Независимость событий. Теорема умножения вероятностей

Тип занятия: изучение нового материала.
Учебно-воспитательные задачи:
- дать понятие о случайном событии, вероятности события;
- научить вычислять вероятности события; вероятности случайных событий по классическому определению;
- научить применять теоремы сложения и умножения вероятностей для решения задач;
- продолжать формировать интерес к математике посредством решения задач с применением классического определения вероятности для непосредственного подсчета вероятностей явлений;
- прививать интерес к математике, используя исторический материал;
- воспитывать осознанное отношение к процессу обучения, прививать чувство ответственности за качество знаний, осуществлять самоконтроль за процессом решения и оформления упражнений.

Обеспечение занятия:
- карточки-задания для индивидуального опроса;
- карточки-задания для проверочной работы;
- презентация.

Студент должен знать:
- определения и формулы числа перестановок, размещений и сочетаний;
- классическое определение вероятности;
- определения суммы событий, произведения событий; формулировки и формулы теорем сложения и умножения вероятностей.

Студент должен уметь:
- вычислять перестановки, размещения и сочетания;
- вычислять вероятность события используя классическое определение и формулы комбинаторики;
- решать задачи на применение теорем сложения и умножения вероятностей.

Мотивация познавательной деятельности студентов.
Преподаватель сообщает, что возникновение теории вероятностей относится к середине XVII в. и связанно с исследованием Б. Паскаля, П. Ферма и Х.Гюйгенса (1629-1695) . Крупный шаг в развитии теории вероятности связан с работами Я.Бернулли (1654-1705). Ему принадлежит первое доказательство одного из важнейших положений теории вероятностей - законом больших чисел. Следующий этап в развитии теории связан с именами А.Муавра (1667-1754) , К. Гаусса, П. Лапласа (1749-1827) , С.Пуассона (1781-1840). Среди ученых Петербургской школой следует назвать имена А.М. Ляпунова (1857-1918) и А.А Маркова (1856-1922) . После работ этих математиков во всем мире теорию вероятностей стали называть “Русской наукой”. В средине 20-х годов А.Я. Хинчин (1894-1959) и А.Н. Колмогорова создали Московскую школу теории вероятностей. Вклад акад. А.Н.Колмогоров – лауреата Ленинской премии, международной премии им. Б. Больцано, члена ряда зарубежных академиков – в современную математику огромен. Заслуга А.Н.Колмогорова состоит не только в разработке новых научных теорий, но и еще в большей степени в том, что он воспитал целую плеяду талантливых ученых (акад. АН УССР Б.В. Гнеденко, акад. Ю.В. Прохоров, Б.А. Севастьянов и др.).
Теория вероятностей – математическая наука, изучающая закономерности случайных величин,- за последнее десятилетие превратилась в один из основных методов современных науки и техники. Бурное развитие теории автоматического регулирования привело к необходимости решать многочисленные вопросы, связанные с выяснением возможного хода процессов, на которые влияют случайные факторы. Теория вероятностей необходима широкому кругу специалистов – физикам, биологам, врача, экономистам, инженерам, военным, организаторам производства и т.д.

Ход занятия.

I . Организационный момент.

II . Проверка домашнего задания
Провести фронтальный опрос в виде ответов на вопросы:

Проверить решение упражнений:

  • Сколькими способами можно составить список из 10 человек?
  • Сколькими способами из 15 рабочих можно создать бригады по 5 человек в каждой?
  • 30 учащихся обменялись друг с другом фотокарточками. Сколько всего было роздано фотокарточек?

