Органическая химия для чего она нужна. Органическая химия

Алке́ны (олефины , этиленовые углеводороды C n H 2n

Гомологический ряд.

этен (этилен)

Простейшим алкеном является этилен (C 2 H 4). По номенклатуре IUPAC названия алкенов образуются от названий соответствующих алканов заменой суффикса «-ан» на «-ен»; положение двойной связи указывается арабской цифрой.

Углеводородные радикалы, образованные от алкенов имеют суффикс «-енил» . Тривиальные названия: CH 2 =CH- «винил» , CH 2 =CH-CH 2 - «аллил» .

Атомы углерода при двойной связи находятся в состоянии sp² гибридизации, и имеют валентный угол 120°.

Для алкенов характерны изомерия углеродного скелета, положения двойной связи, межклассовая и пространственная.

Физические свойства

    Температуры плавления и кипения алкенов (упрощенно) увеличиваются с молекулярной массой и длиной главной углеродной цепи.

    При нормальных условиях алкены с C 2 H 4 до C 4 H 8 - газы; с пентена C 5 H 10 до гексадецена C 17 H 34 включительно - жидкости, а начиная с октадецена C 18 H 36 - твёрдые вещества. Алкены не растворяются в воде, но хорошо растворяются в органических растворителях.

Дегидрирование алканов

Это один из промышленных способов получения алкенов

Гидрирование алкинов

Частичное гидрирование алкинов требует специальных условий и наличие катализатора

Двойная связь является сочетания сигма- и пи-связей. Сигма- связь возникает при осевом перекрывании sp2 – орбиталей, а пи-связь при боковом перекрывании

Правило Зайцева:

Отщепление атома водорода в реакциях элиминирования происходит преимущественно от наименее гидрогенизированного атома углерода.

13. Алкены. Строение. sp 2 гибридизация, параметры кратной связи. Реакции электрофильного присоединения галогенов, галогеноводородов, хлорноватистой кислоты. Гидратация алкенов. Правило Морковникова. Механизмы реакций.

Алке́ны (олефины , этиленовые углеводороды ) - ациклические непредельные углеводороды, содержащие одну двойную связьмежду атомами углерода, образующие гомологический ряд с общей формулой C n H 2n

Одна s- и 2 p-орбитали смешиваются и образуются 2 равноценные sp2-гибридные орбитали, расположенные в одной плоскости под углом 120.

Если связь образуется более чем одной парой электронов, то она называется кратной .

Кратная связь образуется в тех случаях, когда имеется слишком мало электронов и связывающихся атомов, чтобы каждая пригодная для образования связи валентная орбиталь центрального атома могла перекрыться с какой-либо орбиталью окружающего атома.

Реакции электрофильного присоединения

В данных реакциях атакующей частицей является электрофил.

Галогенирование:

Гидрогалогенирование

Электрофильное присоединение галогенводородов к алкенам происходит по правилу Марковникова

Марковникова правило

    Присоединение хлорноватистой кислоты с образованием хлоргидринов:

Гидратация

Реакция присоединения воды к алкенам протекает в присутствии серной кислоты :

Карбкатион - частица, в которой на атоме углерода сосредоточен положительный заряд, атом углерода имеет вакантную p-орбиталь.

14. Этиленовые углеводороды. Химические свойства: реакции с окислителями. Каталитическое окисление, реакция с надкислотами, реакция окисления до гликолей, с разрывом связи углерод-углерод, озонирование. Вакер-процесс. Реакции замещения.

Алке́ны (олефины , этиленовые углеводороды ) - ациклические непредельные углеводороды, содержащие одну двойную связьмежду атомами углерода, образующие гомологический ряд с общей формулой C n H 2n

Окисление

Окисление алкенов может происходить в зависимости от условий и видов окислительных реагентов как с разрывом двойной связи, так и с сохранением углеродного скелета.

При сжигании на воздухе олефины дают углекислый газ и воду.

H 2 C=CH 2 + 3O 2 => 2CO 2 + 2H 2 O

C n H 2n + 3n/O 2 => nCO 2 + nH 2 O – общая формула

Каталитическое окисление

В присутствии солей палладия этилен окисляется до ацетальдегида. Аналогично образуется ацетон из пропена.

    При действии на алкены сильных окислителей (KMnO 4 или K 2 Cr 2 O 7 в среде Н 2 SO 4) при нагревании происходит разрыв двойной связи:

При окислении алкенов разбавленным раствором марганцовки образуются двухатомные спирты – гликоли (реакция Е.Е.Вагнера). Реакция протекает на холоде.

Ациклические и циклические алкены при взаимодействии с надкислотами RCOOOH в неполярной, среде образуют эпоксиды (оксираны), поэтому сама реакция носит название реакции эпоксидирования.

Озонирование алкенов.

при взаимодействии алкенов с озоном образуются перекисные соединения, которые называются озо-нидами. Реакция алкенов с озоном является наиболее важным методом окислительного расщепления алкенов по двойной связи

Алкены не вступают в реакции замещения.

Вакер-процесс -процесс получения ацетальдегида прямым окислением этилена.

Вакер-процесс основан на реакции окисления этилена дихлоридом палладия:

CH 2 =CH 2 + PdCl 2 + H 2 O = CH 3 CHO + Pd + 2HCl

15. Алкены: химические свойства. Гидрирование. Правило Лебедева. Изомеризация и олигомеризация алкенов. Радикальная и ионная полимеризация. Понятие полимер, олигомер, мономер, элементарное звено, степень полимеризации. Теломеризация и сополимеризация.

Гидрирование

Гидрирование алкенов непосредственно водородом происходит только в присутствии катализатора. Катализаторами гидрирования служат платина,палладий, никель

Гидрирование можно проводить и в жидкой фазе с гомогенными катализаторами

Реакции изомеризации

При нагревании возможна изомеризация молекул алкенов, которая

может привести как к перемещению двойной связи, так и к изменению скелета

углеводорода.

CH2=CH-CH2-CH3 CH3-CH=CH-CH3

Реакции полимеризации

Это разновидность реакции присоединения. Полимеризация - это реакция последовательного соединения одинаковых молекул в большие по размеру молекулы, без выделения какого-либо низкомолекулярного продукта. При полимеризации атом водорода присоединяется к наиболее гидрогенизированному атому углерода, находящемуся у двойной связи, а к другому атому углерода присоединяется остальная часть молекулы.

CH2=CH2 + CH2=CH2 + ... -CH2-CH2-CH2-CH2- ...

или n CH2=CH2 (-CH2-CH2-)n (полиэтилен)

Вещество, молекулы которого вступают в реакцию полимеризации, называются мономером . Молекула мономера обязательно должна иметь хотя бы одну двойную связь. Образующиеся полимеры состоят из большого количества повторяющихся цепочек, имеющих одинаковое строение (элементарных звеньев). Число, показывающее, сколько раз в полимере повторяется структурное (элементарное) звено, называется степенью полимеризации (n).

В зависимости от вида промежуточных частиц, образующихся при полимеризации, различают 3 механизма полимеризации: а) радикальный; б)катионный; в) анионный.

По первому методу получают полиэтилен высокого давления:

Катализатором реакции выступают пероксиды.

Второй и третий методы предполагает использование в качестве катализаторов кислот (катионная полимеризация), металлорганических соединений.

В химии олигомер ) - молекула в виде цепочки изнебольшого числа одинаковых составных звеньев.

Теломеризация

Теломеризация – олигомеризация алкенов в присутствии веществ – передатчиков цепи (телогенов). В результате реакции образуется смесь олигомеров (теломеров), концевые группы которых представляют собой части телогена. Например, в реакции CCl 4 с этиленом телогеном является CCl 4 .

CCl 4 + nCH 2 =CH 2 => Cl(CH 2 CH 2) n CCl 3

Инициирование этих реакций может осуществляться радикальными инициаторами или g -излучением.

16. Алкены. Реакции радикального присоединения галогенов и галогеноводородов (механизм). Присоединение карбенов к олефинам. Этилен, пропилен, бутилены. Промышленные источники и основные пути использования.

Алкены легко присоединяют галогены, особенно хлор и бром (галогенирование).

