Общие закономерности влияния экологических факторов на организм. Общие закономерности действия экологических факторов на живые организмы

Биотические факторы.

Биотические факторы - это совокупность влияний жизнедеятельности одних организмов на жизнедеятельность других, а также на неживую природу.

Классификация биотических взаимодействий:

1. Нейтрализм - ни одна популяция не влияет на другую.

2. Конкуренция - это использование ресурсов (пищи, воды, света, пространства) одним организмом, который тем самым уменьшает доступность этого ресурса ддя другого организма.

Конкуренция бывает внутривидовая и межвидовая. Если численность популяции невелика, то внутривидовая конкуренция выражена слабо и ресурсы имеются в изобилии. При высокой плотности популяции интенсивная внутривидовая конкуренция снижает наличие ресурсов до уровня, сдерживающего дальнейший рост, тем самым регулируется численность популяции.

Межвидовая конкуренция - взаимодействие между популяциями, которое неблагоприятно сказывается на их росте и выживаемости. При завозе в Британию из Северной Америки каролинской белки уменьшилась численность обыкновенной белки, т.к. каролинская белка оказалась более конкурентоспособной.

Конкуренция бывает прямая и косвенная.

Прямая - это внутривидовая конкуренция, связанная с борьбой за место обитания, в частности защита индивидуальных участков у птиц или животных, выражающейся в прямых столкновениях. При недостатке ресурсов возможно поедание животных особей своего вида (волки, рыси, хищные клопы, пауки, крысы, щука, окунь и т.д.)

Косвенная - между кустарниками и травянистыми растениями в Калифорнии. Тот вид, который обосновался первым, исключает другой тип. Быстро растущие травы с глубокими корнями снижали содержание влаги в почве до уровня непригодного для кустарников. А высокой кустарник затенял травы, не давая им произрастать из-за нехватки света.

Внутри хозяина. Вирусы, бактерии, примитивные грибы - растения. Глисты - животные. Высокая плодовитость. Не приводят к гибели хозяина, но угнетают процессы жизнедеятельности

4. Хищничество - поедание одного организма (жертвы) другим организмом (хищником).

Хищники могут поедать травоядных животных, и также слабых хищников. Хищники обладают широким спектром питания, легко переключаются с одной добычи на другую более доступную.

Хищники часто нападают на слабые жертвы. Норка уничтожает больных и старых ондатр, а на взрослых особей не нападает.

Поддерживается экологическое равновесие между популяциями жертва-хищник.

5. Симбиоз - сожительство двух организмов разных видов при котором организмы приносят друг другу пользу. По степени партнерства симбиоз бывает:

Комменсализм - один организм питается за счет другого, не нанося ему вреда. Рак - актиния. Актиния прикрепляется к раковине, защищая его от врагов, и питается остатками пищи.

Мутуализм - оба организма получают пользу, при этом они не могут существовать друг без друга. Лишайник - гриб + водоросль. Гриб защищает водоросль, а водоросль кормит его.

В естественных условиях один вид не приведёт к уничтожению другого вида.

Общие закономерности действия экологических факторов

В связи с чрезвычайным разнообразием экологических факторов различные виды организмов, испытывая их влияние, отвечают на него по-разному, тем не менее, можно выявить ряд общих законов (закономерностей) действия экологических факторов. Остановимся на некоторых из них.

1. Закон оптимума выражается в том, что любой экологический фактор имеет пределы положительного влияния на живые организмы.

Сила воздействия экологических факторов постоянно меняется. Лишь в определенных местах планеты значения некоторых из них более или менее постоянны (константны). Например: на дне океанов, в глубинах пещер сравнительно постоянны температурный и водный режимы, режим освещения.

Рассмотрим действие закона оптимума на конкретном примере: животные и растения плохо переносят и сильную жару, и сильные морозы, оптимальными для них являются средние температуры - так называемая зона оптимума. Чем сильнее отклонения от оптимума, тем в большей степени данный экологический фактор угнетает жизнедеятельность организма. Эта зона носит название зоны пессимума. В ней имеются критические точки - «максимальное значение фактора» и «минимальное значение фактора»; за их пределами наступает гибель организмов. Расстояние между минимальным и максимальным значениями фактора называют экологической валентностью или толерантностью организма (рис. 1).

Пример проявления данного закона: яйца аскарид развиваются при t° = 12-36°, а оптимальной для их развития является t° = 30°. То есть экологическая толерантность аскарид по температурному режиму составляет от 12° до 36°.

По характеру толерантности следующие виды:

Эврибионтные - имеющие широкую экологическую валентность по отношению к абиотическим факторам среды; делятся на эвритермные (выносящие значительные колебания температур), эврибатные (выносящие широкий диапазон показателей давления), эвригалинные (выносящие разную степень засоленности среды).

Стенобионтные - неспособные переносить значительные колебания проявления фактора (например, стенотермными являются белые медведи, ластоногие млекопитающие, обитающие при низком температурном режиме).

2. Закон экологической индивидуальности видов был сформулирован в 1924 г. русским ботаником Л.Г. Раменским: экологические спектры (толерантность) разных видов не совпадает, каждый вид специфичен по своим экологическим возможностям. Иллюстрацией указанного закона может служить рис. 2.

3. Закон ограничивающего (лимитирующего) фактора гласит, что наиболее значим для организма тот фактор, который более всего отклоняется от оптимального его значения. Закон был установлен в 1905 г. английским ученым Блеккером.

Именно от этого, минимально (или максимально) представленного в данный конкретный момент экологического фактора зависит выживание организма. В другие отрезки времени ограничивающим могут быть другие факторы. В течение жизни особи видов встречаются с самыми разными ограничениями своей жизнедеятельности. Так, фактором, ограничивающим распространение оленей, является глубина снежного покрова; бабочки озимой совки (вредителя овощных и зерновых культур) - зимняя температура и т.д.

Этот закон учитывается в практике сельского хозяйства. Немецкий химик Ю. Либих установил, что продуктивность культурных растений, в первую очередь, зависит от того питательного вещества (минерального элемента), который представлен в почве наиболее слабо. Например, если фосфора в почве содержится лишь 20% от необходимой нор-ми, а кальция - 50%, то ограничивающим фактором будет недостаток фосфора; необходимо, в первую очередь, внести в почву именно фосфорсодержащие удобрения.

Это правило Ю. Либих назвал «правилом минимума», так как изучал влияние недостаточных доз удобрений. Позднее выяснилось, что избыток минеральных солей в почке тоже снижает урожайность, так как при этом нарушается способность корней всасывать растворы солей.

Ограничивающие факторы среды определяют географический ареал вида. Природа этих факторов может быть различной. Так, продвижение вида на север может лимитироваться недостатком тепла, в аридные районы - недостатком влаги или слишком высокими температурами. Ограничивающим распространение фактором могут служить и биотические отношения, например занятость территории более сильным конкурентом или недостаток опылителей для растений. Так, опыление инжира всецело зависит от единственного вида насекомых - осы Blastophaga psenes. Родина этого дерева - Средиземноморье. Завезенный в Калифорнию инжир не плодоносил до тех пор, пока туда не завезли ос-опылителей. Распространение бобовых в Арктике ограничивается распределением опыляющих их шмелей. На острове Диксон, где нет шмелей, не встречаются и бобовые, хотя по температурным условиям существование там этих растений еще допустимо.

Чтобы определить, сможет ли вид существовать в данном географическом районе, нужно в первую очередь выяснить, не выходят ли какие-либо факторы среды за пределы его экологи ческой валентности, особенно в наиболее уязвимый период развития.

Выявление ограничивающих факторов очень важно в практике сельского хозяйства, так как, направив основные усилия на их устранение, можно быстро и эффективно повысить урожайность растений или производительность животных. Так, на сильно кислых почвах урожай пшеницы можно несколько увеличить, применяя разные агрономические воздействия, но наилучший эффект будет получен только в результате известкования, которое снимет ограничивающие действия кислотности. Знание ограничивающих факторов, таким образом, ключ к управлению жизнедеятельностью организмов. В разные периоды жизни особей в качестве ограничивающих выступают различные факторы среды, поэтому требуется умелое и постоянное регулирование условий жизни выращиваемых растений и животных.

