгеновские вспышки (барстеры). Они обычно длятся от нескольких секунд до нескольких минут и в максимуме дают звезде светимость, почти в 100 тысяч раз превышающую светимость Солнца.

Эти вспышки объясняют тем, что, когда водород и гелий переносятся на нейтронную звезду с компаньона, они образуют плотный слой. Постепенно этот слой становится настолько плотным и горячим, что начинается реакция термоядерного синтеза и выделяется огромное количество энергии. По мощности это эквивалентно взрыву всего ядерного арсенала землян на каждом квадратном сантиметре поверхности нейтронной звезды в течение минуты. Совсем другая картина наблюдается, если нейтронная звезда имеет массивного компаньона. Звезда-гигант теряет вещество в виде звездного ветра (исходящего от ее поверхности потока ионизированного газа), и огромная гравитация нейтронной звезды захватывает часть этого вещества себе. Но здесь вступает в свои права магнитное поле, которое заставляет падающее вещество течь по силовым линиям к магнитным полюсам.

Это означает, что рентгеновское излучение прежде всего генерируется в горячих точках на полюсах, и если магнитная ось и ось вращения звезды не совпадают, то яркость звезды оказывается переменной — это тоже пульсар, но только рентгеновский. Нейтронные звезды в рентгеновских пульсарах имеют компаньонами яркие звезды-гиганты. В барстерах же компаньонами нейтронных звезд являются слабые по блеску звезды малых масс. Возраст ярких гигантов не превышает нескольких десятков миллионов лет, тогда как возраст слабых звезд-карликов может насчитывать миллиарды лет, поскольку первые гораздо быстрее расходуют свое ядерное топливо, чем вторые. Отсюда следует, что барстеры — это старые системы, в которых магнитное поле успело со временем ослабеть, а пульсары — относительно молодые, и потому магнитные поля в них сильнее. Может быть, барстеры когда-то в прошлом пульсировали, а пульсарам еще предстоит вспыхивать в будущем.

С двойными системами связывают и пульсары с самыми короткими периодами (менее 30 миллисекунд) — так называемые миллисекундные пульсары. Несмотря на их быстрое вращение, они оказываются не молодыми, как следовало бы ожидать, а самыми старыми.

Возникают они из двойных систем, где старая, медленно вращающаяся нейтронная звезда начинает поглощать материю со своего, тоже уже состарившегося компаньона (обычно красного гиганта). Падая на поверхность нейтронной звезды, материя передает ей вращательную энергию, заставляя крутиться все быстрее. Происходит это до тех пор, пока компаньон нейтронной звезды, почти освобожденный от лишней массы, не станет белым карликом, а пульсар не оживет и не начнет вращаться со скоростью сотни оборотов в секунду. Впрочем, недавно астрономы обнаружили весьма необычную систему, где компаньоном миллисекундного пульсара является не белый карлик, а гигантская раздутая красная звезда. Ученые полагают, что они наблюдают эту двойную систему как раз в стадии «освобождения» красной звезды от лишнего веса и превращения в белого карлика. Если эта гипотеза неверна, тогда звезда-компаньон может быть обычной звездой из шарового скопления, случайно захваченной пульсаром. Почти все нейтронные звезды, которые известны в настоящее время, найдены или в рентгеновских двойных системах, или как одиночные пульсары.

И вот недавно «Хаббл» заметил в видимом свете нейтронную звезду, которая не является компонентом двойной системы и не пульсирует в рентгеновском и радиодиапазоне. Это дает уникальную возможность точно определить ее размер и внести коррективы в представления о составе и структуре этого причудливого класса выгоревших, сжатых гравитацией звезд. Эта звезда была обнаружена впервые как рентгеновский источник и излучает в этом диапазоне не потому, что собирает водородный газ, когда движется в пространстве, а потому, что она все еще молода. Возможно, она является остатком одной из звезд двойной системы. В результате взрыва сверхновой эта двойная система разрушилась и бывшие соседи начали независимое путешествие по Вселенной.