Типичной реакцией такого типа является обесцвечивание бромной воды

CH2=CH2 + Вr2 → СH2Br-CH2Br (1,2-дибромэтан)

Электрофильное присоединение галогенводородов к алкенам происходит по правилу Марковникова:

Марковникова правило : при присоединении протонных кислот или воды к несимметричным алкенам или алкинаматом водорода присоединяется к наиболее гидрогенизированному атому углерода

гидрогенизированный атом углерода – тот атом, к которому присоединен водород. Наиболее гидрогенизированный – там где больше всего Н

Реакции присоединения карбенов

Карбены CR 2: - высокореакционные короткоживущие частицы, которые способны легко присоединяться к двойной связи алкенов . В результате реакции присоединения карбена образуются производные циклопропана

Этиле́н - органическое химическое описываемое формулой С 2 H 4 . Является простейшималкеном (олефином )соединение. При нормальных условиях - бесцветный горючий газ со слабым запахом. Частично растворим в воде. Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам. Играет чрезвычайно важную роль в промышленности. Этилен - самое производимое органическое соединение в мире: Окись этилена; полиэтилен, уксусная кислота, этиловый спирт.

Основные химические свойства (не учи, просто пусть будут на всякий случай, вдруг списать получится)

Этилен - химически активное вещество. Так как в молекуле между атомами углерода имеется двойная связь, то одна из них, менее прочная, легко разрывается, и по месту разрыва связи происходит присоединение, окисление, полимеризация молекул.

    Галогенирование:

CH 2 =CH 2 + Br 2 → CH 2 Br-CH 2 Br

Происходит обесцвечивание бромной воды. Это качественная реакция на непредельные соединения.

    Гидрирование:

CH 2 =CH 2 + H - H → CH 3 - CH 3 (под действием Ni)

    Гидрогалогенирование:

CH 2 =CH 2 + HBr → CH 3 - CH 2 Br

    Гидратация:

CH 2 =CH 2 + HOH → CH 3 CH 2 OH (под действием катализатора)

Эту реакцию открыл A.M. Бутлеров, и она используется для промышленного получения этилового спирта.

    Окисление:

Этилен легко окисляется. Если этилен пропускать через раствор перманганата калия, то он обесцветится. Эта реакция используется для отличия предельных и непредельных соединений. Окись этилена - непрочное вещество, кислородный мостик разрывается и присоединяется вода, в результате образуетсяэтиленгликоль. Уравнение реакции :

3CH 2 =CH 2 + 2KMnO 4 + 4H 2 O → 3HOH 2 C - CH 2 OH + 2MnO 2 + 2KOH

C 2 H 4 + 3O 2 → 2CO 2 + 2H 2 O

    Полимеризация (получение полиэтилена):

nCH 2 =CH 2 → (-CH 2 -CH 2 -) n

Пропиле́н (пропен) СН 2 =СН-СН 3 - непредельный (ненасыщенный) углеводород ряда этилена, горючий газ. Пропилен представляет собой газообразное вещество с низкой температурой кипения t кип = −47,6 °C

Обычно пропилен выделяют из газов нефтепереработки (при крекинге сырой нефти, пиролизе бензиновых фракций) или попутных газов, а также из газов коксования угля.

Для алкенов характерны, прежде всего, реакции присоединения по двойной связи. В основном эти реакции идут по ионному механизму. Пи-связь разрывается, и образуются две новые сигма-связи. Напомню, что для алканов типичными были реакции замещения и шли они по радикальному механизму. Присоединяться к алкенам могут молекулы водорода, эти реакции называются гидрирование, молекулы воды, гидратация, галогены — галогенирование, галогенводороды — гидрогалогенирование. Но обо всем по порядку.

Реакции присоединения по двойной связи

Итак, первое химическое свойство — способность присоединять галогеноводороды, гидрогалогенирование.

Пропен и остальные алкены реагируют с галогеноводородами по правилу Марковникова.

Атом водорода присоединяется к наиболее гидрированному, или правильнее сказать гидрогенизированному, атому углерода.

Вторым номером в нашем списке свойств будет гидратация, присоединение воды.

Реакция проходит при нагревании в присутствии кислоты — обычно серной или фосфорной. Присоединение воды происходит также по правилу Марковникова, то есть первичный спирт можно получить только гидратацией этилена, остальные неразветвленные алкены дают вторичные спирты.

И для гидрогалогениерования и для гидратации существуют исключения из правила Марковникова. Во-первых, против этого правила присоединение протекает в присутствии пероксидов.

Во-вторых, для производных алкенов, в которых присуствуют электронноакцепторне группы. Например, для 3,3,3-трифторпропена-1.

Атомы фтора за счет высокой электроотрицательности оттягивают на себя электронную плотность по цепи сигма-связей. Такое явление называется отрицательным индуктивным эффектом.

Из-за этого происходит смещение подвижных пи-электронов двойной связи и у крайнего атома углерода оказывается частичный положительный заряд, который обычно обозначается как дельта плюс. Именно к нему и пойдет отрицательно заряженный ион брома, а катион водорода присоединится к наименее гидрированному атому углерода.

Помимо трифторметильной группы отрицательным индуктивным эффектом обладает, например, трихлорметильная группа, нитрогруппа, карбоксильная группа и некоторые другие.

Этот второй случай нарушения правила Марковникова в ЕГЭ встречается очень редко, но все-таки желательно иметь его в виду, если вы планируете сдать экзамен на максимальный балл.

Третье химическое свойство — присоединение молекул галогенов.

В первую очередь это касается брома, поскольку данная реакция является качественной на кратную связь. При пропускании, например, этилена через бромную воду, то есть раствор брома в воде, имеющий коричневый цвет, происходит ее обесцвечивание. Если пропускать через бромную воду смесь газов, например, этан и этен, то можно получить чистый этан без примеси этена, поскольку тот останется в реакционной колбе в виде дибромэтана, представляющего собой жидкость.

Особым образом стоит отметить реакцию алкенов в газовой фазе при сильном нагревании, например, с хлором.

При таких условиях протекает не реакция присоединения, а реакция замещения. При чем исключительно по альфа-атому углерода, то есть атому, соседствующему с двойной связью. В данном случае получается 3-хлорпропен-1. Эти реакции на экзамене встречаются нечасто, поэтому большинство учеников их не помнит и, как правило, совершает ошибки.

Четвертым номером идет реакция гидрирования, а вместе с ней и реакция дегидрирования. То есть присоединение или отщепление водорода.

Гидрирование происходит при не очень высокой температуре на никелевом катализаторе. При более высокой температуре возможно дегидрирование с получением алкинов.

Пятым свойством алкенов является способность к полимеризации, когда сотни и тысячи молекул алкена за счет разрыва пи-связи и образования сигма-свзяей друг с другом образуют очень длинные и прочные цепочки.

В данном случае получился полиэтилен. Обратите внимание, что в получившейся молекуле кратные связи отсутствуют. Такие вещества называются полимерами, исходные молекулы называются мономерами, повторяющийся фрагмент — это элементарное звено полимера, а число n — степень полимеризации.

Также возможны реакции получения других важных полимерных материалов, например, полипропилена.

Еще один важный полимер — поливинилхлорид.

Исходным веществом для производства этого полимера является хлорэтен, тривиальное название которого винилхлорид. Поскольку этот непредельный заместитель называется винил. Часто встречающаяся аббревиатура на пластмассовых изделиях ПВХ как раз расшифровывается как поливинилхлорид.

Мы обсудили пять свойств, которые представляли собой реакции присоединения по двойной связи. Теперь обратимся к реакциям окисления .

Реакции окисления алкенов

Шестое химическое свойство в нашем общем списке — это мягкое окисление или реакция Вагнера. Оно протекает при воздействии на алкен водным раствором перманганата калия на холоду, поэтому часто в экзаменационных заданиях указывают температуру ноль градусов.

В результате получается двухатомный спирт. В данном случае этиленгликоль, а в целом такие спирты носят общее название гликоли. В процессе реакции фиолетово-розовый раствор перманганата обесцвечивается, поэтому эта реакция также является качественной на двойную связь. Марганец в нейтральной среде из степени окисления +7 восстанавливается до степени окисления +4. Рассмотрим еще несколько примеров. УРАВНЕНИЕ

Здесь получился пропандиол-1,2. Однако таким же образом будут реагировать и циклические алкены. УРАВНЕНИЕ

Еще один вариант, когда двойная связь находится, например, в боковой цепи ароматических углеводородов. Регулярно в заданиях егэ встречается реакция Вагнера с участием стирола, его второе название винилбензол.