4. Закон неоднозначного действия: действие каждого экологического фактора неоднозначно на разных стадиях развития организма. Примерами её проявления могут служить следующие данные:

Для развития головастиков вода жизненно необходима, а для взрослой лягушки она не является жизненно важным условием;

Критическая минимальная температура для взрослых особей бабочки огневки мельничной = -22°, а для гусениц бабочки этого вида критической является t = -7°.

Каждый фактор неодинаково влияет на разные функции организма. Оптимум для одних процессов может являться пессимумом для других. Так, температура воздуха от +40 до +45°С у холоднокровных животных сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. Для многих рыб температура воды, оптимальная для созревания половых продуктов, неблагоприятна для икрометания, которое происходит при другом температурном интервале.

Жизненный цикл, в котором в определенные периоды организм осуществляет преимущественно те или иные функции (питание, рост, размножение, расселение и т.п.), всегда согласован с сезонными изменениями комплекса факторов среды. Подвижные организмы могут также менять места обитания для успешного осуществления всех своих жизненных функций.

5. Закон о прямых и косвенных факторах: экологические факторы по воздействию на организмы делят на прямые и косвенные.

Прямые экологические факторы действуют на организмы непосредственно, прямо (ветер, дождь или снег, состав минеральных компонентов почвы и т.п.).

Косвенные экологические факторы действуют опосредованно, перераспределяя прямые факторы. Например: рельеф (косвенный фактор) «перераспределяет» действие таких прямых факторов, как ветер, осадки, питательные вещества; физические свойства почвы (механический состав, влагоемкость и др.) как косвенные факторы «перераспределяют» действие прямых факторов - химических свойств.

6. Закон взаимодействия экологических факторов: оптимальная зона и пределы выносливости организмов по отношению к какому-либо фактору могут смещаться в зависимости от того, в сочетании с какими другими факторами осуществляется воздействие.

Так, жару легче переносить в сухом, а не во влажном воздухе; мороз хуже переносится в сочетании с ветреной погодой и т.п.

Данную закономерность учитывают в сельскохозяйственной практике для поддержания оптимальных условий жизнедеятельности культурных растений. Например, при угрозе заморозков на почве, которые случаются в средней полосе даже в мае, растения на ночь обильно поливают.

7. Закон толерантности В. Шелфолда.

Наиболее полно и в наиболее общем виде всю сложность экологических факторов на организм отражает закон толерантности: отсутствие или невозможность процветания определяется недостатком (в качественном или количественном отношении) или, наоборот, избытком любого из ряда факторов, уровень которых может оказаться близким к пределам переносимого данным организмом. Эти два предела называют пределами толерантности.

Относительно действия одного фактора можно проиллюстрировать этот закон так: некий организм способен существовать при температуре от -5оС до 25оС, т.е. диапазон его толерантности лежит в пределах этих температур. Организмы, для жизни которых требуются условия, ограниченные узким диапазоном толерантности пот величине температуры, называют стенотермными, а способных жить в широком диапазоне температур - эвритермальными.

Подобно температуре действуют и другие лимитирующие факторы, а организмы по отношению к характеру их воздействия называют, соответственно, стенобионтами и эврибионтами. Например, говорят: организм стенобиотен по отношению к влажности, или, эврибионтен к климатическим факторам. Организмы, эврибионтные к основным климатическим факторам, наиболее широко распространены на Земле.

Диапазон толерантности организма не остаётся постоянным - он, например, сужается, если какой-нибудь из факторов близок к какому-либо пределу, или при размножении организма, когда многие факторы становятся лимитирующими. Значит, и характер действия экологических факторов при определённых условиях может меняться, т.е. он может быть, а может и не быть лимитирующим.

9. Классификация живых организмов по характеру питания (автотрофы, гетеротрофы, миксотрофы), по способу добывания пищи. Жизненные формы растений (фанерофиты, хамефиты, криптофиты и др). Жизненные формы животных. Классификация организмов по участию в биологическом круговороте (продуценты, консументы, редуценты).

Современные представления о популяциях растений и животных. Классификация и структура популяций. Динамика популяций.

Определённые типы внешнего строения, возникшие как приспособления к экологическим условиям местообитания, называют жизненными формами организмов.

Среди приспособлений организмов к условиям среды, возникших в результате эволюции, наиболее наглядными можно считать приспособления (адаптации), проявляющиеся в особенностях внешнего строения растений и животных. Их называют морфологическими (от греч. морфе? форма). Определенные типы внешнего строения, возникшие как приспособления к экологическими условиям местообитаний, называют жизненными формами организмов.

Жизненные формы у растений и животных очень разнообразны. Они выделяются по совокупности признаков строения и образа жизни. Так, наиболее широко распространенные жизненные формы растений? деревья, кустарники, травы. Последние делятся на водные и наземные, среди которых, в свою очередь, также выделяются разнообразные формы. Яркие примеры приспособлений к суровым условиям среды дают такие жизненные формы растений, как суккуленты (в засушливом климате), лианы (при недостатке света), стланики и растения-подушки (в тундрах, высокогорьях с низкой температурой и сухостью при сильных ветрах).

Жизненные формы животных выделяются по разным признакам для разных систематических групп. Так, для зверей одними из основных признаков для выделения жизненных форм, помимо среды обитания, считаются способы передвижения (ходьба, бег, прыжки, плавание, ползание). Характерными чертами внешнего строения наземных прыгунов, например, являются длинные задние конечности с сильно развитой мускулатурой бедер, длинный хвост, короткая шея. К ним относятся обычно обитатели открытых пространств: азиатские тушканчики, австралийские кенгуру, африканские прыгунчики и другие прыгающие млекопитающие, живущие на разных континентах.

Жизненные формы птиц различают по типу их местообитания и способу добывания пищи, а у рыб? в основном по форме тела. Жизненные формы обитателей водоемов также выделяют по типу их местообитаний. Так, в водной толще мелкие организмы образуют планктон (от греч. планктос? блуждающий), то есть совокупность организмов, живущих во взвешенном состоянии и неспособных противостоять течениям. Обитатели грунта образуют бентос (от греч. бентос? глубина). К отдельным жизненным формам относятся организмы, живущие у поверхностной пленки воды или на различных твердых субстратах.

Сходные жизненные формы возникли в результате эволюции, происходящей в сходных экологических условиях у систематически разных организмов: например, кенгуру и тушканчики, дельфины и рыбы, птицы и летучие мыши, черви и змеи и т. д.

Нельзя считать, что, претерпев ряд глубоких изменений в процессе эволюции и достигнув большого разнообразия, живая природа застыла в неизменном облике. Она продолжает меняться. И эта способность организмов к изменению является важнейшим фактором, обеспечивающим соответствие между организмами и средой их обитания.

Популяция - совокупность особей одного вида, занимающих определенный ареал, свободно скрещивающихся друг с другом, имеющих общее происхождение, генетическую основу и в той или иной степени изолированных от других популяций данного вида.

Важнейшее свойство популяций - самовоспроизводство. Даже несмотря на пространственную разобщенность, популяции способны неограниченно долго поддерживать свое существование в данном местообитании. Они являются устойчивыми во времени и пространстве группировками особей одного вида. К стайке рыб или воробьев не применим термин «популяция». Такие группы могут легко распадаться под влиянием внешних факторов или смешиваться с другими. Иными словами, они не способны устойчиво воспроизводить сами себя. Это под силу лишь крупным группам, обладающим основными свойствами вида и представленным всеми категориями слагающих его особей. Таковы, например, все особи окуня в озере или все сосны в лесном массиве.

Очевидно, что наборы условий в различных местообитаниях могут несколько различаться. Под влиянием разных условий в отдельных популяциях могут возникать и накапливаться свойства, отличающие их друг от друга. Это может проявляться в небольших отклонениях строения организмов, принадлежащих к разным популяциям, их физиологических показателей (вспомните о явлении акклиматизации) других характеристик. Таким образом, популяции, как и отдельные организмы, обладают изменчивостью. Как и среди организмов, среди популяций невозможно найти двух полностью тождественных.