III . Изучение нового материала.
В толковом словаре С.И. Ожегова и Н.Ю. Шведовой читаем: «Вероятность – возможность исполнения, осуществимости чего-нибудь». Мы часто употребляем в повседневной жизни «вероятно», «вероятнее», «невероятно», вовсе не имея в виду конкретные количественные оценки этой возможности исполнения.
Основатель современной теории вероятностей А.Н. Колмогоров писал о вероятности так: «Вероятность математическая – это числовая характеристика степени возможности появления какого-либо определенного события в тех или иных определенных, могущих повторяться неограниченное число раз условиях».
Итак, в математике вероятность измеряется числом. Совсем скоро мы выясним, как именно это можно сделать. Но начнем мы с обсуждения того, у каких событий бывает «математическая вероятность» и что представляют собой эти «определенные, могущие повторяться неограниченное число раз условия». Именно поэтому рассмотрим случайные события и случайные эксперименты.
Нужно сказать, что теория вероятностей, как никакая другая область математики, полна противоречий и парадоксов. Объяснение этому очень простое – она слишком тесно связана с реальной, окружающей нас действительностью. Долгое время ее вместе с математической статистикой даже не хотели причислять к математическим дисциплинам, считая их сугубо прикладными науками.
Только в первой половине прошлого века, в основном благодаря трудам нашего великого соотечественника А.Н. Колмогорова, имя которого уже упоминалось выше, были построены математические основания теории вероятностей, которые позволили отделить собственно науку от ее приложений. Подход, предложенный Колмогоровым, теперь принято называть аксиоматическим, поскольку вероятность в нем (а точнее, вероятностное пространство) определяется как некая математическая структура, удовлетворяющая определенной системе аксиом.
Именно на этом подходе построен современный вузовский курс теории вероятностей, через который прошли в свое время все нынешние учителя математики. Однако в школе такой подход к изучению вероятности (да и математики в целом) вряд ли разумен. Если в вузе основной акцент делается на изучении математического аппарата для исследования вероятностных моделей, то в школе ученик должен научиться эти модели строить, анализировать, проверять их адекватность реальным ситуациям. Такую точку зрения разделяют сегодня большинство ученых, занимающихся проблемами школьного математического образования
В современных школьных учебниках можно найти следующее определение: событие называется случайным , если при одних и тех же условиях оно может как произойти, так и не произойти. Случайным будет, например, событие «При подбрасывании игрального кубика выпадет 6 очков».
В приведенном определении неявно подразумевается одно важное требование, которое необходимо подчеркнуть: мы должны иметь возможность неоднократно воспроизводить одни и те же условия, в которых наблюдается данное событие (например, подбрасывать кубик),- иначе невозможно судить о его случайности.
Стало быть, говоря о любом случайном событии, мы всегда имеем в виду наличие определенных условий, без которых об этом событии вообще не имеет смысла говорить. Этот комплекс условий называют случайным опытом или случайным экспериментом .
В дальнейшем мы будем называть случайным любое событие, связанное со случайным экспериментом . До эксперимента, как правило, невозможно точно сказать, произойдет данное событие, или не произойдет – это выясняется лишь после его завершения. Но неспроста мы сделали оговорку «как правило»: в теории вероятностей принято считать случайными все события, связанные со случайным экспериментом, в том числе:

  • невозможные , которые никогда не могут произойти;
  • достоверные, которые происходят при каждом таком эксперименте.

Например, событие «На игральном кубике выпадет 7 очков» - невозможное, а «На игральном кубике выпадет меньше семи очков» - достоверное. Разумеется, если речь идет о кубике, на гранях которого написаны числа от 1 до 6.
События называются несовместными, если каждый раз возможно появление только одного из них. События называются совместными , если в данных условиях появление одного из этих событий не исключает появление другого при том же испытании (В урне два шара – белый и черный, появление черного шара не исключает появление белого при том же испытании). События называются противоположными, если в условиях испытания они, являясь единственными его исходами, несовместны. Вероятность события рассматривается как мера объективной возможности появления случайного события.

Обозначения:
Случайные события (большими буквами латинского алфавита): A,B,C,D,.. (или ). “Случайные” опускают и говорят просто “события”.
Число исходов, благоприятствующих наступлению данного события – m;
Число всех исходов (опытов) – n.
Классическое определение вероятности.
Вероятностью события A называется отношение числа исходов m, благоприятствующих наступлению данного события к числу n всех исходов (несовместных, единственно возможных и равновозможных), т.е.
вероятность случайного события
Вероятность любого события не может быть меньше нуля и больше единицы, т.е. 0≤P(A)≤1
Невозможному событию соответствует вероятность P(A)=0, а достоверному – вероятность P(A)=1

Теоремы сложения вероятностей.
Теорема сложения вероятностей несовместных событий.
Вероятность появления одного из нескольких попарно несовместных событий, безразлично какого, равна сумме вероятностей этих событий:

P(A+B)=P(A)+P(B);
P(+ +…+=P(+P+…+P().

Теорема сложения вероятностей совместных событий.
Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления:

P(A+B)=P(A)+P(B)-P(AB)

Для трех совместных событий имеет место формула:
P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)

Событие, противоположное событию A (т.е. ненаступление события A), обозначают . Сумма вероятностей двух противоположных событий равна единице: P(A)+P()=1

Вероятность наступления события A, вычисленная в предположении, что событие B уже произошло, называется условной вероятностью события A при условии B и обозначается (A) или P(A/B).
Если A и B – независимые события, то
P(B)-(B)=(B).

События A,B,C,… называются независимыми в совокупности, если вероятность каждого из них не меняется в связи с наступлением или ненаступлением других событий по отдельности или в любой их комбинации.

Теоремы умножения вероятностей.
Теорема умножения вероятностей независимых событий.
Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий:
P(AB)=P(A) P(B)

Вероятность появления нескольких событий, независимых в совокупности, вычисляется по формуле:
P()=P() P()… P().

Теорема умножения вероятностей зависимых событий.
Вероятность совместного появления двух зависимых событий равна произведению одного из них на условную вероятность второго:
P(AB)=P(A) (B)=P(B) (A)

IV . Применение знаний при решении типовых задач
Задача 1.
В лотерее из 1000 билетов имеются 200 выигрышных. Вынимают наугад один билет. Чему равна вероятность того, что этот билет выигрышный?
Решение: Событие A-билет выигрышный. Общее число различных исходов есть n=1000
Число исходов, благоприятствующих получению выигрыша, составляет m=200. Согласно формуле P(A)=, получим P(A)== = 0,2 = 0,147

Задача 4 .
В ящике в случайном порядке разложены 20 деталей, причем 5 из них стандартные. Рабочий берет наудачу 3 детали. Найти вероятность того, что по крайней мере одна из взятых деталей окажется стандартной.