Я надеюсь, что представил вашему вниманию достаточно примеров, чтобы вы поняли, что мягкое окисление двойной связи всегда подчиняется довольно простому правилу — пи-связь разрывается и к каждому атому углерода присоединяется гидроксигруппа.

Теперь, что касается жесткого окисления. Это будет наше седьмое свойство. Такое окисление происходит, когда алкен реагирует с кислотным раствором перманганата калия при нагревании.

Происходит деструкция молекулы, то есть ее разрушение по двойной связи. В случае бутена-2 получились две молекулы уксусной кислоты. В целом же, по продуктам окисления можно судить о положении кратной связи в углеродной цепи.

При окислении бутена-1 получается молекула пропионовой (пропановой) кислоты и углекислый газ.

В случае этилена получится две молекулы углекислого газа. Во всех случаях в кислой среде марганец из степени окисления +7 восстанавливается до +2.

И, наконец, восьмое свойство — полное окисление или горение.

Алкены сгорают, как и другие углеводороды, до углекислого газа и воды. Запишем уравнение сгорания алкенов в общем виде.

Молекул углекислого газа будет столько же, сколько и атомов углерода в молекуле алкена, поскольку в состав молекулы CO 2 входит один атом углерода. То есть n молекул CO 2 . Молекул воды будет в два раза меньше, чем атомов водорода, то есть 2n/2, а значит просто n.

Атомов кислорода слева и справа одинаковое количество. Справа их 2n из углекислого газа плюс n из воды, итого 3n. Слева атомов кислорода столько же, а значит молекул в два раза меньше, потому как в состав молекулы входят два атома. То есть 3n/2 молекул кислорода. Можно записать 1,5n.

Мы рассмотрели восемь химических свойств алкенов.

4. Химические свойства алкенов

Энергия двойной углерод-углеродной связи в этилене (146 ккал/моль) оказывается значительно более низкой, чем удвоенная энергия одинарной С-С-связи в этане (2 88=176 ккал/моль). -Связь С-С в этилене прочнее -связи, поэтому реакции алкенов, сопровождающиеся разрывом -связи с образованием двух новых простых -связей, представляют собой термодинамически благоприятный процесс. Так, например, в газовой фазе согласно расчетным данным все приведенные ниже реакции являются экзотермическими со значительной отрицательной энтальпией, независимо от их реального механизма.

С точки зрения теории молекулярных орбиталей также можно сделать вывод о большей реакционной способности -связи по сравнению с -связью. Рассмотрим молекулярные орбитали этилена (рис. 2).

Действительно, связывающая -орбиталь этилена имеет более высокую энергию, чем связывающая -орбиталь, и наоборот, разрыхляющая *-орбиталь этилена лежит ниже разрыхляющей *-орбитали связи С=С. В обычных условиях *- и *-орбитали этилена вакантны. Следовательно, граничными орбиталями этилена и других алкенов, определяющими их реакционную способность будут -орбитали.

4.1. Каталитическое гидрирование алкенов

Несмотря на то, что гидрирование этилена и других алкенов до алканов, сопровождается выделением тепла, эта реакция с заметной скоростью идет только в присутствии определенных катализаторов. Катализатор, по определению, не влияет на тепловой эффект реакции, и его роль сводится к понижению энергии активации. Следует различать гетерогенное и гомогенное каталитическое гидрирование алкенов. В гетерогенном гидрировании используются тонкоизмельченные металлические катализаторы - платина, палладий, рутений, родий, осмий и никель либо в чистом виде, либо нанесенные на инертные носители - BaSO 4 , CaCO 3 , активированный уголь, Al 2 O 3 и т. д. Все они нерастворимы в органических средах и действуют как гетерогенные катализаторы. Наибольшую активность среди них проявляют рутений и родий, но наибольшее распространение получил платина и никель. Платину обычно применяют в виде черного диоксида PtO 2 , широко известного под названием "катализатора Адамса". Диоксид платины получают при сплавлении платинохлористоводородной кислоты H 2 PtCl 6 . 6H 2 O или гексахлорплатината аммония (NH 4) 2 PtCl 6 с нитратом натрия. Гидрирование алкенов с катализатором Адамса проводят обычно при нормальном давлении и температуре 20-50 0 С в спирте, уксусной кислоте, этилацетате. При пропускании водорода двуокись платины восстанавливается непосредственно в реакционном сосуде до платиновой черни, которая и катализирует гидрирование. Другие более активные металлы платиновой группы используют на инертных носителях, например, Pd/C или Pd/BaSO 4 , Ru/Al 2 O 3 ; Rh/C и др. Палладий, нанесенный на уголь, катализирует гидрирование алкенов до алканов в спиртовом растворе при 0-20 0 С и нормальном давлении. Никель обычно используется в виде так называемого "никеля Ренея". Для получения этого катализатора сплав никеля с алюминием обрабатывают горячей водной щелочью для удаления почти всего алюминия и далее водой до нейтральной реакции. Катализатор имеет пористую структуру, и поэтому называется также скелетным никелевым катализатором. Типичные условия гидрирования алкенов над никелем Ренея требуют применения давления порядка 5-10 атм и температуры 50-100 0 С, т. е. этот катализатор значительно менее активен, чем металлы платиновой группы, но он белее дешев. Ниже приведены некоторые типичные примеры гетерогенного каталитического гидрирования ациклических и циклических алкенов:

Так как оба атома водорода присоединяются к атомам углерода двойной связи с поверхности металла-катализатора, обычно присоединение происходит с одной стороны двойной связи. Этот тип присоединения называется син -присоединением. В тех случаях когда два фрагмента реагента присоединяются с различных сторон кратной связи (двойной или тройной) имеет место анти -присоединение. Термины син - и анти - по смыслу эквивалентны терминам цис - и транс -. Для того, чтобы избежать путаницы и недоразумений термины син - и анти - относятся к типу присоединения, а термины цис - и транс - к строению субстрата.

Двойная связь в алкенах гидрируется с большей скоростью по сравнению со многими другими функциональными группами (С=О, COOR, CN и др.) и поэтому гидрирование двойной связи С=С часто представляет собой селективный процесс, если гидрирование ведется в мягких условиях (0-20 0 С и при атмосферном давлении). Ниже приведены некоторые типичные примеры:

Бензольное кольцо не восстанавливается в этих условиях.

Большим и принципиально важным достижением в каталитическом гидрировании является открытие растворимых комплексов металлов, которые катализируют гидрирование в гомогенном растворе. Гетерогенное гидрирование на поверхности металлических катализаторов имеет ряд существенных недостатков, таких, как изомеризация алкенов и расщепление одинарных углерод-углеродных связей (гидрогенолиз). Гомогенное гидрирование лишено этих недостатков. За последние годы получена большая группа катализаторов гомогенного гидрирования - комплексов переходных металлов, содержащих различные лиганды. Лучшими катализаторами гомогенного гидрирования являются комплексы хлоридов родия (I) и рутения (III) с трифенилфосфином - трис(трифенилфосфин)родийхлорид (Ph 3 P) 3 RhCl (катализатор Уилкинсона) и гидрохлорид трис(трифенилфосфин)рутения (Ph 3 P) 3 RuHCl. Наиболее доступен родиевый комплекс, который получается при взаимодействии хлорида родия (III) с трифенилфосфином. Родиевый комплекс Уилкинсона используется для гидрирования двойной связи в обычных условиях.

Важное преимущество гомогенных катализаторов заключается в возможности селективного восстановления моно- или дизамещенной двойной связи в присутствии три- и тетразамещенной двойной связи из-за больших различий в скорости их гидрирования.

В случае гомогенных катализаторов присоединение водорода также происходит как син -присоединение. Так восстановление цис -бутена-2 дейтерием в этих условиях приводит к мезо -2,3-дидейтеробутану.

4.2. Восстановление двойной связи с помощью диимида

Восстановление алкенов до соответствующих алканов может быть с успехом осуществлено с помощью диимида NH=NH.

Диимид получают двумя основными методами: окислением гидразина пероксидом водорода в присутствии ионов Cu 2+ или взаимодействием гидразина с Ni-Ренея (дегидрирование гидразина). Если в реакционной смеси присутствует алкен, его двойная связь под действием очень нестабильного диимида подвергается гидрированию. Отличительной особенностью этого метода является строгая син -стереоспецифичность процесса восстановления. Полагают, что эта реакция протекает через циклический активированный комплекс со строгой ориентацией обеих реагирующих молекул в пространстве.