Изменчивость, как вы уже знаете, важнейший фактор эволюции. Популяционная изменчивость повышает внутреннее разнообразие вида. Это, в свою очередь, повышает устойчивость вида к локальным (местным) изменениям условий жизни, позволяет ему проникать и закрепляться в новых для себя условиях и районах. Можно сказать, что существование в форме популяций обогащает вид, обеспечивает его целостность и постоянное самоподдержание основных видовых свойств.

Популяции, обитающие в различных участках видового ареала (общей области распространения вида), не живут изолированно. Они взаимодействуют с популяциями других видов, образуя вместе с ними биотические сообщества? целостные системы еще более высокого уровня организации. В каждом сообществе популяция данного вида играет отведенную ей роль, занимая определенную экологическую нишу и совместно с популяциями других видов обеспечивая устойчивое функционирование сообщества.

Экологи, изучающие экологические системы, рассматривают популяции в качестве их основных элементов. Именно благодаря функционированию популяций создаются условия, способствующие поддержанию жизни.

Не отдельными организмами, а именно популяциями определяется характер и степень использования различных видов ресурсов. От популяций зависит круговорот веществ, энергетический обмен между живой и неживой природой. Совместная деятельность популяций определяет многие важные свойства биотических сообществ и экологических систем.

На основании сказанного можно дать более широкое определение популяции. Популяция? относительно изолированная группировка организмов одного вида, обладающая способностью к самоподдержанию видовых свойств и выполняющая определенную роль в сообществе живых организмов.

Популяция обладает не только биологическими свойствами составляющих ее организмов, но и собственными, которые присущи только этой группе особей в целом. Как и отдельный организм, популяция растет, совершенствуется, поддерживает сама себя. Однако групповые свойства, например обилие, рождаемость, смертность, возрастной состав, могут характеризовать только популяцию в целом и не применимы к отдельным ее особям.

Составляющие популяцию организмы связаны друг с другом различными взаимоотношениями: они совместно участвуют в размножении, они могут конкурировать друг с другом за те или иные виды ресурсов, могут поедать друг друга или вместе обороняться от хищника. Внутренние взаимоотношения в популяциях очень сложны. Поэтому реакции отдельных особей на изменения тех или иных экологических факторов и популяционные реакции часто не совпадают. Гибель отдельных организмов (например, от хищников) может улучшить качественный состав популяции (гибнут слабые, остаются сильные), повысить ее способность к самоподдержанию численности. Здесь мы сталкиваемся с одним очень важным правилом, применимым к экологическим объектам, состоящим из многих элементов, связанных друг с другом различными взаимоотношениями: о состоянии экологического объекта (будь то популяция, сообщество или экосистема) не всегда можно судить по состоянию его отдельных элементов.

Демографические показатели. Такие популяционные характеристики, как обилие, рождаемость, смертность, возрастной состав, называются демографическими показателями. Знание их очень важно для понимания законов, управляющих жизнью популяций и предугадывания происходящих в них постоянных изменений.

Изучение демографических показателей имеет большое практическое значение. Так, при заготовках древесины очень важно знать скорость восстановления леса, чтобы правильно планировать интенсивность рубок. Некоторые популяции животных используются для получения ценного пищевого или пушного сырья. Изучение других популяций (например мелких грызунов, среди которых циркулируют возбудители опасных для человека заболеваний) важно с медико-санитарной точки зрения.

Во всех этих случаях нас, прежде всего, интересуют изменения популяции в целом, предсказание этих изменений и их регулирование (например, снижение численности вредителей сельскохозяйственных угодий). Крайне необходимым для этого является знание причин и скорости популяционных изменений, а также умение измерять эти природные объекты.

11. 300 тыс – 3 млн

Объектом изучения демэкологии, или популяционной экологии, служит популяция. Ее определяют как группу организмов одного вида (внутри которой особи могут обмениваться генетической информацией), занимающую конкретное пространство и функционирующую как часть биотического сообщества. Каждая особь популяции является носителем уникального адаптивного комплекса, но поскольку между членами популяции существует взаимодействие, вся группа в целом, т.е. популяция, оказывает влияние на свойства биотического сообщества. Можно сказать, что виды, слагающие биотическое сообщество, участвуют в его жизнедеятельности в форме популяций.

Популяция характеризуется рядом признаков; единственным их носителем является группа, но не особи в этой группе. Важнейшее свойство популяции - плотность, т.е. число особей, отнесенное к некоторой единице пространства.

Основные итоги обзора факторов, управляющих плотностью популяций, могут быть сформулированы в виде четырех выводов.

1. Факторы динамики численности подразделяются на модифицирующие и регулирующие. Модифицирующие факторы могут действовать прямо и косвенно (например, через изменение численности популяции хищника). Абиотические факторы чаще оказывают модифицирующее влияние.

2. По характеру реакций на факторы динамики численности следует различать, с одной стороны, равновесные популяции и, с другой - оппортунистические. Первым свойственны низкая плодовитость, большая продолжительность жизни особей, низкие темпы обновления популяции, относительная независимость особей от климатических условий. Оппортунистические популяции, наоборот, отличаются высокой плодовитостью особей, меньшей продолжительностью жизни особей, зачастую большим числом генераций в году, большей зависимостью особей от климатических условий.

Регуляция численности равновесных популяций определяется преимущественно биотическими факторами. Среди них главным фактором часто оказывается внутривидовая конкуренция, как, например, у птиц, которые борются за места, удобные для гнездования.

Регуляция численности оппортунистических популяций определяется преимущественно абиотическими факторами. При благоприятных климатических условиях быстрое развитие особей позволяет им сильно размножиться за короткий промежуток времени; к концу благоприятного периода совместное действие климата, хищников и болезней быстро снижает численность популяции.

3. В районах с относительно устойчивым и благоприятным для размножения климатом основную роль играют биотические факторы; в местностях с менее благоприятным климатом и особенно с отчетливо выраженным зимним периодом климатическим факторам принадлежит определяющая роль.

4. Наконец, устойчивость популяций зависит от степени сложности экосистемы. Чем сложнее экосистема, чем больше число взаимодействующих видов, тем более устойчивы популяции.

12. Сообщество – совокупность организмов всех видов, обитающих на определенной территории и взаимодействующие друг с другом.

Свойства –

1) Видовой состав

2) Соотношение видов по численности

3) Виды – массовые, обычные, редкие, единичные.

4) Соотношение видов по типу питания: продуценты, консументы, травоядные, хищники, падальщики, редуценты.


Похожая информация.


Конспект по экологии

В комплексе действия факторов можно выделить некоторые закономерности, которые являются в значительной мере универсальными (общими) по отношению к организмам. К таким закономерностям относятся правило оптимума, правило взаимодействия факторов, правило лимитирующих факторов и некоторые другие.

Правило оптимума . В соответствии с этим правилом для организма или определённой стадии его развития имеется диапазон наиболее благоприятного (оптимального) значения фактора. Чем значительнее отклонение действия фактора от оптимума, тем больше данный фактор угнетает жизнедеятельность организма. Этот диапазон называется зоной угнетения. Максимально и минимально переносимые значения фактора – это критические точки, за пределами которых существование организма уже невозможно.

К зоне оптимума обычно приурочена максимальная плотность популяции. Зоны оптимума для различных организмов неодинаковы. Чем шире амплитуда колебаний фактора, при которой организм может сохранять жизнеспособность, тем выше его устойчивость, т.е. толерантность к тому или иному фактору (от лат. толерация – терпение). Организмы с широкой амплитудой устойчивости относятся к группе эврибионтов (греч. эури – широкий, биос – жизнь). Организмы с узким диапазоном адаптации к факторам называются стенобионтами (греч. стенос – узкий). Важно подчеркнуть, что зоны оптимума по отношению к различным факторам различаются, и поэтому организмы полностью проявляют свои потенциальные возможности в том случае, если существуют в условиях всего спектра факторов с оптимальными значениями.

Правило взаимодействия факторов . Сущность его заключается в том, что одни факторы могут усиливать или смягчать силу действия других факторов. Например, избыток тепла может в какой-то мере смягчаться пониженной влажностью воздуха, недостаток света для фотосинтеза растений – компенсироваться повышенным содержанием углекислого газа в воздухе и т.п. Из этого, однако, не следует, что факторы могут взаимозаменяться. Они не взаимозаменяемы.