Задача 5.
Найти вероятность того, что наудачу взятое двухзначное число окажется кратным либо 3, либо 5, либо тому и другому одновременно

Задача 6.
В одной урне находятся 4 белых и 8 черных шаров, в другой – 3 белых и 9 черных. Из каждой урны вынули по шару. Найти вероятность того, что оба шара окажутся белыми.
Решение: Пусть A - появление белого шара из первой урны, а B – появление белого шара из второй урны. Очевидно, что события A и B независимы. Найдем P(A)=4/12=1/3, P(B)=3/12=1/4, получим
P(AB)=P(A) P(B)=(1/3) (1/4)=1/12=0,083

Задача 7.
В ящике находится 12 деталей, из которых 8 стандартных. Рабочий берет наудачу одну за другой две детали. Найти вероятность того, что обе детали окажутся стандартными.
Решение: Введем следующие обозначения: A – первая взятая деталь стандартная; B – вторая взятая деталь стандартная. Вероятность того, что первая деталь стандартная, составляет P(A)=8/12=2/3. Вероятность того, что вторая взятая деталь окажется стандартной при условии, что была стандартной первая деталь, т.е. условная вероятность события B, равна (B)=7/11.
Вероятность того, что обе детали окажутся стандартными, находим по теореме умножения вероятностей зависимых событий:
P(AB)=P(A) (B)=(2/3) (7/11)=14/33=0,424

Самостоятельное применение знаний, умений и навыков.
Вариант 1.

  1. Какова вероятность того, что наудачу выбранное целое число от 40 до 70 является кратным 6?
  2. Какова вероятность того, что при пяти бросаниях монеты она три раза упадет гербом к верху?

Вариант 2.

  1. Какова вероятность того, что наудачу выбранное целое число от 1 до 30 (включительно) является делителем числа 30?
  2. В НИИ работает 120 человек, из них 70 знают английский язык, 60 – немецкий, а 50 – знают оба. Какова вероятность того, что выбранный наудачу сотрудник не знает ни одного иностранного языка?

VI . Подведение итогов занятия.

VII . Домашнее задание:
Г.Н. Яковлев, математика, книга 2, § 24.1, 24.2, стр. 365-386. Упражнения 24.11, 24.12, 24.17

Вероятностью события А называют отношение числа m исходов испытаний, благоприятствующих наступлению события А, к общему числу n всех равновозможных несовместных исходов: Р(А)=m/n.

Условной вероятностью события А (или вероятностью события А при условии, что наступило событие В), называется число Р В (А) = Р(АВ)/Р(В), где А и В – два случайных события одного и того же испытания.

Суммой конечного числа событий называется событие, состоящее в наступлении хотя бы одного из них. Сумма двух событий обозначается А+В.

Правила сложения вероятностей :

  • совместных событий А и В:
    Р(А+В) = Р(А)+Р(В)-Р(АВ), где Р(А) – вероятность события А, Р(В) – вероятность события В, Р(А+В) – вероятность появления хотя бы одного из двух событий, Р(АВ)- вероятность совместного появления двух событий.
  • правило сложения вероятностей несовместных событий А и В:
    Р(А+В) = Р(А)+Р(В), где Р(А) – вероятность события А, Р(В) – вероятность события В.

Произведением конечного числа событий называется событие, состоящее в том, что каждое из них произойдет. Произведение двух событий обозначается АВ.

Правила умножения вероятностей :

  • зависимых событий А и В:
    Р(АВ)= Р(А)*Р А (В)= Р(В)*Р В (А), где Р А (В) – условная вероятность наступления события В, если событие А уже наступило, Р В (А) – условная вероятность наступления события А, если событие В уже наступило;
  • правило умножения вероятностей независимых событий А и В:
    Р(АВ) = Р(А)*Р(В), где Р(А) – вероятность события А, Р(В) – вероятность события В.

Примеры решения задач по теме «Операции над событиями. Правила сложения и умножения вероятностей»

Задача 1 . В коробке имеется 250 лампочек, из них 100 по 90Вт, 50 - по 60Вт, 50 - по 25Вт и 50 – по 15Вт. Определить вероятность того, что мощность любой наугад взятой лампочки не превысит 60Вт.

Решение.

А = {мощность лампочки равна 90Вт}, вероятность Р(А)=100/250=0,4;
В = {мощность лампочки равна 60Вт};
С = {мощность лампочки равна 25Вт};
D = {мощность лампочки равна 15Вт}.

2. События А, В, С, D образуют полную систему , так как все они несовместны и одно из них обязательно наступит в данном опыте (выборе лампочки). Вероятность наступления одного из них есть достоверное событие, тогда Р(А)+Р(В)+Р(С)+Р(D)=1.