Малютка — пожиратель звезд
Как камни падают на землю, так и большая звезда, отпуская по кусочку свою массу, постепенно перемещается на маленького да удаленького соседа, имеющего огромное гравитационное поле вблизи своей поверхности. Если бы звезды не крутились вокруг общего центра тяжести, то газовая струя могла бы просто течь, как поток воды из кружки, на маленькую нейтронную звезду. Но поскольку звезды кружатся в хороводе, то падающая материя, прежде чем она окажется на поверхности, должна потерять большую часть своего момента импульса. И здесь взаимное трение частиц, двигающихся по различным траекториям, и взаимодействие ионизированной плазмы, образующей аккреционный диск, с магнитным полем пульсара помогают процессу падения материи успешно закончиться ударом о поверхность нейтронной звезды в области ее магнитных полюсов.

Загадка 4U2127 разгадана
Эта звезда более 10 лет морочила голову астрономам, проявляя странную медленную изменчивость своих параметров и вспыхивая каждый раз по-разному. Только новейшие исследования космической обсерватории «Чандра» позволили разгадать загадочное поведение этого объекта. Оказалось, что это не одна, а две нейтронные звезды. Причем обе они имеют компаньонов — одну звезду, похожую на наше Солнце, другую — на небольшую голубую соседку. Пространственно эти пары звезд разделены достаточно большим расстоянием и живут независимой жизнью. А вот на звездной сфере они проецируются почти в одну точку, поэтому так долго их и считали одним объектом. Находятся эти четыре звездочки в шаровом скоплении М15 на расстоянии 34 тыс. световых лет.

Открытый вопрос

Всего на сегодняшний день астрономы обнаружили около 1 200 нейтронных звезд. Из них более 1 000 являются радиопульсарами, а остальные — просто рентгеновскими источниками. За годы исследований ученые пришли к выводу, что нейтронные звезды — настоящие оригиналы. Одни — очень яркие и спокойные, другие — периодически вспыхивающие и видоизменяющиеся звездотрясениями, третьи — существующие в двойных системах. Эти звезды относятся к самым загадочным и неуловимым астрономическим объектам, соединяющим в себе сильнейшие гравитационные и магнитные поля и экстремальные плотности и энергии. И каждое новое открытие из их бурной жизни дает ученым уникальные сведения, необходимые для понимания природы Материи и эволюции Вселенной.

Вселенкий эталон
Послать что-нибудь за пределы Солнечной системы очень даже непросто, поэтому вместе с направившимися туда 30 лет назад космическими кораблями «Пионер-10 и -11» земляне отправили и послания братьям по разуму. Нарисовать нечто такое, что будет понятно Внеземному Уму, — задача не из простых, более того, еще нужно было указать обратный адрес и дату отправки письма... Насколько доходчиво все это сумели сделать художники, человеку понять трудно, но сама идея использования радиопульсаров для указания места и времени отправки послания гениальна. Прерывистые лучи различной длины, исходящие из точки, символизирующей Солнце, указывают направление и расстояние до ближайших к Земле пульсаров, а прерывистость линии — это не что иное, как двоичное обозначение периода их обращения. Самый длинный луч указывает на центр нашей Галактики — Млечный Путь. В качестве единицы времени на послании принята частота радиосигнала, испускаемого атомом водорода при смене взаимной ориентации спинов (направление вращения) протона и электрона.

Знаменитые 21 см или 1420 МГц должны знать все разумные существа во Вселенной. По этим ориентирам, указывающим на «радиомаяки» Вселенной, можно будет отыскать землян даже через много миллионов лет, а сравнив записанную частоту пульсаров с текущей, можно будет прикинуть, когда эти мужчина и женщина благословляли в полет первый космический корабль, покинувший пределы Солнечной системы.

Николай Андреев

Остаток сверхновой Корма-А, в центре которой находится нейтронная звезда

Нейтронные звезды являются остатками массивных звезд, которые достигли конца своего эволюционного пути во времени и пространстве.

Эти интересные объекты, рождаются от некогда массивных гигантов, которые в четыре-восемь раз больше нашего Солнца. Происходит это во вспышке сверхновой.