Правило лимитирующих факторов . Сущность этого правила заключается в том, что фактор, находящийся в недостатке или избытке (вблизи критических точек), отрицательно влияет на организмы и, кроме того, ограничивает возможность проявления силы действия других факторов, в том числе и находящихся в оптимуме. Лимитирующие факторы обычно обусловливают границы распространения видов, их ареалы. От них зависит продуктивность организмов.

Человек своей деятельностью часто нарушает практически все из перечисленных закономерностей действия факторов. Особенно это относится к лимитирующим факторам (разрушение местообитаний, нарушение режима водного и минерального питания и т.п.).

Закон оптимума. Экологические факторы среды имеют количественное выражение. Каждый фактор имеет определенные пределы положительного влияния на организмы (рис. 2). Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей.

По отношению к каждому фактору можно выделить зону оптимума (зону нормальной жизнедеятельности), зону пессимума (зону угнетения), верхний и нижний пределы выносливости организма.

Зона оптимума, или оптимум (от лат. optimum - благороднейший, лучший), - такое количество экологического фактора, при котором интенсивность жизнедеятельности организмов максимальна.

Зона пессимуму, или пессимум (от лат. pessimum - причинять вред, терпеть ущерб), - такое количество экологического фактора, при котором интенсивность жизнедеятельность организмов угнетена.

Верхний предел выносливости - максимальное количество экологического фактора, при котором возможно существование организма.

Рис. 2.

Нижний предел выносливости - минимальное количество экологического фактора, при котором возможно существование организма.

За пределами выносливости существование организма невозможно.

Кривая может быть широкой или узкой, симметричной или асимметричной. Форма ее зависит от видовой принадлежности организма, от характера фактора и от того, какая из реакций организма выбрана в качестве ответной и на какой стадии развития.

Способность живых организмов переносить количественные колебания действия экологического фактора в той или иной степени называется экологической валентностью (толерантностью, устойчивостью, пластичностью).

Значения экологического фактора между верхним и нижним пределами выносливости называется зоной толерантности.

Виды с широкой зоной толерантности называются эврибионтными (от греч. euris - широкий), с узкой - стенобионтными (от греч. stems - узкий) (рис. 3 и 4).

Организмы, переносящие значительные колебания температуры, называются эвритермными , а приспособленные к узкому интервалу температур - стенотермными. Таким же образом по отношению к давлению различают эври- и стенобатные организмы, по отношению к влажности - эври- и стеногидрические, по отношению к степени за-


Рис. 3. 1 - эврибионтные: 2 - стенобионтные


Рис. 4.

соления среды - эври- и стеногалинные, по отношению к содержанию кислорода в воде - эвры- и стеноксибионтные, по отношению к пише - эври- и стенофагные, по отношению к местообитанию - эври- и стено- ойкные, и т.д.

Таким образом, направление и интенсивность действия экологического фактора зависят от того, в каких количествах он берется и в сочетании с какими другими факторами действует. Не бывает абсолютно полезных или вредных экологических факторов: все дело в количестве. Например, если температура окружающей среды слишком низкая или слишком высокая, то есть выходит за пределы выносливости живых организмов, это для них плохо. Благоприятными являются только оптимальные значения. При этом экологические факторы нельзя рассматривать в отрыве друг от друга. Например, если организм испытывает дефицит воды, то ему труднее переносить высокую температуру.

Явление акклиматизации. Положение оптимума и пределов выносливости на градиенте фактора может в определенных пределах сдвигаться. Например, человек легче переносит пониженную температуру окружающей среды зимой, чем летом, а повышенную - наоборот. Это явление называется акклиматизацией (или акклимацией). Акклиматизация происходит при смене сезонов года или при попадании на территорию с другим климатом.

Неоднозначность действия фактора на разные функции организма.

Одно и то же количество фактора неодинаково влияет на разные функции организма. Оптимум для одних процессов может являться песси- мумом для других. Например, у растений максимальная интенсивность фотосинтеза наблюдается при температуре воздуха +25...+35 °С, а дыхания - +55 °С (рис. 5). Соответственно, при более низких температурах будет происходить прирост биомассы растений, а при более высоких - потеря биомассы. У холоднокровных животных повышение температуры до +40 °С и более сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. У человека семенники вынесены за пределы таза, так как сперматогенез требует более низких температур. Для многих рыб температура воды, оптимальная для созревания гамет, неблагоприятна для икрометания, которое происходит при другой температуре.

Жизненный цикл, в котором в определенные периоды организм осуществляет преимущественно те или иные функции (питание, рост, размножение, расселение и т.п.), всегда согласован с сезонными изменениями комплекса факторов среды. Подвижные организмы могут


Рис. 5. t MUH , t onm , t MaKC - температурный минимум, оптимум и максимум для прироста растений (заштрихованная область)

также менять места обитания для успешного осуществления всех своих жизненных функций.

Экологическая валентность вида. Экологические валентности отдельных особей не совпадают. Они зависят от наследственных и онтогенетических особенностей отдельных особей: половых, возрастных, морфологических, физиологических и т.д. Поэтому экологическая валентность вида шире экологической валентности каждой отдельной особи. Например, у бабочки мельничной огневки - одного из вредителей муки и зерновых продуктов - критическая минимальная температура для гусениц составляет -7 °С, для взрослых форм--22 °С,

а для яиц--27 °С. Мороз в -10 °С губит гусениц, но не опасен для

имаго и яиц этого вредителя.

Экологический спектр вида. Набор экологических валентностей вида по отношению к разным факторам среды составляет экологический спектр вида. Экологические спектры разных видов отличаются друг от друга. Это позволяет разным видам занимать разные места обитания. Знание экологического спектра вида позволяет успешно проводить интродукцию растений и животных.

Взаимодействие факторов. В природе экологические факторы действуют совместно, то есть комплексно. Совокупное действие на организм нескольких факторов среды называется констелляцией. Зона оптимума и пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Например, высокую температуру труднее переносить при дефиците воды, сильный ветер усиливает действие холода, жару легче переносить в сухом воздухе, и т.д. Таким образом, один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие (рис. 6). Соответственно, один и тот же экологический результат может быть получен разными путями. Например, компенсация недостатка влаги может быть осуществлена поливом или снижением температуры. Создается эффект частичного вза- имозамещения факторов. Однако взаимная компенсация действия факторов среды имеет определенные пределы, и полностью заменить один из них другим нельзя.

Рис. 6. Смертность яиц соснового шелкопряда Dendrolimuspini при разных сочетаниях температуры и влажности (по Н.М. Черновой, А.М. Быловой, 2004)

Таким образом, абсолютное отсутствие какого-либо из обязательных условий жизни заменить другими экологическими факторами невозможно, но недостаток или избыток одних экологических факторов может быть возмещен действием других экологических факторов. Например, полное (абсолютное) отсутствие воды нельзя компенсировать другими экологическими факторами. Однако если другие экологические факторы находятся в оптимуме, то перенести недостаток воды легче, чем когда и другие факторы находятся в недостатке или избытке.

Закон лимитирующего фактора. Возможности существования организмов в первую очередь ограничивают те факторы среды, которые наиболее удаляются от оптимума. Экологический фактор, количественное значение которого выходит за пределы выносливости вида, называется лимитирующим (ограничивающим) фактором. Такой фактор будет ограничивать существование (распространение) вида даже в том случае, если все остальные факторы будут благоприятными (рис. 7).

Рис.

Лимитирующие факторы определяют географический ареал вида. Например, продвижение вида к полюсам может лимитироваться недостатком тепла, в аридные районы - недостатком влаги или слишком высокими температурами.

Знание человеком лимитирующих факторов для того или иного вида организмов позволяет, изменяя условия среды обитания, либо подавлять, либо стимулировать его развитие.

Условия жизни и условия существования. Комплекс факторов, под действием которых осуществляются все основные жизненные процессы организмов, включая нормальное развитие и размножение, называется условиями жизни. Условия, в которых размножения не происходит, называются условиями существования.

История экологического знания насчитывает много веков. Уже первобытным людям необходимо было иметь определенные знания о растениях и животных, их образе жизни, взаимоотношениях друг с другом и с окружающей средой. В рамках общего развития естественных наук происходило и накопление знаний, ныне принадлежащих к области экологической науки. Как самостоятельная обособившаяся дисциплина экология выделилась в XIX в.