3. События {мощность лампочки не более 60Вт} (т.е. меньше или равна 60Вт), и {мощность лампочки более 60Вт} (в данном случае – 90Вт) являются противоположными. По свойству противоположных чисел Р(В)+Р(С)+Р(D)=1-Р(А).

4. Учитывая, что Р(В)+Р(С)+Р(D)=Р(В+С+D), получим Р(В+С+D)= 1-Р(А)=1-0,4=0,6.

Задача 2 . Вероятность поражения цели первым стрелком при одном выстреле равна 0,7, а вторым стрелком – 0,9. Найти вероятность того, что
а) цель будет поражена только одним стрелком;
б) цель будет поражена хотя бы одним стрелком.

Решение.
1. Рассматриваем следующие события:
А1 = {первый стрелок поражает цель}, Р(А1)=0,7 из условия задачи;
А̄1 = {первый стрелок промахнулся}, при этом Р(А1)+Р(А̄1) = 1, поскольку А1 и А̄1 – противоположные события. Отсюда Р(А̄1)=1-0,7=0,3;
А2 = {второй стрелок поражает цель}, Р(А2)=0,9 из условия задачи;
А̄2 = {второй стрелок промахнулся}, при этом Р(А̄2)=1-0,9=0,1.

2. Событие А={цель поражена только одним стрелком} означает, что наступило одно из двух несовместных событий: либо А1А̄2, либо А̄1А2.
По правилу сложения вероятностей Р(А)= Р(А1А̄2)+Р(А̄1А2).


Р(А1А̄2)= Р(А1)*Р(А̄2)= 0,7*0,1=0,07;
Р(А̄1А2)= Р(А̄1)*Р(А2)=0,3*0,9=0,27.
Тогда Р(А)= Р(А1А̄2)+Р(А̄1А2)=0,07+0,27=0,34.

3. Событие B={цель поражена хотя бы одним стрелком} означает, что либо цель поразил первый стрелок, либо цель поразил второй стрелок, либо цель поразили оба стрелка.

Событие B̄={цель не поражена ни одним стрелком} является противоположным событию В, а значит Р(В)=1-Р(B̄).
Событие B̄ означает одновременное появление независимых событий Ā1 и Ā2, следовательно Р(B̄)=Р(Ā1Ā2)= Р(Ā1)*Р(Ā2)=0,3*0,1=0,3.
Тогда Р(В)= 1-Р(B̄)=1-0,3=0,7.

Задача 3 . Экзаменационный билет состоит из трех вопросов. Вероятность того, что студент ответит на первый вопрос 0,7; на второй – 0,9; на третий – 0,6. Найти вероятность того, что студент, выбрав билет ответит:
а) на все вопросы;
г) по крайней мере на два вопроса.

Решение. 1. Рассматриваем следующие события:
А1 = {студент ответил на первый вопрос}, Р(А1)=0,7 из условия задачи;
А̄1 = {студент не ответил на первый вопрос}, при этом Р(А1)+Р(А̄1) = 1, поскольку А1 и А̄1 – противоположные события. Отсюда Р(А̄1)=1-0,7=0,3;
А2 = {студент ответил на второй вопрос}, Р(А2)=0,9 из условия задачи;
А̄2 = {студент не ответил на второй вопрос}, при этом Р(А̄2)=1-0,9=0,1;
А3 = {студент ответил на третий вопрос}, Р(А3)=0,6 из условия задачи;
А̄3 = {студент не ответил на третий вопрос}, при этом Р(А̄3)=1-0,6=0,4.

2. Событие А = {студент ответил на все вопросы} означает одновременное появление независимых событий А1, А2 и А3, т.е. Р(А)= Р(А1А2А3).По правилу умножения вероятностей независимых событий: Р(А1А2А3)= Р(А1)*Р(А2)*Р(А3)= 0,7*0,9*0,6=0,378.
Тогда Р(А)= Р(А1А2А3)=0,378.

3. Событие D = {студент ответил по крайней мере на два вопроса} означает, что дан ответ на любые два вопроса или на все три, т.е. наступило одно из четырех несовместных событий: либо A1A2Ā3, либо А1Ā2А3, либо А̄1А2А3, либо А1А2А3.
По правилу сложения вероятностей несовместных событий: Р(D)= Р(A1A2Ā3)+ Р(А1Ā2А3)+Р(А̄1А2А3)+Р(А1А2А3).

По правилу умножения вероятностей независимых событий:
Р(A1A2Ā3)= Р(A1)*Р(A2)*Р(Ā3)= 0,7*0,9*0,4=0,252;
Р(А1Ā2А3)= Р(А1)*Р(Ā2)*Р(А3)= 0,7*0,1*0,6=0,042;
Р(А̄1А2А3)= Р(А̄1)*Р(А2)*Р(А3)= 0,3*0,9*0,6=0,162;
Р(А1А2А3)= Р(А1)*Р(А2)*Р(А3)= 0,7*0,9*0,6=0,378.
Тогда Р(D)= 0,252+0,042+0,162+0,378= 0,834.