4.3. Реакции электрофильного присоединения по двойной связи алкенов

Граничными орбиталями ВЗМО и НСМО алкенов являются занятая - и пустая *-орбитали. Следовательно, в реакциях с электрофилами (Е +) будет участвовать -орбиталь, а в реакциях с нуклеофилами (Nu -) - *-орбиталь связи С=С (см. рис. 3). В большинстве случаев простые алкены легко вступают в реакции с электрофилами, а с нуклеофилами реагируют с большим трудом. Это объясняется тем, что обычно НСМО большинства электрофилов по энергии близки к энергии -ВЗМО алкенов, тогда как ВЗМО большинства нуклеофилов лежат значительно ниже *-НСМО.

Простые алкены реагируют лишь с очень сильными нуклеофильными агентами (карбанионы) в жестких условиях, однако введение электроноакцепторных групп в алкены, например, NO 2 , COR и др., приводит к понижению *-уровня, благодаря чему алкен приобретает способность реагировать с нуклеофилами средней силы (аммиак, RO - , Nє C - , енолят-анион и т. д.).

В результате взаимодействия электрофильного агента Е + с алкеном образуется карбокатион, обладающий высокой реакционной способностью. Карбокатион далее стабилизируется за счет быстрого присоединения нуклеофильного агента Nu - :

Поскольку медленной стадией является присоединение электрофила, то процесс присоединения любого полярного агента Е + Nu - следует рассматривать именно как электрофильное присоединение к кратной связи алкена. Известно большое число реакций этого типа, где роль электрофильного агента выполняют галогены, галогеноводороды, вода, соли двухвалентной ртути и другие полярные реагенты. Электрофильное присоединение к двойной связи в классификации механизмов органических реакций имеет символ Аd E (Addition Electrophilic ) и в зависимости от числа реагирующих молекул обозначается как Аd E 2 (бимолекулярная реакция) или Аd E 3 (тримолекулярная реакция).

4.3.а. Присоединение галогенов

Алкены реагируют с бромом и хлором с образованием продуктов присоединения по двойной связи одной молекулы галогена с выходом близким к количественному. Фтор слишком активен и вызывает деструкцию алкенов. Присоединение йода к алкенам в большинстве случаев представляет собой обратимую реакцию, равновесие которой смещено в сторону исходных реагентов.

Быстрое обесцвечивание раствора брома в СCl 4 служит одним из простейших тестов на ненасыщенность, поскольку и алкены, и алкины, и диены быстро реагируют с бромом.

Присоединение брома и хлора к алкенам происходит по ионному, а не по радикальному механизму. Этот вывод следует из того, что скорость присоединения галогена не зависит от облучения, присутствия кислорода и других реагентов, инициирующих или ингибирующих радикальные процессы. На основании большого числа экспериментальных данных для этой реакции был предложен механизм, включающий несколько последовательных стадий. На первой стадии происходит поляризация молекулы галогена под действием электронов -связи. Атом галогена, приобретающий некоторый дробный положительный заряд, образует с электронами -связи нестабильный интермедиат, называемый -комплексом или комплексом с переносом заряда. Следует отметить, что в -комплексе галоген не образует направленной связи с каким-нибудь конкретным атомом углерода; в этом комплексе просто реализуется донорно-акцепторное взаимодействие электронной пары -связи как донора и галогена как акцептора.

Далее -комплекс превращается в циклический бромониевый ион. В процессе образования этого циклического катиона происходит гетеролитический разрыв связи Br-Br и пустая р -орбиталь sp 2 -гибридизованного атома углерода перекрывается с р -орбиталью "неподеленной пары" электронов атома галогена, образуя циклический ион бромония.

На последней, третьей стадии анион брома как нуклеофильный агент атакует один из атомов углерода бромониевого иона. Нуклеофильная атака бромид-иона приводит к раскрытию трехчленного цикла и образованию вицинального дибромида (vic -рядом). Эту стадию формально можно рассматривать как нуклеофильное замещение S N 2 у атома углерода, где уходящей группой является Br+ .

Присоединение галогенов к двойной связи алкенов представляет собой одну из формально простых модельных реакций, на примере которой можно рассмотреть влияние основных факторов, позволяющих сделать аргументированные выводы о детальном механизме процесса. Для обоснованных выводов о механизме любой реакции следует располагать данными по: 1) кинетике реакции; 2) стереохимии (стереохимический результат реакции); 3) наличию или отсутствию сопряженного, конкурирующего процесса; 4) влиянию заместителей в исходном субстрате на скорость реакции; 5) использованию меченых субстратов и (или) реагентов; 6) возможности перегруппировок в ходе реакции; 7) влиянию растворителя на скорость реакции.

Рассмотрим эти факторы на примере галогенирования алкенов. Кинетические данные дают возможность установить порядок реакции по каждому компоненту и на этом основании сделать вывод об общей молекулярности реакции, т. е. о числе реагирующих молекул.

Для бромирования алкенов скорость реакции как правило описывается следующим уравнением:

v = k`[алкен] + k``[алкен] 2 ,

которое в редких случаях упрощается до

v = k`[алкен].

На основании кинетических данных можно сделать вывод о том, что в определяющей скорость стадии принимает участие одна или две молекулы брома. Второй порядок по брому означает, что с бромониевым ионом реагирует не бромид-ион Br - , а трибромид-ион , образующийся при взаимодействии брома и бромид-иона:

Это равновесие сдвинуто вправо. Кинетические данные не позволяют сделать какие-либо другие выводы о структуре переходного состояния и природе электрофильной частицы в реакции присоединения галогена по двойной связи. Наиболее ценную информацию о механизме этой реакции представляют данные по стереохимии присоединения. Присоединение галогена к двойной связи представляет собой стереоспецифический процесс (процесс, в котором образуется только один из возможных стереоизомеров; в стереоселективном процессе наблюдается преимущественное образование одного стереомера) анти -присоединения для алкенов и циклоалкенов, у которых двойная связь не сопряжена с бензольным кольцом. Для цис - и транс -изомеров бутена-2, пентена-2, гексена-3, циклогексена, циклопентена и других алкенов присоединение брома происходит исключительно как анти -присоединение. При этом в случае циклогексена образуется исключительно транс -1,2-дибромциклогексан (смесь энантиомеров).

Транс-расположение атомов брома в 1,2-дибромциклогексане можно упрощенно изобразить относительно средней плоскости циклогексанового кольца (без учета конформаций ):

При присоединении брома к циклогексену первоначально образуется транс -1,2-дибромциклогексан в а,а -конформации, которая затем сразу же переходит в энергетически более выгодную е,е -конформацию. Анти -присоединение галогенов к двойной связи позволяет отвергнуть механизм одностадийного синхронного присоединения одной молекулы галогена к двойной связи, которое может осуществляться только как син -присоединение. Анти -присоединение галогена не согласуется также и с образованием открытого карбкатиона RCH + -CH 2 Hal в качестве интермедиата. В открытом карбокатионе возможно свободное вращение вокруг С-С-связи, что должно приводить после атаки аниона Br - к образованию смеси продуктов как анти -, так и син -присоединения. Стереоспецифическое анти -присоединение галогенов явилось главной причиной создания концепции бромониевого или хлорониевого ионов в качестве дискретных промежуточных частиц. Эта концепция идеально удовлетворяет правилу анти -присоединения, поскольку нуклеофильная атака галогенид-иона возможна с анти -стороны по любому из двух атомов углерода галогенониевого иона по S N 2 механизму.

В случае несимметрично замещенных алкенов это должно приводить к двум энантиомерам трео -формы при присоединении брома к цис -изомеру или к энантиомерам эритро -формы при галоидировании транс -изомера. Это действительно наблюдается при присоединении брома, например, к цис - и транс -изомерам пентена-2.

В случае бромирования симметричных алкенов, например, цис - или транс -гексенов-3 должны образоваться или рацемат (D,L -форма), или мезо -форма конечного дибромида, что и наблюдается в действительности.

Имеется независимое, прямое доказательство существования галогенониевых ионов в ненуклеофильной, индифферентной среде при низкой температуре. С помощью ЯМР-спектроскопии было зарегистрировано образование бромониевых ионов при ионизации 3-бром-2-метил-2-фторбутана при действии очень сильной кислоты Льюиса пятифтористой сурьмы в растворе жидкой двуокиси серы при -80 0 С.

Этот катион достаточно стабилен при -80 0 С в ненуклеофильной среде, но мгновенно разрушается при действии любых нуклеофильных агентов или при нагревании.