Термин Экология (от греч.экое - дом, логос - учение) в науку ввел немецкий биолог Эрнест Геккель.

В 1866 г. в работе «Всеобщая морфология организмов» он писал, что это «... сумма знаний, относящихся к экономике природы: изучению всей совокупности взаимоотношений животного с окружающей его средой, как органической, так и неорганической, и прежде всего его дружественных или враждебных отношений с теми животными и растениями, с которыми оно прямо или косвенно вступает в контакт». Такое определение относит экологию к биологическим наукам. В начале XX в. формирование системного подхода и разработка учения о биосфере, которое является обширнейшей областью знания, включающей в себя множество научных направлений как естественного, так и гуманитарного цикла, в том числе и общую экологию, обусловили распространение экосистемных взглядов в экологии. Основным объектом для изучения в экологии стала экосистема.

Экосистемой называют совокупность живых организмов, взаимодействующих друге другом и с окружающей их средой посредством обмена веществом, энергией и информацией таким образом, что эта единая система сохраняет устойчивость в течение продолжительного времени.

Все возрастающее воздействие человека на окружающую среду потребовало вновь расширить границы экологического знания. Во второй половине XX в. научно-технический прогресс повлек за собой ряд проблем, получивших статус глобальных, таким образом, в поле зрения экологии явственно обозначились вопросы сравнительного анализа природных и техногенных систем и поиска путей их гармоничного сосуществования и развития.

Соответственно дифференцировалась и усложнялась структура экологической науки. Сейчас ее можно представить как четыре основные ветви, имеющие дальнейшее деление: Биоэкология, геоэкология, экология человека, прикладная экология.

Таким образом, мы можем дать определение экологии как науки об общих законах функционирования экосистем различного порядка, совокупности научных и практических вопросов взаимоотношений человека и природы.

2. Экологические факторы, их классификация, виды воздействия на организмы

Любой организм в природе испытывает на себе воздействие самых разнообразных компонентов внешней среды. Любые свойства или компоненты окружающей среды, оказывающие влияние на организмы, называют экологическими факторами.

Классификация экологических факторов. Факторы среды (экологические факторы) разнообразны, имеют разную природу и специфику действия. Выделяют следующие группы экологических факторов:

1. Абиотические (факторы неживой природы):

а) климатические - условия освещенности, температурный режим и т. п.;

б) эдафические (местные) - водоснабжение, тип почвы, рельеф местности;

в) орографические - воздушные (ветер) и водные течения.

2. Биотические факторы - это все формы воздействия живых организмов друг на друга:

Растения Растения. Растения Животные. Растения Грибы. Растения Микроорганизмы. Животные Животные. Животные Грибы. Животные Микроорганизмы. Грибы Грибы. Грибы Микроорганизмы. Микроорганизмы Микроорганизмы.

3. Антропогенные факторы - это все формы деятельности человеческого общества, приводящие к изменению среды обитания других видов или непосредственно сказывающиеся на их жизни. Воздействие этой группы экологических факторов стремительно возрастает из года в год.

Виды воздействия экологических факторов на организмы. Экологические факторы оказывают на живые организмы воздействия разного рода. Они могут являться:

Раздражителями, которые способствуют появлению приспособительных (адаптивных) физиологических и биохимических изменений (зимняя спячка, фотопериодизм);

Ограничителями, изменяющими географическое распространение организмов из-за невозможности существования в данных условиях;

Модификаторами, которые вызывают морфологические и анатомические изменения организмов;

Сигналами, свидетельствующими об изменениях других факторов среды.

Общие закономерности действия экологических факторов:

В связи с чрезвычайным разнообразием экологических факторов различные виды организмов, испытывая их влияние, отвечают на него по-разному, тем не менее, можно выявить ряд общих законов (закономерностей) действия экологических факторов. Остановимся на некоторых из них.

1. Закон оптимума

2. Закон экологической индивидуальности видов

3. Закон ограничивающего (лимитирующего) фактора

4. Закон неоднозначного действия

3. Закономерности действия факторов среды на организмы

1)Правило оптимума. Для экосистемы, организма или определенной стадии его

развития имеется диапазон наиболее благоприятного значения фактора. Там, где

факторы благоприятны плотность популяции максимальна. 2)Толерантность.

Эти характеристики зависят от среды, в которой обитают организмы. Если она

стабильна по своим

свой-ам, в ней больше шансов на выживание организмов.

3) Правило взаимодействия факторов. Одни факторы могут усиливать или

смягчать силу действия других факторов.

4) Правило лимитирующих факторов. Фактор, находящийся в недостатке или

избытке отрицательно влияет на организмы и ограничивает возможность прояв. силы

действия других факторов. 5)Фотопериодизм. Под фотопериодизмом

понимают реакцию организма на длину дня. Реакция на изменение света.

6) Адаптация к ритмичности природных явлений. Адаптация к суточной и

сезонной ритмике, приливно-отливным явлениям, ритмам солнечной активности,

лунным фазам и др. явлениям, повторяющимся со строгой периодичность.

Эк. валентность (пластичность) - способность орг. адаптироваться к отд. факторам окр. среды.

Закономерности действия экологических факторов на живые организмы.

Экологические факторы и их классификация. Все организмы потенциально способны к неограниченному размножению и расселению: даже виды, ведущие прикрепленный образ жизни, имеют хотя бы одну фазу развития, на которой способны к активному или пассивному распространения. Но вместе с тем видовой состав организмов, обитающих в различных климатических зонах, не смешивается: для каждой из них присущ определенный набор видов животных, растений, грибов. Это объясняется ограничением чрезмерного размножения и расселения организмов определенными географическими преградами (моря, горные хребты, пустыни и др.), климатическими факторами (температура, влажность и др.)., А также взаимосвязями между отдельными видами.

В зависимости от природы и особенностей действия экологические факторы разделяют на абиотические, биотические и антропогенные (антропичних).

Абиотические факторы - это компоненты и свойства неживой природы, которые прямо или косвенно влияют на отдельные организмы и их группировки (температура, освещенность, влажность, газовый состав воздуха, давление, солевой состав воды и др.).

К отдельной группе экологических факторов относятся различные формы хозяйственной деятельности человека, изменяющие состояние среды обитания различных видов живых существ, включая и самого человека (антропогенные факторы). За относительно короткий период существования человека как биологического вида, ее деятельность коренным образом изменила облик нашей планеты и ежегодно это влияние на природу возрастает. Интенсивность действия некоторых экологических факторов может оставаться относительно стабильной на протяжении длительных исторических периодов развития биосферы (например, солнечное излучение, сила тяжести, солевой состав морской воды, газовый состав атмосферы и т.д.). Большинство из них имеет переменную интенсивность (температура, влажность и т.д.). Степень изменчивости каждого из экологических факторов зависит от особенностей среды обитания организмов. Например, температура на поверхности почвы может варьировать в значительных пределах в зависимости от времени года или суток, погоды и т.д., тогда как в водоемах на глубинах свыше нескольких метрах перепады температуры почти отсутствуют.

Изменения экологических факторов могут быть:

Периодическими, в зависимости от времени суток, времени года, положение Луны относительно Земли и т.п.;

Непериодическими, например, извержения вулканов, землетрясения, ураганы и др..;

Направленными течение значительных исторических промежутков времени, например, изменения климата Земли, связанные с перераспределением соотношения площадей суши и Мирового океана.

Каждый из живых организмов постоянно приспосабливается ко всему комплексу экологических факторов, то есть к среде обитания, регулируя процессы жизнедеятельности в соответствии с изменениями этих факторов. Среда обитания - это совокупность условий, в которых живут определенные особи, популяции, группировка организмов.

Закономерности влияния экологического факторов на живые организмы. Несмотря на то, что экологические факторы очень разнообразны и различны по природе, отмечают некоторые закономерности их влияния на живые организмы, а также реакций организмов на действие этих факторов. Приспособления организмов к условиям среды обитания называются адаптациями. Они производятся на всех уровнях организации живой материи: от молекулярного до биогеоценотичного. Адаптации непостоянны, поскольку изменяются в процессе исторического развития отдельных видов в зависимости от изменений интенсивности действия экологических факторов. Каждый вид организмов приспособлен к определенным условиям существования особым образом: не существует двух близких видов, сходных посвоим адаптациями (правило экологической индивидуальности). Так, крот (ряд Насекомоядные) и слепыш (ряд Грызуны) адаптированы к существованию в почве. Но крот роет ходы с помощью передних конечностей, а слепыш - резцов, выбрасывая наружу грунт головой.