В случаях, когда интересующее событие является суммой других событий, для нахождения его вероятности используется формула сложения.

Формула сложения имеет две основные разновидности – для совместных и для несовместных событий. Обосновать эти формулы можно, используя диаграммы Венна (рис. 21). Напомним, что на этих диаграммах вероятности событий численно равны площадям соответствующих этим событиям зон.

Для двух несовместных событий :

Р(А+В) = Р(А) + Р(В). (8, а)

Для N несовместных событий , вероятность их суммы равна сумме вероятностей этих событий:

= .(8б)

Из формулы сложения несовместных событий имеются два важных следствия.

Следствие 1. Для событий, образующих полную группу, сумма их вероятностей равна единице:

= 1.

Это объясняется следующим. Для событий, образующих полную группу, в левой части выражения (8б) находится вероятность того, что произойдёт одно из событий А i , но так как полная группа исчерпывает весь перечень возможных событий, то одно из таких событий произойдёт обязательно. Таким образом, в левой части записана вероятность события, которое обязательно произойдёт – достоверного события. Вероятность его равна единице.

Следствие 2. Сумма вероятностей двух противоположных событий равна единице :

Р(А) + Р(Ā) = 1.

Это следствие вытекает из предыдущего, так как противоположные события всегда образуют полную группу.

Пример 15

В ероятность работоспособного состояния технического устройства равна 0,8. Найти вероятность отказа этого устройства за тот же период наблюдений.

Решение.

Важное замечание . В теории надёжности принято вероятность работоспособного состояния обозначать буквой р , а вероятность отказа - буквой q. В дальнейшем будем использовать эти обозначения. Как та, так и другая вероятности являются функциями времени. Так, для больших периодов времени вероятность работоспособного состояния любого объекта приближается к нулю. Вероятность отказа любого объекта близка к нулю для малых периодов времени. В тех случаях, когда период наблюдения в задачах не указан, подразумевается, что он одинаков для всех рассматриваемых объектов.

Нахождение устройства в состояниях работоспособности и отказа – противоположные события. Пользуясь следствием 2, получим вероятность отказа устройства:

q = 1 – р = 1 – 0,8 = 0,2.

Для двух совместных событий формула сложения вероятностей имеет вид:

Р(А+В) = Р(А) + Р(В) – Р(АВ ), (9)

что иллюстрирует диаграмма Венна (рис. 22).

Действительно, чтобы найти всю заштрихованную площадь (она соответствует сумме событий А + В), нужно из суммы площадей фигур А и В вычесть площадь общей зоны (она соответствует произведению событий АВ), так как иначе она будет учтена дважды.


Для трех совместных событий формула сложения вероятностей усложняется:

Р(А+В+С)=Р(А) + Р(В) + Р(С) – Р(АВ) – Р(АС) – Р(ВС) + Р(АВС). (10)

На диаграмме Венна (рис. 23) искомая вероятность численно равна общей площади зоны, образованной событиями А, В и С (для упрощения рисунка единичный квадрат на нем не показан).

После того, как из суммы площадей зон А, В и С вычтены площади зон АВ, АС и СВ получилось, что площадь зоны АВС была просуммирована трижды и трижды вычтена. Поэтому для учета этой площади она должна быть добавлена в окончательное выражение.

При увеличении числа слагаемых формула сложения становится всё более и более громоздкой, но принцип её построения остаётся прежним: сначала суммируются вероятности событий взятых по одиночке, затем вычитаются вероятности всех по парных комбинаций событий, прибавляются вероятности событий взятых тройками, вычитаются вероятности комбинаций событий взятых четверками и т.д.

В итоге следует подчеркнуть: формула сложения вероятностей совместных событий при количестве слагаемых от трех и более громоздка и неудобна к применению, использование ее при решении задач нецелесообразно .

Пример 16

Для ниже приведенной схемы электроснабжения (рис. 24) определить вероятность отказа системы в целом Q С по вероятностям отказа q i отдельных элементов (генератора, трансформаторов и линии).


Состояния отказа отдельных элементов системы электроснабжения, так же как и состояния работоспособности, всегда являются попарно совместными событиями , так как нет никаких принципиальных препятствий к тому, чтобы одновременно производился ремонт, например, линии и трансформатора. Отказ системы наступает при отказе любого её элемента: или генератора, или 1-го трансформатора, или линии, или 2-го трансформатора, или при отказе любой пары, любой тройки или всех четырёх элементов. Следовательно, искомое событие – отказ системы является суммой отказов отдельных элементов. Для решения задачи может быть использована формула сложения совместных событий:

Q с = q г + q т1 + q л + q т2 – q г q т1 – q г q л – q г q т2 – q т1 q л – q т1 q т2 – q л q т2 + q г q т1 q л + q г q л q т2 + q г q т1 q т2 + q т1 q т2 q л – q г q т1 q л q т2.

Это решение ещё раз убеждает в громоздкости формулы сложения для совместных событий. В дальнейшем будет рассмотрен другой более рациональный способ решения данной задачи.