Циклические ионы бромония иногда могут быть выделены в чистом виде, если пространственные препятствия мешают их раскрытию при действии нуклеофилов:

Понятно, что возможность существования довольно стабильных в специальных условиях бромониевых ионов не может служить прямым доказательством их образования в реакции присоединения брома к двойной связи алкена в спирте, уксусной кислоте и других электронодонорных растворителях. Такие данные следует рассматривать лишь как независимое подтверждение принципиальной возможности образования галогенониевых ионов в процессе электрофильного присоединения по двойной связи.

Концепция галогенониевых иона позволяет дать рациональное объяснение обратимости присоединения йода к двойной связи. В катионе галогенония есть три электрофильных центра, доступных нуклеофильной атаке галогенид-аниона: два атома углерода и атом галогена. В случае хлорониевых ионов, анион Cl - , по-видимому, преимущественно или даже исключительно атакует углеродные центры катиона. Для бромониевого катиона равно вероятны оба направления раскрытия галогенониевого иона как за счет атаки бромид-иона по обоим атомам углерода, так и по атому брома. Нуклеофильная атака по атому брома бромониевого иона приводит к исходным реагентам брому и алкену:

Иодониевый ион раскрывается преимущественно в результате атаки иодид-иона по атому йода, и поэтому равновесие между исходными реагентами и иодониевым ионом смещено влево.

Кроме того, конечный продукт присоединения - вицинальный дииодид может подвергаться нуклеофильной атаке по атому йода присутствующим в растворе трииодид-анионом , что также приводит к образованию исходных реагентов алкена и иода. Другими словами, в условиях реакции присоединения происходит деиодирование образующегося вицинального дииодида под действием трииодид-аниона. Вицинальные дихлориды и дибромиды не дегалогенируются в условиях реакции присоединения соответственно хлора или брома к алкенам.

Анти-присоединение хлора или брома характерно для алкенов, у которых двойная связь не сопряжена с -электронами бензольного кольца. Для стирола, стильбена и их производных наряду с анти -присоединением имеет место и син -присоединение галогена, которое в полярной среде может стать даже доминирующим.

В тех случаях, когда присоединение галогена к двойной связи проводится в среде нуклеофильных растворителей, растворитель эффективно конкурирует с галогенид-ионом при раскрытии трехчленного цикла галогенониевого иона:

Образование продуктов присоединения с участием растворителя или какого-либо иного "внешнего" нуклеофильного агента носит название реакции сопряженного присоединения. При взаимодействии брома и стирола в метаноле образуется два продукта: вицинальный дибромид и бромэфир, соотношение которых зависит от концентрации брома в метаноле

В сильно разбавленном растворе доминирует продукт сопряженного присоединения, а в концентрированном растворе, напротив, преобладающий вицинальный дибромид. В водном растворе всегда преобладает галогенгидрин (спирт, содержащий галоген при -углеродном атоме) - продукт сопряженного присоединения.

ее-Конформер транс -2-хлорциклогексанола дополнительно стабилизирован водородной связью О-Н . . . Cl. В случае несимметричных алкенов в реакциях сопряженного присоединения галоген всегда присоединяется к атому углерода, содержащему наибольшее количество атомов водорода, а нуклеофильный агент к углероду с меньшим количеством атомов водорода. Изомерный продукт с иным расположением присоединяющихся групп не образуется. Это означает, что образующийся в качестве интермедиата циклический галогенониевый ион должен иметь несимметричную структуру с двумя различающимися по энергии и прочности связями С 1 -Hal и С 2 -Hal и большим положительным зарядом на внутреннем атоме углерода С 2 , что можно графически выразить двумя способами:

Поэтому нуклеофильной атаке растворителем подвергается атом углерода С 2 галогенониевого иона несмотря на то, что он более замещен и стерически менее доступен.

Один из лучших препаративных методов синтеза бромгидринов заключается в гидроксибромировании алкенов с помощью N-бромсукцинимида ( NBS ) в бинарной смеси диметилсульфоксида (ДМСО ) и воды.

Данную реакцию можно проводить в воде и без ДМСО , однако выходы бромгидринов в этом случае несколько ниже.

Образование продуктов сопряженного присоединения в реакции галогенирования алкенов также позволяет отвергнуть синхронный механизм присоединения одной молекулы галогена. Сопряженное присоединение к двойной связи находится в хорошем соответствии с двухстадийным механизмом с участием катиона галогенония в качестве интермедиата.

Для реакции электрофильного присоединения к двойной связи следует ожидать увеличения скорости реакции при наличии электронодонорных алкильных заместителей и ее уменьшения при наличии электроноакцепторных заместителей при двойной связи. Действительно, скорость присоединения хлора и брома к двойной связи резко возрастает при переходе от этилена к его метилзамещенным производным. Например, скорость присоединения брома к тетраметилэтилену в 10 5 раз выше, чем скорость его присоединения к бутену-1. Такое громадное ускорение определенно указывает на высокую полярность переходного состояния и высокую степень разделения зарядов в переходном состоянии и согласуется с элетрофильным механизмом присоединения.

В некоторых случаях присоединение хлора к алкенам, содержащим электронодонорные заместители, сопровождается отщеплением протона из промежуточного соединения вместо присоединения хлорид-иона. Отщепление протона приводит к образованию хлорзамещенного алкена, которое формально можно рассматривать как прямое замещение с миграцией двойной связи. Однако опыты с изотопной меткой указывают на более сложный характер происходящих здесь превращений. При хлорировании изобутилена при 0 0 С образуется 2-метил-3-хлорпропен (металлилхлорид) вместо ожидаемого дихлорида - продукта присоединения по двойной связи.

Формально как будто идет замещение, а не присоединение. Изучение этой реакции с использованием изобутилена меченного в положение 1 изотопом 14 С, показало, что прямое замещение водорода хлором не происходит, так как в образующемся металлилхлориде метка находится в группе 14 СН 2 Cl. Этот результат можно объяснить следующей последовательностью превращений:

В отдельных случаях может происходить также 1,2-миграция алкильной группы

В ССl 4 (неполярный растворитель) эта реакция дает практически 100% дихлорида Б - продукта обычного присоединения по двойной связи (без перегруппировки).

Скелетные перегруппировки подобного типа наиболее характерны для процессов с участием открытых карбокатионов в качестве промежуточных частиц. Не исключено, что присоединение хлора в этих случаях идет не через хлорониевый ион, а через катионную частицу, близкую к открытому карбокатиону. Вместе с тем следует отметить, что скелетные перегруппировки явление достаточно редкое в процессах присоединения галогенов и смешанных галогенов по двойной связи: они чаще наблюдаются при присоединении хлора и гораздо реже при присоединении брома. Вероятность таких перегруппировок увеличивается при переходе от неполярных растворителей (ССl 4) к полярным (нитрометан, ацетонитрил).

Суммируя приведенные данные по стереохимии, сопряженному присоединению, влияние заместителей в алкене, а также перегруппировкам в реакциях присоединения галогенов по двойной связи, следует отметить, что они находятся в хорошем соответствии с механизмом электрофильного присоединения с участием циклического галогенониевого иона. Таким же образом могут быть интерпретированы данные по присоединению к алкенам смешанных галогенов, для которых стадийность присоединения определяется полярностью связи двух атомов галогена.

4.3.б. Присоединение галогеноводородов (гидрогалогенирование)

Другой важной реакций электрофильного присоединения к алкенам является давно известное гадрогалогенирование алкенов.

Ниже приведены типичные примеры присоединения HCl, HBr и HI к различным алкенам.

Влияние алкильных заместителей у двойной связи на скорость присоединения описывается следующей последовательностью:

R 2 C=CHR > RCH=CHR > RCH=CH 2

Это согласуется с таким механизмом, в котором в определяющей скорость стадии реакции происходит образование карбокатиона, поскольку стабильность алкильных катионов убывает в ряду третичный > вторичный > первичный. Таким образом, механизм присоединения должен включать промежуточное образование или свободного карбокатиона, что наблюдается редко, или интермедиата с карбокатионным характером. Последний случай наиболее типичен.

Если бы присоединение происходило через "свободный карбокатион", то реакция была бы совершенно нестереоселективной, так, как алкильные катионы имеют плоское строение. Однако, гидрогалогенирование, как правило, протекает стереоселективно, причем в зависимости от типа алкена может наблюдаться селективное анти -присоединение, селективное син - или смешанное син -анти -присоединение.