Хорошая приспособленность организмов к определенному фактору не означает такого же адаптированности к другим (правило относительной независимости адаптации). Например, лишайники, которые могут поселяться на субстратах, бедных на органику (например, скальных породах) и выдерживать засушливые периоды, очень чувствительны к загрязнению воздуха.

Существует и закон оптимума: каждый фактор положительно влияет на организм лишь в определенных пределах. Благоприятная для организмов определенного вида интенсивность воздействия экологического фактора называется зоны оптимума. Чем больше интенсивность действия определенного экологического фактора отклоняться отоптимальной в ту или другую сторону, тем больше будет выражена его угнетающее действие на организмы (зона пессимума). Значение интенсивности воздействия экологического фактора, по которым существование организмов становится невозможным, называют верхней и нижней границей выносливости (критические точки максимума и минимума). Расстояние между границами выносливости определяет экологическую валентность определенного вида относительно того или иного фактора. Следовательно, экологическая валентность - это диапазон интенсивности воздействия экологического фактора, в котором возможно существование определенного вида.

Широкую экологическую валентность особей определенного вида относительно конкретного экологического фактора обозначают префиксом «евры-». Так, песцы относятся к евритермних животных, поскольку выдерживают значительные колебания температуры (в пределах 80ьС). Некоторые беспозвоночные (губки, кильчакив, иглокожие) относятся к еврибатних организмов, потому поселяются от прибрежной зоны до больших глубин, выдерживая значительные колебания давления. Виды, которые могут жить в широком диапазоне колебаний различных экологических факторов, называют еврибионтнимы Узкая экологическая валентность, то есть неспособность выдерживать значительные изменения определенного экологического фактора, обозначают приставкой «стено-» (например, стенотермные, стенобатни, стенобионтных т.д.).

Оптимум и пределы выносливости организма относительно определенного фактора зависят от интенсивности действия других. Например, в сухую безветренную погоду легче выдерживать низкие температуры. Итак, оптимум и пределы выносливости организмов в отношении любого фактора среды могут сдвигаться в определенную сторону в зависимости от того, с какой силой и в каком сочетании действуют другие факторы (явление взаимодействия экологических факторов).

Но взаемокомпенсация жизненно важных экологических факторов имеет определенные границы и ни один не может быть заменен другими: если интенсивность действия хотя бы одного фактора выходит за пределы выносливости, существование вида становится невозможным, несмотря на оптимальную интенсивность действия других. Так, недостаток влаги тормозить процесс фотосинтеза даже при оптимальной освещенности и концентрации CO2 в атмосфере.

Фактор, интенсивность действия которого выходит за пределы выносливости, называется ограничительным. Ограничивающие факторы определяют территорию расселения вида (ареал). Например, распространение многих видов животных на север сдерживается нехваткой тепла и света, на юг - дефицитом влаги подобное.

Таким образом, присутствие и процветания определенного вида в данной среде обитания обусловлено его взаимодействием с целым комплексом экологических факторов. Недостаточная или чрезмерная интенсивность действия любого из них невозможным процветание и само существование отдельных видов.

Экологические факторы - это любые компоненты окружающей среды, влияющие на живые организмы и их группировки; их делят на абиотические (составляющие неживой природы), биотические (различные формы взаимодействия между организмами) и антропогенные (различные формы хозяйственной деятельности человека).

Приспособления организмов к условиям окружающей среды называют адаптациями.

Любой экологический фактор имеет лишь определенные пределы положительного влияния на организмы (закон оптимума). Границы интенсивности действия фактора, по которым существование организмов становится невозможным, называют верхней и нижней границей выносливости.

Оптимум и пределы выносливости организмов по отношению любой яко-го фактора среды могут варьироваться в определенную сторону в зависимости от того, с какой интенсивностью и в каком сочетании действуют другие экологические факторы (явление взаимодействия экологических факторов). Но их взаимная компенсация ограничена: ни один жизненно необходимый фактор не может быть заменен другими. Экологический фактор, который выходит за пределы выносливости, называется ограничительного, он определяет ареал определенного вида.

кологическая пластичность организмов

Экологическая пластичность организмов (экологическая валентность) - степень приспособляемости вида к изменениям фактора среды. Выражается диапазоном значений факторов среды, в пределах которого данный вид сохраняет нормальную жизнедеятельность. Чем шире диапазон, тем больше экологическая пластичность.

Виды, способные существовать при небольших отклонениях фактора от оптимума, называются узкоспециализированными, а виды, выдерживающие значительные изменения фактора - широкоприспособленными.

Экологическая пластичность может рассматриваться как по отношению к отдельному фактору, так и по отношению к комплексу экологических факторов. Способность видов переносить значительные изменения определенных факторов оозначается соответствующим термином с приставкой "эври":

Эвритермные (пластичны к температуре)

Эвриголинные (соленость воды)

Эврифотные (пластичны к свету)

Эвригигрические (пластичны к влажности)

Эвриойкные (пластичны к месту обитания)

Эврифагные (пластичны к пище).

Виды, приспособленные к небольшим изменениям данного фактора, обозначаются термином с приставкой "стено". Эти приставки используются, чтобы выразить относительную степень толерантности (например, у стенотермного вида экологический температурный оптимум и пессимум сближены).

Виды, обладающие широкой экологической пластичностью по отношению к комплексу экологических факторов - эврибионты; виды с малой индивидуальной приспособляемостью - стенобионты. Эврибионтность и истенобионтность характеризуют различные типы приспособления организмов к выживанию. Если эврибионты долгое время развиваются в хороших условиях, то они могут утрачивать экологическую пластичность и вырабатывать черты стенобионтов. Виды, существующие при значительных колебаниях фактора, приобретают повышенную экологическую пластичность и становятся эврибионтами.

Например, в водной среде больше стенобионтов, так как она по своим свойствам относительно стабильна и амплитуды колебания отдельных факторов малы. В более динамичной воздушно-наземной среде преобладают эврибионты. У теплокровных животных экологическая валентность шире, чем у хладнокровных. Молодые и старые организмы, как правило, требуют более однородных условий среды.

Эврибионты широко распространены, а стенобионтность суживает ареалы; однако в некоторых случаях благодаря высокой специализированности стенобионтам принадлежат обширные территории. Например, рыбоядная птица скопа является типичным стенофагом, но по отношению к другим факторам среды - эврибионтом. В поисках необходимой пищи птица способна преодолевать в полете большие расстояния, поэтому занимает значительный ареал.

Пласти́чность - способность организма существовать в определённом диапазоне значений экологического фактора. Пластичность определяется нормой реакции.

По степени пластичности по отношению к отдельным факторам все виды подразделяются на три группы:

Стенотопы - виды, способные существовать в узком диапазоне значений экологического фактора. Например, большинство растений влажных экваториальных лесов.

Эвритопы - широкопластичные виды, способные осваивать различные местообитания, например, все виды-космополиты.

Мезотопы занимают промежуточное положение между стенотопами и эвритопами.

Следует помнить, что вид может быть, например, стенотопом по одному фактору и эвритопом - по другому и наоборот. Например, человек является эвритопом по отношению к температуре воздуха, но стенотопом по содержанию кислорода в нём.

Общие закономерности влияния экологических факторов на живые организмы (основные экологические законы)

Среди всего многообразия экологических факторов нет таких, которые бы действовали на живые организмы одинаково. Однако при всем этом экологи уже давно выделяют общие закономерности, по которым факторы оказывают влияние на организмы.

Факторы сами по себе никак не действуют. По своей природе они сменные и имеют определенную шкалу измерения: температуру измеряют в градусах, влажность - в процентах водяного пара, освещенность - в люксах, соленость в промилле, давление - в мілібарах, кислотность почвы (воды) - водородным показателем т.д. Именно это подчеркивает то, что фактор действует с определенной силой, количество которого можно измерить.

Закон оптимума.