Полученное выше решение может быть упрощено с учётом того, что вероятности отказов отдельных элементов системы электроснабжения для применяемого обычно в расчётах надежности периода в один год достаточно малы (порядка 10 -2). Поэтому все слагаемые кроме первых четырех можно отбросить, что практически не повлияет на численный результат. Тогда можно записать:

Q с q г + q т1 + q л + q т2 .

Однако к подобным упрощениям надо относится осторожно, внимательно изучая их последствия, так как часто отбрасываемые слагаемые могут оказаться соизмеримыми с первыми.

Пример 17

Определить вероятность работоспособного состояния системы Р С , состоящей из трех резервирующих друг друга элементов.

Решение . Резервирующие друг друга элементы на логической схеме анализа надёжности изображаются соединенными параллельно (рис. 25):

Резервированная система работоспособна, когда работоспособен или 1-й, или 2-й, или 3-й элемент, или работоспособна любая пара, или все три элемента совместно. Следовательно, работоспособное состояние системы есть сумма работоспособных состояний отдельных элементов. По формуле сложения для совместных событий Р с = Р 1 + Р 2 + Р 3 – Р 1 Р 2 – Р 1 Р 3 – Р 2 Р 3 + Р 1 Р 2 Р 3 . , где Р 1 , Р 2 и Р 3 – вероятности работоспособного состояния элементов 1, 2 и 3 соответственно.

В данном случае упрощать решение, отбрасывая по парные произведения нельзя, поскольку такое приближение даст значительную погрешность (эти произведения обычно числено близки к первым трём слагаемым). Как и в примере 16, эта задача имеет другое более компактное решение.

Пример 18

Для двухцепной линии электропередачи (рис. 26) известна вероятность отказа каждой цепи: q 1 = q 2 = 0,001. Определить вероятности того, что линия будет иметь стопроцентную пропускную способность – Р(R 100), пятидесяти процентную пропускную способность - Р(R 50), и вероятность того, что система откажет – Q.

Линия имеет стопроцентную пропускную способность, когда работоспособна и 1-я и 2-я цепь:

Р(100%) = р 1 р 2 = (1 – q 1)(1 – q 2) =

= (1 – 0,001)(1 – 0,001) = 0,998001.

Линия отказывает, когда отказывает и 1-я и 2-я цепь:

Р(0%) = q 1 q 2 =0,001∙0,001 = 10 -6 .

Линия имеет пятидесяти процентную пропускную способность, когда работоспособна 1-я цепь и отказала 2-я, или когда работоспособна 2-я цепь и отказала 1-я:

Р(50%)= р 1 q 2 + р 2 q 1 = 2∙0,999∙10 -3 = 0,001998.

В последнем выражении использована формула сложения для несовместных событий, каковыми они и являются.

События, рассмотренные в этой задаче, составляют полную группу, поэтому сумма их вероятностей составляет единицу.

Тип задания: 4

Условие

Вероятность того, что аккумулятор не заряжен, равна 0,15. Покупатель в магазине приобретает случайную упаковку, которая содержит два таких аккумулятора. Найдите вероятность того, что оба аккумулятора в этой упаковке окажутся заряжены.

Показать решение

Решение

Вероятность того, что аккумулятор заряжён, равна 1-0,15 = 0,85. Найдём вероятность события «оба аккумулятора заряжены». Обозначим через A и B события «первый аккумулятор заряжён» и «второй аккумулятор заряжён». Получили P(A) = P(B) = 0,85. Событие «оба аккумулятора заряжены» — это пересечение событий A \cap B, его вероятность равна P(A \cap B) = P(A)\cdot P(B) = 0,85\cdot 0,85 = 0,7225.

Ответ

Тип задания: 4
Тема: Сложение и умножение вероятностей событий

Условие

Вероятность того, что ручка бракованная, равна 0,05 . Покупатель в магазине приобретает случайную упаковку, которая содержит две ручки. Найдите вероятность того, что обе ручки в этой упаковке окажутся исправными.

Показать решение

Решение

Вероятность того, что ручка исправная, равна 1-0,05 = 0,95. Найдём вероятность события «обе ручки исправны». Обозначим через A и B события «первая ручка исправна» и «вторая ручка исправна». Получили P(A) = P(B) = 0,95. Событие «обе ручки исправны» — это пересечение событий A\cap B, его вероятность равна P(A\cap B) = P(A)\cdot P(B) = 0,95\cdot 0,95 = 0,9025.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 4
Тема: Сложение и умножение вероятностей событий

Условие

На рисунке изображён лабиринт. Жук заползает в лабиринт в точке «Вход». Развернуться и ползти в обратном направлении жук не может, поэтому на каждой развилке он выбирает один из путей, в котором еще не был. С какой вероятностью жук придет к выходу Д, если выбор дальнейшего пути является случайным.

Показать решение

Решение

Расставим на перекрёстках стрелки в направлениях, по которым может двигаться жук (см. рис.).

Выберем на каждом из перекрёстков одно направление из двух возможных и будем считать, что при попадании на перекрёсток жук будет двигаться по выбранному нами направлению.