Для алкенов, у которых двойная связь не сопряжена с ароматическим кольцом, характерно анти -присоединение галогеноводорода. Анти -присоединение хлористого и бромистого водорода, хлористого и бромистого дейтерия наблюдается для циклогексена, циклопентена, 1,2-диметилгексена, 1,2-диметилпентена, цис - и транс -бутена-2, гексена-3 и многих других простых алкенов и циклоалкенов.

В продукте присоединения одинаковые заместители (метильные группы) расположены по разные стороны средней плоскости циклогексанового кольца, следовательно он относится к транс -ряду. Анти -присоединение трудно совместимо с механизмом, в котором предполагается образование дискретного карбокатиона. Для плоского карбокатиона нуклеофильная атака галогенид-иона равновероятна с обеих сторон плоскости, что должно привести к образованию смеси продуктов син - и анти -присоединения. Кинетика гидрогалогенирования алкенов также указывает на более сложный механизм присоединения. Для несопряженных алкенов скорость реакции описывается уравнением третьего порядка со вторым порядком по галогеноводороду, т. е. соответствует Ad E 3-механизму.

v = k [алкен] 2

Анти-присоединение и второй порядок реакции по галогеноводороду хорошо согласуется с Ad E 3-механизмом, в котором алкен взаимодействует с двумя молекулами галогеноводорода, одна из которых выполняет функцию электрофильного, а другая - нуклеофильного агента.

Такой тримолекулярный механизм предполагает, что первоначально образуется комплекс алкена и одной молекулой галогеноводорода с последующей атакой второй молекулы НХ на этот комплекс с анти -стороны без образования дискретного карбокатиона. Следует особо отметить, что любой тримолекулярный механизм должен состоять из двух последовательных стадий, поскольку одновременно столкновение трех молекул крайне маловероятно.

Анти-присоединение свидетельствует о предпочтительной нуклеофильной атаке галогеноводорода со стороны противоположной той, откуда происходит протонирование алкена. Вместо галогеноводорода функцию нуклеофильного агента в конечной стадии может выполнить и галогенид-ион. Действительно, скорость реакции обычно возрастает прямо пропорционально концентрации галогенид-иона, введенного в реакционную смесь в виде галогенидов тетраалкиламмония NR 4+ X - или лития LiX. В этом случае наблюдается стереоспецифическое анти -присоединение.

Для алканов, у которых двойная связь сопряжена с ароматическим кольцом, характерно син -присоединение или смешанное син -анти -присоединение галогеноводорода, например:

Син-присоединение является доминирующим процессом для цис - и транс -изомеров 1-фенилпропена, 1-фенил-4-алкилциклогексенов, аценафтилена, индена. При протонировании таких алкенов образуются карбокатионы бензильного типа, которые стабильнее чисто алкильных катионов, возникающих при протонировании обычных алкенов и циклоалкенов. Кинетика реакции в этом случае обычно описывается более простым уравнением второго порядка v = k[алкен], т. е. соответствует бимолекулярному Ad E 2-механизму. Ad E 2-Механизм предполагает образование ионной пары, включающей карбокатион и галогенид-ион.

Нельзя ожидать, что механизм присоединения с участием ионных пар будет отличаться высокой стереоселективностью. Если ионная пара превращается в конечный продукт быстрее, чем происходит вращение вокруг простой углерод-углеродной связи, конечным результатом будет син -присоединение, где протон и галогенид-ион присоединяется с одной и той же стороны двойной связи. В противном случае наблюдается образование продуктов как син - так и анти -присоединения НХ. Такой случай реализуется при гидрогалогенировании пара -замещенных стиролов Z-C 6 H 4 -CH=CH 2 . Наблюдаемая здесь закономерность заключается в том, что син -присоединение характерно лишь для тех олефинов, которые при протонировании дают относительно стабильный карбокатион, т. е. в случае донорных заместителей Z.

Для реакций гидрогалогенирования, протекающих по Ad E 2-механизму характерна конкуренция процессов сопряженного присоединения и перегруппировок, поскольку в качестве интермедиата образуется карбокатион или ионная пара.

В качестве примера перегруппировок с 1,2-миграцией алкильной группы и гидрид-иона приведем реакции гидрогалогенирования соответственно трет-бутилэтилена и изопропилэтилена.

При проведении этой же реакции без растворителя на холоду (-78 0 С) образуется смесь 33% нормального и 67% аномального (перегруппированного) продуктов присоединения.

4.3.в. Ориентация. Правило Марковникова

В отличие от симметричных электрофилов (Hal 2), галогеноводороды представляют собой несимметричные электрофильные реагенты. Присоединение любого несимметричного электрофила (HBr, ICl, H 2 O, Hg(OAc) 2 и т. д.) к несимметричному алкену в принципе могло бы дать смесь двух альтернативных продуктов, однако на практике обычно образуется только один из них. В качестве примера рассмотрим присоединение бромистого водорода к пропилену.

Еще в 1870 г. В.В. Марковников сформулировал эмпирическое правило, согласно которому несимметричные алкены присоединяют НХ таким путем, что преимущественно образуется продукт, в котором водород присоединяется к наименее замещенному, а Х - к наиболее замещенному концу двойной связи.

Обычно правило Марковникова объясняют различием в стабильности двух альтернативных карбокатионов. Например, в приведенном выше примере нормальный н -пропильный катион значительно менее стабилен, чем изопропильный катион, и поэтому реакция идет по второму пути.

Правило Марковникова первоначально использовалось только для случаев присоединения НХ к углеводородным субстратам, но в принципе его можно распространить и на реакции других замещенных алкенов. Так, присоединение НCl к CF 3 CH=CH 2 дает "анти -марковниковский" продукт CF 3 CH 2 CH 2 Cl. Этого и следовало ожидать, поскольку катион CF 3 CH+ CH 3 менее стабилен, чем катион CF 3 CH 2 CH 2+ из-за сильного (-I)-эффекта CF 3 -группы. Преимущественно образуется катион CF 3 CH 2 CH 2+ , но он тоже, хотя и в меньшей степени дестабилизирован индуктивным эффектом CF 3 -группы, вследствие чего присоединение HCl к трифторметилэтилену идет значительно медленнее, чем присоединение к незамещенному этилену.

По аналогичной причине катионы винилтриалкиламмония присоединяют HBr также против правила Марковникова:

Присоединение НХ к алкенам, имеющим сильные (-I) и (-M)-заместители, например, к акрилонитрилу или нитроэтилену также должно идти против правила Марковникова. Однако в этом случае двойная связь настолько сильно дезактивирована по отношению к электрофильным реагентам, что эти реакции идут лишь в очень жестких условиях. Хлористый винил СН 2 =СНСl всегда дает исключительно "марковниковские аддукты". Например, при его реакции с HCl образуется только 1,1-дихлорэтан (геминальный дихлорид) CH 3 CHCl 2 . Хлор, аналогично CF 3 -группе имеет сильный (-I)-эффект, и на первый взгляд, кажется, что по этой причине присоединение должно иметь антимарковниковскую ориентацию, т. к. катион + CH 2 CH 2 Cl должен быть более стабильным, чем катион СН 3 СН + Cl. Однако, в отличие от CF 3 -группы, хлор кроме (-I)-эффекта обладает также противодействующим ему (+М)-эффектом (т. к. имеет неподеленные пары). Опыт показывает, что величина мезомерного эффекта вполне достаточна, чтобы понизить энергию 1-хлорэтильного катиона ниже уровня энергии 2-хлорэтильного катиона, в котором +М-эффект не проявляется.

II. С позиций теории резонанса строение 1-хлорэтильного катиона может быть представлено следующим образом:

Тем не менее, присоединение к хлористому винилу происходит медленнее, чем к этилену в тех же условиях, т. е. по суммарному эффекту (-I > +M) хлор остается электроноакцепторным заместителем по сравнению с водородом, а 1-хлорэтильный катион менее стабилен, чем С 2 Н 5 + . Аналогичным образом реагируют с НХ и другие винилгалогениды.

Виниловые эфиры CH 2 =CHOR присоединяют НХ (X=Hal) по правилу Марковникова с гораздо большей скоростью, чем все перечисленные выше замещенные алкены. Это связано со значительным +М-эффектом RО-группы. В отличие от атома хлора, RО-группа по суммарному электронному эффекту (+М > -I) является сильным электронодонорным заместителем, эффективно стабилизирующим соседний карбокатионный центр. Строение карбокатиона в этом случае также может быть представлено в виде набора двух резонансных структур

Атака оксониевого катиона галогенид-анионом приводит к образованию -галогенэфиров типа СН 3 СН(Hal)OR.