Любой экологический фактор может восприниматься организмом положительно и отрицательно, в зависимости от дозы. Наиболее благоприятная доза экологического фактора, под действием которой вид (или организм) проявляет максимум жизнедеятельности, является оптимальной дозой. Экологи уже давно отметили, что каждому организму свойственна своя оптимальная доза того или иного фактора. В этом заключается одно из аксиоматических законов экологии - закон оптимума.

Изучать оптимальные дозы экологических факторов для тех или иных видов организмов можно разными методами: наблюдением и экспериментально. Доказательством наличия оптимальных условий существования организмов является их интенсивный рост и размножение в максимальном количестве. Измеряя те или иные дозы факторов и сопоставляя их с проявлением жизнедеятельности организмов, можно эмпирически установить оптимум определенных факторов.

Закон Шелфорда и пределы толерантности.

Хотя оптимальные дозы фактора является наиболее благоприятные для организмов, однако не всегда все организмы имеют возможность потреблять экологические факторы именно в оптимальных дозах. Таким образом, некоторые факторы могут быть для них и неблагоприятными, но все равно организмы должны выжить и в этих условиях.

Изучением действия неблагоприятных доз экологических факторов на организмы занимался В. Шелфорд (1913). Было показано, что у каждого живого организма в отношении любого фактора существуют свои пределы выносливости - минимальная и максимальная, между которыми находится экологический оптимум (рис. 1.2.1). За пределами выносливости организмы не могут воспринимать экологический фактор. Эти границы являются летальными точками. Существование организмов вне их невозможно. Между оптимальными и летальными дозами экологического фактора размещаются зоны песимуму - подавление жизнедеятельности организмов. Организмы могут существовать в условиях песимуму, но полностью не проявляют своей жизнедеятельности (плохо растут, не размножаются и др.). Со времен установления закона Шелфорда прошло много времени, в течение которого собралось много данных о толерантности видов. Исходя из этих материалов, экологи на сегодня сформулировали ряд положений, дополняющих закон толерантности.

Было показано, что организмы могут иметь широкий диапазон толерантности в отношении одного фактора и в то же время узкий в отношении другого. Такой принцип, когда степень устойчивости к любого фактора не означает такой же устойчивости к другим факторам, известный под названием Закон относительной независимости адаптации. Таким образом, организмы, которые выдерживают значительные изменения температуры, совсем не обязательно должны быть также хорошо приспособлены к широким колебаниям фактора влажности или солености.

Рис. 1.2.1. в

Организмы, имеют широкий диапазон толерантности ко многим факторам, как правило, наиболее распространены.

Если условия по одному какому-то фактору не оптимальны для вида, то при таких причин может сузиться зона выносливости в других экологических факторов. Например, известно, что недостаток азота в почве снижает засухоустойчивость злаков.

Период размножения является наиболее критическим для организмов. Некоторые факторы в этот период становятся для организмов более влиятельными. Зона толерантности для особей, размножаются, семян, яиц, эмбрионов, проростков, личинок и т.п., уже, чем для тех особей, которые не размножаются. Например, морские лососевые рыбы заходят в реки на нерест в связи с тем, что их икра и личинки рыб не переносят солености морской воды. То есть неблагоприятное действие фактора может проявляться не на всех стадиях развития организма, а только на определенных, когда уязвимость в отношении фактора наибольшая. Эта особенность лежит в основе правила А. Тіннемана (1926) - тот из необходимых факторов окружающей среды определяет плотность популяции определенного вида, действует на стадию развития этого организма, которой свойственна наибольшая уязвимость.

Естественно, что зоны толерантности у различных организмов к различным факторам будут отличаться. Сравнивая организмы, можно выделить среди них таких, которые имеют широкую выносливость до многих факторов. в экологии принято называть еврибіонтами. И наоборот, в противоположность первым, выделяют организмы, у которых выносливость экологических факторов достаточно низкая - они приспособились к узким доз факторов. Последних называют стенобіонтами.

Например, антарктическая рыба пестрый трематом способна переносить колебания температуры воды в довольно узких пределах от - 2° С до +2° С. Это крайний случай стенобіонтності. Рыба не способна жить при температурах, выходящих за указанные пределы. А вот большинство наших озерных и прудовых рыб способны переносить температуры от 3-4° С до 20-25° С. Они есть еврибіонтами.

Глубоководные (абісальні) рыбы является также стенобіонтами, но относительно температуры и давления.

Птицы, которые образуют птичьи базары на скалах северных морей, в гнездовой период проявляют себя как стенобіонтні организмы. Для своих гнезд они выбирают отвесные скалы и только здесь размножаются.

Экологическая валентность.

Широкая или узкая зона выносливости (толерантности) организма к любого отдельного фактора или всей совокупности факторов дает возможность утверждать о его пластичность, или экологическую валентность. Вид считается экологически более приспособленным, например, до температуры, если его зона толерантности относительно этого фактора будет достаточно широкой, то есть если он будет еврибіонтом. О таком виде говорят, что он является пластичным, или имеет высокую экологическую валентность. Понятно, что стенобіонтні организмы - менее пластичны, потому что у них низкая экологическая валентность.

Организмы с высокой экологической валентностью, как правило, легко приспосабливаются к большинству условий существования. Это отражается на их распространении и численности. Так, различают космополитов и убіквістгв. К первым относят виды, которые распространены почти по всему земному шару, но в той среде обитания, что им свойственно. Типичным космополитом среди растений есть одуванчик, а среди животных - серая крыса. Они встречаются на всех континентах. Убіквісти тоже имеют глобальное распространение, но они населяют любую среду с разнообразными условиями жизни. Например, волк живет в хвойных и лиственных лесах, в степях, горах и в тундре.

Виды, которые имеют широкое распространение и высокую численность, считаются биологически прогрессивными.

Узко специализированные виды никогда не имели широкого распространения и высокой численности. их нельзя отнести к биологически прогрессивных, однако они существуют в своих собственных условиях, в которых у них нет конкурентов, а если и найдется претендент, то узко приспособленные виды всегда будут иметь преимущество и поэтому останутся победителями. Здесь действует правило прогрессирующей специализации, которое было сформулировано в 1876 г. ПИ. Депере. Согласно этого правила, вид или группа видов, которые стали на путь специализации, в дальнейшем своем развитии будут углублять свою специализацию и совершенствовать приспособленность к определенным условиям жизни. Это очевидно, потому что уже специализированные группы всегда будут победителями в условиях, к которым они приспособились, и с каждым новым эволюционным шагом будут все более специализированными. Например, вряд ли найдутся конкуренты летучим мышам, которые царят в ночном небе, кротам, которые ведут подземный образ жизни.

Итак, одно, что угрожает существованию таких видов, - это изменения экологических условий среды. Любые серьезные нарушения окружающей среды могут стать для узко специализированных видов трагическими. Так, для коршуна-слимакоїда это частое осушение болот Еверглейдсу, в результате чего исчезают улитки - основная пища этих хищных птиц.

Прямая и опосредованная действие факторов.

Большинство факторов, тщательно изучали и изучают экологи, имеют прямое действие на организм. Это не удивительно, ибо именно через мгновенную или ближайшую реакцию на действие фактора можно судить о характере его действия.

Но в природе редко когда попадаются такие условия, при которых может изменяться только один фактор. Поэтому, казалось бы, простое изучение в полевых условиях действия того или иного фактора никогда не дает адекватных результатов. Исследователям трудно избежать действия других факторов и провести "чистая" полевой опыт.

Даже при условии, что исследователю удалось сделать "чистая" эксперимент, ему надо быть уверенным, что в этом случае не проявляется эффект закон неоднозначного действия фактора на различные функции), а именно: каждый экологический фактор неодинаково влияет на разные функции организма - оптимум для одних процессов может стать песимумом для других.