Чтобы жук достиг выхода Д, нужно, чтобы на каждом перекрёстке было выбрано направление, обозначенное сплошной красной линией. Всего выбор направления делается 4 раза, каждый раз независимо от предыдущего выбора. Вероятность того, что каждый раз выбрана сплошная красная стрелка, равна \frac12\cdot\frac12\cdot\frac12\cdot\frac12= 0,5^4= 0,0625.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 4
Тема: Сложение и умножение вероятностей событий

Условие

Стоянка освещается фонарём с двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,4. Найдите вероятность того, что за год хотя бы одна лампа не перегорит.

Показать решение

Решение

Сначала найдём вероятность события «обе лампы перегорели в течение года», противоположного событию из условия задачи. Обозначим через A и B события «первая лампа перегорела в течение года» и «вторая лампа перегорела в течение года». По условию P(A) = P(B) = 0,4. Событие «обе лампы перегорели в течение года» — это A \cap B, его вероятность равна P(A \cap B) = P(A) \cdot P(B) = 0,4 \cdot 0,4 = 0,16 (так как события A и B независимы).

Искомая вероятность равна 1 - P(A \cap B) = 1 - 0,16 = 0,84.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 4
Тема: Сложение и умножение вероятностей событий

Условие

В гостинице стоят два кулера. Каждый из них может быть неисправен с вероятностью 0,2 независимо от другого кулера. Определите вероятность того, что хотя бы один из этих кулеров исправен.

Показать решение

Решение

Сначала найдём вероятность события «оба кулера неисправны», противоположного событию из условия задачи. Обозначим через A и B события «первый кулер неисправен» и «второй кулер неисправен». По условию P(A) = P(B) = 0,2. Событие «оба кулера неисправны» — это A \cap B , пересечение событий A и B , его вероятность равна P(A \cap B) = P(A)\cdot P(B) = 0,2\cdot 0,2 = 0,04 (так как события A и B независимы). Искомая вероятность равна 1-P(A \cap B)=1-0,04=0,96.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 4
Тема: Сложение и умножение вероятностей событий

Условие

На экзамене по физике студент отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что этот вопрос на тему «Механика», равна 0,25 . Вероятность того, что этот вопрос на тему «Электричество», равна 0,3 . Вопросов, которые относились бы сразу к двум темам, нет. Найдите вероятность того, что студенту попадётся вопрос по одной из этих двух тем.

Рассматривается эксперимент Е . Предполагается, что его можно проводить неоднократно. В результате эксперимента могут появляться различные события, составляющие некоторое множество F . Наблюдаемые события разделяются на три вида: достоверное, невозможное, случайное.

Достоверным называется событие, которое обязательно произойдет в результате проведения эксперимента Е . Обозначается Ω.

Невозможным называется событие, которое заведомо не произойдет в результате проведения эксперимента Е . Обозначается .

Случайным называется событие, которое может произойти или не произойти в результате эксперимента Е .

Дополнительным (противоположным) событию А называется событие, обозначаемое , которое происходит тогда и только тогда, когда не происходит событиеА .

Суммой (объединением) событий называется событие, которое происходит тогда и только тогда, когда происходит хотя бы одно из данных событий (рисунок 3.1). Обозначения .

Рисунок 3.1

Произведением (пересечением) событий называется событие, происходящее тогда и только тогда, когда все данные события происходят вместе (одновременно) (рисунок 3.2). Обозначения . Очевидно, что события А и Внесовместны , если .

Рисунок 3.2

Полной группой событий называется множество событий, сумма которых есть достоверное событие:

Событие В называют частным случаем события А , если с появлением события В появляется и событие А . Говорят также, что событие В влечет событие А (Рисунок 3.3). Обозначение .

Рисунок 3.3

События А и В называются эквивалентными , если они происходят или не происходят совместно при проведении эксперимента Е . Обозначение . Очевидно, что, еслии.

Сложным событием называют наблюдаемое событие, выраженное через другие наблюдаемые в том же эксперименте события с помощью алгебраических операций.

Вероятность осуществления того или иного сложного события вычисляют с помощью формул сложения и умножения вероятностей.

Теорема сложения вероятностей

Следствия:

1) в случае, если события А и В несовместны, теорема сложения приобретает вид:

2) в случае трех слагаемых теорема сложения записывается в виде

3) сумма вероятностей взаимно противоположных событий равна 1:

Совокупность событий ,, …,называютполной группой событий , если

Сумма вероятностей событий, образующих полную группу, равна 1:

Вероятность появления события А при условии, что событие В произошло, называют условной вероятностью и обозначают или.

А и В зависимые события , если .

А и В независимые события , если .

Теорема умножения вероятностей

Следствия:

1) для независимых событий А и В

2) в общем случае для произведения трех событий теорема умножения вероятностей имеет вид:

Образцы решения задач

Пример 1 ‑ В электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказов первого, второго и третьего элементов соответственно равны ,,. Найти вероятность того, что тока в цепи не будет.

Решение

Первый способ.