После такого взрыва внешние слои выбрасываются в космос, ядро остается, но она больше не в состоянии поддерживать ядерный синтез. Без внешнего давления от вышележащих слоев, она коллапсирует и катастрофически сжимается.

Несмотря на свой малый диаметр — около 20 км, нейтронные звезды могут похвастаться в 1,5 раза большей массой нежели чем у нашего Солнца. Таким образом, они являются невероятно плотными.

Маленькая ложка вещества звезды на Земле будет весить около ста миллионов тонн. В ней протоны и электроны объединяются в нейтроны – этот процесс называется нейтронизацией.

Состав

Состав их неизвестен, предполагают, что они могут состоять из сверхтекучей нейтронной жидкости. Они обладают чрезвычайно сильным гравитационным притяжением, гораздо больше, чем у Земли и даже у Солнца. Это гравитационные силы особенно впечатляют, поскольку она имеет небольшой размер.
Все они вращаются вокруг оси. При сжатии, угловой момент вращения сохраняется, а из-за уменьшения размеров, скорость вращения возрастает.

Из-за огромной скорости вращения, внешняя поверхность, представляющая собой твердую «кору» периодически трескается и происходят «звездотрясения», которые замедляют скорость вращения и сбрасывают «излишки» энергии в космос.

Ошеломляющее давление, которое существуют в ядре, может быть похоже на то, которое существовало в момент большого взрыва, но к сожалению, его нельзя смоделировать на Земле. Поэтому эти объекты являются идеальными природными лабораториями, где мы можем наблюдать энергии недоступные на Земле.

Радиопульсары

Радиоульсары были открыты в конце 1967 г. аспирантом Jocelyn Bell Burnell как радиоисточники, которые пульсируют на постоянной частоте.
Радиация, испускаемая звездой, видна как пульсирующий источник излучения или пульсар.

Схематическое изображение вращения нейтронной звезды

Радиопульсары (или просто пульсар) — это вращающиеся нейтронные звезды, струи частиц которых, движутся почти со скоростью света, как вращающийся луч маяка.

После непрерывного вращения, в течение нескольких миллионов лет, пульсары теряют свою энергию и становятся нормальными нейтронными звездами. На сегодня известно только около 1000 пульсаров, хотя их могут быть сотни в галактике.

Радиопульсар в Крабовидной туманности

Некоторые нейтронные звезды испускают рентгеновское излучение. Знаменитая Крабовидная туманность — хороший пример такого объекта, образовавшейся во время взрыва сверхновой. Эта вспышка сверхновой наблюдалась в 1054 году нашей эры.

Ветер от Пульсара, видео телескопа Чандра

Радиопульсар в Крабовидной туманности, сфотографированный с помощью космического телескопа Хаббла через фильтр 547nm (зеленый свет) с 7 августа 2000 года по 17 апреля 2001 года.

Магнетары

Нейтронные звезды имеют магнитное поле в миллионы раз сильнее, чем самое сильное магнитное поле, производимое на Земле. Они также известны как магнетары.

Планеты у нейтронных звезд

На сегодня известно, что у четырех есть планеты. Когда она находится в двойной системе, то возможно измерить ее массу. Из числа таких двоичных систем в радио или рентгеновском диапазоне, измеренные массы нейтронных звезд были примерно в 1.4 раза больше массы Солнца.

Двойные системы

Совсем иной тип пульсаров виден в некоторых рентгеновских двойных системах. В этих случаях, нейтронная звезда и обычная образуют двойную систему. Сильное гравитационное поле тянет материал из обычной звезды. Материал, падающий на нее в процессе аккреции, нагревается так сильно, что производит рентгеновские лучи. Импульсные рентгеновские лучи видны, когда горячие пятна на вращающемся пульсаре проходят через луч зрения с Земли.

Для бинарных систем, содержащих неизвестный объект, эта информация помогает отличить: является ли он нейтронной звездой, или например черной дырой, потому что черные дыры куда более массивные.