Например, ряд неблагоприятных условий летнего сезона (недостаточное количество солнечных дней, дождливая погода, относительно низкие температуры и т.д.) мало влияют на жизнь таких птиц, как совы Семь солнечный свет непосредственно ненужное, и они хорошо защищены перьевым покровом от влажности и излишней теплоотдачи). Но при таких факторов популяция этих ночных хищных птиц не будет в оптимальных условиях, их численность за летний сезон может не только не увеличиться, но и уменьшиться. Прямое влияние неблагоприятных погоды ых факторов совы переносят относительно легко, чем неблагоприятные условия обеспеченности пищей. Погодные условия негативно повлияли на вегетацию растений и на популяции мышевидных грызунов (не было урожая злаковых). Сезон оказался неблагоприятным для мышей, а совы, которые в основном питаются ими, страдали от недостатка пищи для себя и своих птенцов. Так, через ряд других факторов через некоторое время чувствуется влияние самых основных факторов, которые напрямую не имеют никакого действия.

Совокупное действие экологических факторов.

Окружающая среда, в которой живут организмы, является совокупность различных экологических факторов, которые еще и к тому проявляются в различных дозах. Трудно себе представить, чтобы организм воспринимал каждый фактор отдельно. В природе организм реагирует на действие всей совокупности факторов. Так же и мы, читая сейчас эту книгу, невольно воспринимаем совокупность тех факторов среды, которые на нас действуют. Мы не осознаем, что находимся в определенных температурных условиях, в условиях влажности, земного тяготения, электромагнитного поля Земли, освещенности, определенного химического состава воздуха, шума и др. На нас действует сразу большое количество факторов. Если мы выбрали хорошие условия для чтения книги, то и на действие факторов мы не будем обращать внимания. А представьте себе, что в этот момент один из факторов резко изменился и стал недостаточным (пусть стало темно) или слишком сильно начал действовать на нас (например, стало в комнате очень жарко или шумно). Тогда уже мы по-другому будем реагировать на весь комплекс факторов, которые нас окружают. Хотя большинство факторов будут влиять в оптимальных дозах, это уже нас не будет удовлетворять. Таким образом, комплексное действие экологических факторов не является простой суммой действия каждого из них. В разных случаях одни факторы могут усиливать восприятие других (констелляция факторов), а то и ослаблять их действие (лимитирующая действие факторов).

Длительная совокупное действие экологических факторов вызывает у организмов определенные приспособления и даже анатомо-морфологические изменения в строении тела. Сочетание только двух основных факторов влажности и температуры, да еще и разных доз, предопределяет на суше в глобальных масштабах различные типы климата, что, в свою очередь, формирует определенную растительность, ландшафты.

Имея элементарные знания по природоведению можно догадаться, что в условиях низких температур и высокой влажности формируется зона тундры, при высоких влажности и температуре - зона влажных тропических лесов, при высокой температуре и низкой влажности - зона пустынь.

Попарное сочетание других факторов и их длительное воздействие на организмы может вызывать определенные анатомо-морфологические изменения в организмах. Так, например, было замечено, что у рыб (сельдь, треска и др.), которые обитают в водоемах с высокой соленостью и низкими температурами возрастает число позвонков (в хвостовой части скелета); это служит приспособлением к движениям в более плотной среде (правило Жордана).

Есть также другие обобщения по комплексной длительного действия факторов на организмы в глобальных масштабах. Они больше известны как зоогеографические правила, или законы.

Правило Глогера (1833) утверждает, что географические расы животных, которые обитают в теплых и влажных зонах, имеют более интенсивную пигментацию тела (чаще всего черную или темно-коричневую), чем обитатели холодных и сухих регионов (светлую или белую окраску).

Правило Гессе отмечает, что особи популяций животных в северных районах характеризуются относительно большей массой сердца по сравнению с особями южных мест.

Как уже было отмечено, факторы никогда не действуют на организм отдельно друг от друга и их совокупное действие никогда не является простой суммой действия каждого из них. Часто случается так, что при совокупной действия факторов действие каждого может усилиться. Общеизвестно, что большие морозы в сухую погоду переносятся легче, чем небольшие во влажную погоду. Так же ощущение холода будет больше во время теплого летнего дождика, но при наличии ветра, чем в безветренную погоду. Жара труднее переносится при повышенной влажности воздуха, чем при сухом воздухе.

Лимитирующие факторы. Закон Либиха.

Противоположное эффекта совокупного действия факторов является ограничение восприятия одних факторов через другие. Это явление было открыто в 1840 году немецким агрохіміком Ю. Либихом. Изучая условия, при которых можно добиться высоких урожаев зерновых культур, Либих показал, что от вещества, концентрация которого находится в минимуме, зависят рост растений, величина и устойчивость их урожая. То Есть Ю. Либих установил, что урожай зерна часто лимитируется не теми питательными веществами, которые требуются в больших количествах, такими, как, например, двуокись углерода, азота и вода, а теми, которые требуются в малых количествах (например, бор), но которых мало. Этот принцип получил название Закона минимума Либиха: стойкость организма определяется самым слабым звеном в цепи его экологических потребностей .

Установлен экспериментально на растениях закон Либиха в дальнейшем стал применяться шире. Некоторые авторы расширили круг факторов, которые могут лимитировать биологические процессы в природе, и к питательных веществ отнесли ряд других факторов, как например, температуру и время.

Практика показала, что для успешного применения закона Либиха к нему надо добавить две вспомогательные принципы.

Первый - ограничительный; закон Либиха может быть применен только в условиях стационарного состояния, т.е. когда поступление энергии и веществ сбалансировано с их оттоком.

Другой вспомогательный принцип касается взаємозаміні факторов. Так, высокая концентрация или доступность какого-то вещества или действие другого фактора может изменить потребление минимальной питательного вещества. Иногда случается так, что организм способен заменить вещество, которого не хватает, на другую, химически близкое и достаточно представленную в окружающей среде. Этот принцип лег в основу Закон компенсации факторов (Закон взаимозаменяемости факторов), еще известен под именем автора Е. Рюбеля с 1930 г. Так, моллюски, которые живут в местах, где много стронция, частично используют его для построения своих створок (ракушки) при дефиците кальция. Недостаточная освещенность теплицы может быть компенсирована или увеличением концентрации двуокиси углерода, или стимулювальною действием некоторых биологически активных веществ (напр., гиббереллинов - стимуляторов роста).

Но при этом не стоит забывать о существовании Закон незаменимости фундаментальных факторов (или Закона Уильямса, 1949). В соответствии с ним полное отсутствие в окружающей среде фундаментальных экологических факторов (света, воды, двуокиси углерода, питательных веществ) не может быть заменено (компенсировано) другими факторами.

Лимитирующим (ограничивающим) фактором, как выяснилось в дальнейшем, может быть не только тот, который находится в минимуме, а даже и то, что имеющийся в избытке (верхняя доза толерантности). И минимальная, и максимальная дозы какого-то фактора (пределы толерантности) ограничивают восприятие оптимальных доз других факторов. То есть любой дискомфортный фактор не способствует нормальному восприятию других оптимальных факторов.

Итак, Закон толерантности (закон Шелфорда) можно определить так: лимитирующим (ограничивающим) фактором процветания организма может быть как минимум, так и максимум экологического воздействия, диапазон между которыми определяет степень выносливости (толерантности) организма к данному фактору.

Однако при всем этом следует учитывать еще один этап изучения совокупного действия факторов. В 1909 году немецкий агрохимик и физиолог растений А. Мітчерліх провел после Либиха ряд опытов и показал, что количество урожая зависит не только от какого-либо одного (пусть даже лимитирующего) фактора, но от всей совокупности действующих факторов одновременно. Эта закономерность была названа Законом эффективности факторов, но в 1918 году Б. Бауле переименовал его в Закон совокупного действия природных факторов (поэтому иногда его называют Законом Мітчерліха-Бауле). Таким образом, установлено, что в природе один экологический фактор может действовать на другой. Поэтому успех вида в окружающей среде зависит от взаимодействия факторов. Например, повышенная температура способствует большему испарению влаги, а уменьшение освещенности приводит к снижению потребностей растений в цинке и др. Этот закон может рассматриваться как поправка к закону минимума Либиха.

Организмы поддерживают со средой определенное равновесие с помощью саморегуляции. Способность организмов (популяций, экосистем) поддерживать свои свойства на определенном, достаточно стабильном уровне называют гомеостазом.

Итак, присутствие и процветание определенного вида в среде обитания обусловлена его взаимодействием с целым комплексом экологических факторов. Недостаточная или чрезмерная интенсивность действия любого из них делают невозможным процветание и само существование отдельных видов.