4.3.г. Гидратация алкенов

Кислотно-катализируемая гидратация алкенов приводит к образованию спиртов. Направление гидратации алкенов определяется правилом Марковникова, поэтому предполагается, что в качестве промежуточной частицы в этой реакции образуется карбокатион.

Склонность вторичных алкильных карбокатионов к перегруппировкам мешает использованию гидратации алкенов для получения вторичных спиртов.

Этот метод в лаборатории нашел ограниченную область применения только для получения третичных спиртов. Реакция гидратации в этом случае в значительной степени обратима и третичные спирты образуются с низкими выходами (40-45%).

Гидратация простейших алкенов - этилена и пропилена - представляет собой важный промышленный метод получения этилового и изопропилового спиртов.

В лабораторной практике прямая гидратация алкенов не нашла широкого применения как вследствие жестких условий, так и благодаря образованию значительного количества изомерных спиртов. В настоящее время для региоселективного получения спиртов из алкенов обычно используется родственная реакция гидроксимеркурирования - демеркурирования.

4.3.д. Гидроксимеркурирование-демеркурирование

Электрофильная атака на двойную связь алкена может осуществляться ионами металлов, среди которых особое положение занимает катион ртути (II). Ацетат ртути в очень мягких условиях при 20 0 С присоединяется к алкенам в водном тетрагидрофуране (ТГФ) или в водной уксусной кислоте с образованием ртутьорганических соединений. Присоединение ацетата ртути по двойной связи протекает региоспецифично в строгом соответствии с правилом Марковникова, т. е. катион ртути присоединяется к наименее замещенному атому углерода.

Связь С-Hg в ртутьорганических соединениях может быть легко расщеплена под действием боргидрида натрия NaBH 4 , с образованием ртути и новой связи С-Н. Предполагается, что в качестве нестабильного интермедиата при этом получается алкилмеркургидрид, который далее разлагается с выделением металлической ртути по радикальному механизму.

Суммарно этот двухстадийный процесс гидроксимеркурирования-демеркурирования в конечном итоге представляет собой региоспецифичную гидратацию алкена по правилу Марковникова в исключительно мягких условиях, когда образование побочных продуктов сведено к предельно возможному минимуму. Это можно наглядно проиллюстрировать с помощью следующих примеров, в которых суммарный выход продуктов реакции составляет 90-98%. Приведенные цифровые данные в этом случае обозначают не выходы образующихся соединений, а их соотношение в смеси.

Как видно из приведенных выше примеров гидроксимеркурирование-демеркурирование алкенов в большинстве случаев обеспечивает региоспецифическую гидратацию алкенов с образованием практически только одного из двух изомерных спиртов. Следует отметить, что нет никакой необходимости в выделении ртутьорганического соединения, и оба процесса могут быть проведены непосредственно один за другим.

Гидроксимеркурирование несимметричных алкенов, по-видимому, начинается с атаки катиона AcOHg + и образования в качестве интермедиата несимметричного циклического меркуриниевого катиона (аналога несимметричного галогенониевого иона), который затем раскрывается в результате нуклеофильной атаки водой по наиболее замещенному атому углерода, несущему больший положительный заряд.

Мостиковый меркуриниевый ион можно зафиксировать в ненуклеофильной сильнокислой среде даже при 20 0 С при присоединении более сильного электрофильного агента - трифторацетата ртути в смеси фторсульфоновой кислоты и пятифтористой сурьмы.

Меркуриниевый катион может расщепляться не только при действии воды, но и других электронодонорных растворителей: спиртов, уксусной кислоты, ацетонитрила и др. Конечным продуктом реакции в этом случае будут соответственно простые эфиры, ацетаты или N-замещенные амиды уксусной кислоты, например:

При использовании в реакции алкоксимеркурирования-демеркурирования разветвленных вторичных или третичных спиртов более эффективными, чем ацетат ртути, являются трифторацетат Hg(OCOCF 3) 2 или трифлат ртути Hg(OSO 2 CF 3) 2 .

Таким образом, гидрокси- и алкоксимеркурирование-демеркурирование - это один из лучших препаративных методов синтеза спиртов и простых эфиров с разветвленными алкильными радикалами.

Присоединение солей ртути к алкенам представляет собой наиболее яркий пример реакции сопряженного присоединения к двойной связи, где роль внешнего нуклеофильного агента выполняет растворитель. Стереохимия двойного процесса гидроксимеркурирования-демеркурирования зависит от стереохимического результата каждой отдельной стадии. Для гидроксимеркурирования характерно анти -присоединение, как и для других реакций с участием циклического катиона. Однако радикальное демеркурирование не отличается высокой стереоселективностью. Поэтому весь процесс в целом также нестереоспецифичен.

4.3.е. Присоединение алкенов (катионная димеризация и полимеризация алкенов)

Наиболее интересным примером такого типа реакций является димеризация и полимеризация изобутилена в присутствии серной кислоты.

Техническое название этой смеси алкенов - "диизобутилен". Данная реакция протекает по катионному механизму, сходному с механизмом присоединения минеральных кислот к двойной связи алкенов. На первой стадии протон присоединяется к молекуле изобутилена с образованием относительно стабильного трет -бутилкатиона. Далее образовавшийся трет -бутилкатион (кислота Льюиса) реагирует с молекулой изобутилена (основание Льюиса) с образованием нового стабильного третичного октильного катиона.

В данных условиях под действием оснований (H 2 O, HSO 4 - -ионы) октильный карбокатион быстро теряет протон и превращается в смесь изомерных пентенов, т. к. отрыв протона происходит из двух различных положений:

Преимущественное образование термодинамически менее стабильного алкена - 2,4,4-триметилпентена-1 (80% в реакционной смеси) связано с большей пространственной доступностью для атаки основанием атомов водорода метильных групп, по сравнению с атомами водорода метиленовой группы. В промышленности "диизобутилен" гидрируют на Ni-Ренея и получают "изооктан" (техническое название углеводорода 2,2,4-триметилпентана), используемый в качестве высокооктанового топлива для двигателей внутреннего сгорания.

При высоких концентрациях серной кислоты (более 80%) происходит катионная полимеризация изобутилена с образованием полимера, называемого полиизобутиленом (-CH 2 C(CH 3) 2 -) n . Этот каучукоподобный полимер используют для получения антикоррозионных и гидроизоляционных покрытий, герметиков и др.

Кроме изобутилена, по катионному механизму полимеризуются 3-метилбутен-1, виниловые эфиры и некоторые производные стирола, способные образовывать сравнительно устойчивые карбокатионы. В качестве катализаторов катионной полимеризации также используют фтористый водород и кислоты Льюиса: BF 3 , AlCl 3 , AlBr 3 и др. в присутствии очень малых количеств воды.

4.3.ж. Присоединение алканов (алкилирование алкенов)

Другой промышленный метод синтеза "изооктана" основан на взаимодействии изобутилена с избытком изобутана в присутствии концентрированной серной кислоты или в безводном фтористом водороде при 0 10 0 С.

Эта реакция также протекает по катионному механизму и, что особенно интересно, является примером цепного катионного процесса. Сначала изобутилен в условиях реакции димеризуется с образованием третичного октильного катиона (CH 3) 3 CCH 2 C + (CH 3) 2 . Подробно механизм его образования изложен в предыдущем разделе. Далее происходит быстрый перенос водорода (в виде гидрид-иона) от изобутана к октильному катиону с образованием молекулы "изооктана" и нового трет-бутилкатиона, который в свою очередь быстро реагирует с изобутиленом с образованием нового октильного катиона и т. д.

Кроме синтеза "изооктана", такой метод алкилирования используется в нефтехимической промышленности для синтеза высококипящих разветвленных углеводородов из разветвленных алкенов и алканов низкокипящих фракцией термического крекинга.

Содержащие пи-связь - это непредельные углеводороды. Они являются производными алканов, в молекулах которых произошло отщепление двух атомов водорода. Образовавшиеся свободные валентности формируют новый тип связи, которая располагается перпендикулярно плоскости молекулы. Так возникает новая группа соединений - алкены. Физические свойства, получение и применение веществ этого класса в быту и промышленности мы рассмотрим в этой статье.