Обозначим события: - в цепи произошел отказ соответственно первого, второго и третьего элементов.

Событие А – тока в цепи не будет (откажет хотя бы один из элементов, так как они включены последовательно).

Событие ‑ в цепи ток (работают три элемента), . Вероятность противоположных событий связана формулой (3.4). Событие представляет собой произведение трех событий, являющихся попарно независимыми. По теореме умножения вероятностей независимых событий получаем

Тогда вероятность искомого события .

Второй способ.

С учетом принятых ранее обозначений запишем искомое событие А – откажет хотя бы один из элементов:

Так как слагаемые, входящие в сумму, совместны, следует применить теорему сложения вероятностей в общем виде для случая трех слагаемых (3.3):

Ответ: 0,388.

Задачи для самостоятельного решения

1 В читальном зале имеется шесть учебников по теории вероятностей, из которых три в переплете. Библиотекарь наудачу взял два учебника. Найти вероятность того, что оба учебника окажутся в переплете.

2 В мешке смешаны нити, среди которых 30 % белых, а остальные –красные. Определить вероятности того, что вынутые наудачу две нити будут: одного цвета; разных цветов.

3 Устройство состоит из трех элементов, работающих независимо. Вероятности безотказной работы за определенный промежуток времени первого, второго и третьего элементов соответственно равны 0,6; 0,7; 0,8. Найти вероятности того, что за это время безотказно будут работать: только один элемент; только два элемента; все три элемента; хотя бы два элемента.

4 Брошены три игральные кости. Найти вероятности следующих событий:

а) на каждой грани из выпавших появится пять очков;

б) на всех выпавших гранях появится одинаковое число очков;

в) на двух выпавших гранях появится одно очко, а на третьей грани – другое число очков;

г) на всех выпавших гранях появится разное число очков.

5 Вероятность попадания в мишень стрелком при одном выстреле равна 0,8. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью, меньшей 0,4, можно было ожидать, что не будет ни одного промаха?

6 Из цифр 1, 2, 3, 4, 5 сначала выбирается одна, а затем из оставшихся четырех – вторая цифра. Предполагается, что все 20 возможных исходов равновероятны. Найти вероятность того, что будет выбрана нечетная цифра: в первый раз; во второй раз; в оба раза.

7 Вероятность того, что в мужской обувной секции магазина очередной раз будет продана пара обуви 46-го размера, равна 0,01. Сколько должно быть продано пар обуви в магазине, чтобы с вероятностью, не меньшей 0,9, можно было ожидать, что будет продана хотя бы одна пара обуви 46-го размера?

8 В ящике 10 деталей, среди которых две нестандартные. Найти вероятность того, что в наудачу отобранных шести деталях окажется не более одной нестандартной.

9 Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие нестандартно, равна 0,1. Найти вероятность того, что:

а) из трех проверенных изделий только два окажутся нестандартными;

б) нестандартным окажется только четвертое по порядку проверенное изделие.

10 32 буквы русского алфавита написаны на карточках разрезной азбуки:

а) три карточки вынимают наугад одну за другой и укладывают на стол в порядке появления. Найти вероятность того, что получится слово «мир»;

б) извлеченные три карточки можно поменять местами произвольным образом. Какова вероятность того, что из них можно сложить слово «мир»?

11 Истребитель атакует бомбардировщик и дает по нему две независимые очереди. Вероятность сбить бомбардировщик первой очередью равна 0,2, а второй ‑ 0,3. Если бомбардировщик не сбит, он ведет по истребителю стрельбу из орудий кормовой установки и сбивает его с вероятностью 0,25. Найти вероятность того, что в результате воздушного боя сбит бомбардировщик или истребитель.

Домашнее задание

1 Формула полной вероятности. Формула Байеса.

2 Решить задачи

Задача 1 . Рабочий обслуживает три станка, работающих независимо друг от друга. Вероятность того, что в течение часа не потребует внимания рабочего первый станок, равна 0,9, второй – 0,8, третий – 0,85. Найти вероятность того, что в течение часа хотя бы один станок потребует внимания рабочего.

Задача 2 . Вычислительный центр, который должен производить непрерывную обработку поступающей информации, располагает двумя вычислительными устройствами. Известно, что каждое из них имеет вероятность отказа за некоторое время, равную 0,2. Требуется определить вероятность:

а) того, что откажет одно из устройств, а второе будет исправно;

б) безотказной работы каждого из устройств.

Задача 3 . Четыре охотника договорились стрелять по дичи в определенной последовательности: следующий охотник производит выстрел лишь в случае промаха предыдущего. Вероятность попадания для первого охотника равна 0,6, для второго – 0,7, для третьего – 0,8. Найти вероятность того, что будет произведено выстрелов:

г) четыре.

Задача 4 . Деталь проходит четыре операции обработки. Вероятность получения брака при первой операции равна 0,01, при второй – 0,02, при третьей – 0,03, при четвертой – 0,04. Найти вероятность получения детали без брака после четырех операций, предполагая, что события получения брака на отдельных операциях являются независимыми.