Гомологический ряд этилена

Общая формула всех соединений, называемых алкенами, отражающая их качественный и количественный состав, - это C n H 2 n . Названия углеводородов по систематической номенклатуре имеют следующий вид: в термине соответствующего алкана изменяется суффикс с -ан на -ен, например: этан - этен, пропан - пропен и т. д. В некоторых источниках можно встретить еще одно название соединений этого класса - олефины. Далее мы изучим процесс образования двойной связи и физические свойства алкенов, а также определим их зависимость от строения молекулы.

Как образуется двойная связь

Электронную природу пи-связи на примере этилена можно представить следующим образом: атомы карбона в его молекуле находятся в форме sp 2 -гибридизации. В этом случае формируется сигма-связь. Еще две гибридные орбитали - по одной от атомов углерода, формируют простые сигма-связи с водородными атомами. Два оставшихся свободных гибридных облака атомов карбона перекрываются над и под плоскостью молекулы - образуется пи-связь. Именно она определяет физические и химические свойства алкенов, речь о которых пойдет далее.

Пространственная изомерия

Соединения, имеющие один и тот же количественный и качественный состав молекул, но различное пространственное строение, называются изомерами. Изомерия встречается в группе веществ, называемых органическими. На характеристику олефинов большое влияние оказывает явление оптической изомерии. Она выражается в том, что гомологи этилена, содержащие у каждого из двух углеродных атомов при двойной связи различные радикалы или заместители, могут встречаться в форме двух оптических изомеров. Они отличаются друг от друга положением заместителей в пространстве относительно плоскости двойной связи. Физические свойства алкенов в этом случае также будут разными. Например, это касается температур кипения и плавления веществ. Так, олефины неразветвленного строения углеродного скелета имеют более высокие температуры кипения, чем соединения-изомеры. Также температуры кипения цис-изомеров алкенов выше, чем транс-изомеров. В отношении температур плавления картина противоположная.

Сравнительная характеристика физических свойств этилена и его гомологов

Первые три представителя олефинов являются газообразными соединениями, затем, начиная с пентена C 5 H 10 и до алкена с формулой C 17 H 34 , - жидкости, а далее идут твердые вещества. У гомологов этена прослеживается следующая тенденция: температуры кипения соединений снижаются. Например, у этилена этот показатель равен -169,1°C, а у пропилена -187,6°C. Зато температуры кипения с увеличением молекулярной массы повышаются. Так, у этилена она равна -103,7°C, а у пропена -47,7°C. Подводя итог сказанному, можно сделать вывод, звучащий кратко: физические свойства алкенов зависят от их молекулярной массы. С ее увеличением изменяется агрегатное состояние соединений в направлении: газ - жидкость - твердое вещество, а также снижается температура плавления, а температуры кипения возрастают.

Характеристика этена

Первый представитель гомологического ряда алкенов - это этилен. Он является газом, малорастворимым в воде, но хорошо растворяющимся в органических растворителях, не имеющим цвета. Молекулярная масса - 28, этен немного легче воздуха, имеет едва уловимый сладковатый запах. Он легко вступает в реакции с галогенами, водородом и галогеноводородами. Физические свойства алкенов и парафинов тем не менее достаточно близки. Например, агрегатное состояние, способность метана и этилена к жесткому окислению и т. д. Как же можно различить алкены? Как выявить непредельный характер олефина? Для этого существуют качественные реакции, на которых мы и остановимся подробнее. Напомним, какую особенность в строении молекулы имеют алкены. Физические и химические свойства этих веществ определяются наличием в их составе двойной связи. Чтобы доказать ее присутствие, пропускают газообразный углеводород через фиолетовый раствор перманганата калия или бромную воду. Если они обесцветились, значит, соединение содержит в составе молекул пи-связи. Этилен вступает в реакцию окисления и обесцвечивает растворы KMnO 4 и Br 2 .

Механизм реакций присоединения

Разрыв двойной связи заканчивается присоединением к свободным валентностям карбона атомов других химических элементов. Например, при взаимодействии этилена с водородом, называемом гидрогенизацией, получается этан. Необходим катализатор, например порошковидный никель, палладий или платина. Реакция с HCl заканчивается образованием хлорэтана. Алкены, содержащие более двух атомов углерода в составе своих молекул, проходят реакцию присоединения галогеноводородов с учетом правила В. Марковникова.

Как гомологи этена взаимодействуют с галогеноводородами

Если перед нами стоит задание "Охарактеризуйте физические свойства алкенов и их получение", нам нужно рассмотреть правило В. Марковникова более подробно. Практическим путем установлено, что гомологи этилена реагируют с хлороводородом и другими соединениями по месту разрыва двойной связи, подчиняясь некоторой закономерности. Она заключается в том, что атом водорода присоединяется к наиболее гидрогенизированному углеродному атому, а ион хлора, брома или йода - к карбоновому атому, содержащему наименьшее количество атомов водорода. Эта особенность протекания реакций присоединения получила название правила В. Марковникова.

Гидратация и полимеризация

Продолжим далее рассматривать физические свойства и применение алкенов на примере первого представителя гомологического ряда - этена. Его реакция взаимодействия с водой используется в промышленности органического синтеза и имеет важное практическое значение. Впервые процесс был проведен еще в XIX веке А.М. Бутлеровым. Реакция требует выполнения ряда условий. Это, прежде всего, использование концентрированной серной кислоты или олеума в качестве катализатора и растворителя этена, давление порядка 10 атм и температура в пределах 70°. Процесс гидратации происходит в две фазы. Вначале по месту разрыва пи-связи к этену присоединяются молекулы сульфатной кислоты, при этом образуется этилсерная кислота. Затем полученное вещество реагирует с водой, получается этиловый спирт. Этанол - важный продукт, применяемый в пищевой промышленности для получения пластмасс, синтетических каучуков, лаков и других продуктов органической химии.

Полимеры на основе олефинов

Продолжая изучать вопрос применения веществ, относящихся к классу алкенов, изучим процесс их полимеризации, в котором могут участвовать соединения, содержащие непредельные химические связи в составе своих молекул. Известно несколько типов реакции полимеризации, по которым происходит образование высокомолекулярных продуктов - полимеров, например таких как полиэтилен, полипропилен, полистирол и т. д. Свободнорадикальный механизм приводит к получению полиэтилена высокого давления. Это одно из наиболее широко применяемых соединений в промышленности. Катионно-ионный тип обеспечивает получение полимера стереорегулярного строения, например полистирола. Он считается одним из наиболее безопасных и удобных в использовании полимеров. Изделия из полистирола устойчивы к агрессивным веществам: кислотам и щелочам, негорючие, легко окрашиваются. Еще один вид механизма полимеризации - димеризация, он приводит к получению изобутена, применяемого в качестве антидетонационной добавки к бензину.

Способы получения

Алкены, физические свойства которых мы изучаем, получают в лабораторных условиях и промышленности различными методами. В опытах в школьном курсе органической химии используют процесс дегидратации этилового спирта с помощью водоотнимающих средств, например таких, как пятиокись фосфора или сульфатная кислота. Реакция проводится при нагревании и является обратной процессу получения этанола. Еще один распространенный способ получения алкенов нашел свое применение в промышленности, а именно: нагревание галогенопроизводных предельных углеводородов, например хлорпропана с концентрированными спиртовыми растворами щелочей - гидроксида натрия или калия. В реакции происходит отщепление молекулы хлороводорода, по месту появления свободных валентностей атомов карбона образуется двойная связь. Конечным продуктом химического процесса будет олефин - пропен. Продолжая рассматривать физические свойства алкенов, остановимся на главном процессе получения олефинов - пиролизе.

Промышленное производство непредельных углеводородов ряда этилена

Дешевое сырье - газы, образующиеся в процессе крекинга нефти, служат источником получения олефинов в химической промышленности. Для этого применяют технологическую схему пиролиза - расщепление газовой смеси, идущее с разрывом углеродных связей и образованием этилена, пропена и других алкенов. Пиролиз проводят в специальных печах, состоящих из отдельных пирозмеевиков. В них создается температура порядка 750-1150°C и присутствует водяной пар в качестве разбавителя. Реакции происходят по цепному механизму, идущему с образованием промежуточных радикалов. Конечный продукт - это этилен или пропен, их получают в больших объемах.

Мы подробно изучили физические свойства, а также применение и способы получения алкенов.