Основные структурные элементы земной коры. Строение Земной коры континентов и океанов

Платформа (от франц.plat - плоский иforme - форма) - крупная (несколько тыс. км в поперечнике), относительно устойчивая часть земной коры, характеризующаяся очень низкой степенью сейсмичности.

Платформа имеет двухэтажное строение (рис. 2). Нижний этаж -фундамент - это древняя геосинклинальная область - образован метаморфизованными породами, верхний -чехол - морскими осадочными отложениями небольшой мощности, что свидетельствует о небольшой амплитуде колебательных движений.

Рис. 2. Строение платформы

Возраст платформ различен и определяется по времени становления фундамента. Наиболее древними являются платформы, фундамент которых образован смятыми в складки кристаллическими породами докембрия. Таких платформ на Земле десять (рис. 3).

Поверхность докембрийского кристаллического фундамента очень неровная. В одних местах он выходит на поверхность илизалегает вблизи нее, образуящиты, в других -антеклизы (от греч.anti - против иklisis - наклонение) исинеклизы (от греч. syn - вместе,klisis - наклонение). Однако эти неровности перекрыты осадочными отложениями со спокойным, близким к горизонтальному залеганием. Осадочные породы могут быть собраны в пологие валы, куполовидные поднятия, ступенеобразные изгибы, а иногда наблюдаются и разрывные нарушения с вертикальным смешением пластов. Нарушения в залегании осадочных пород обусловлены неодинаковой скоростью и разными знаками колебательных движений блоков кристаллического фундамента.

Рис. 3. До кембрийские платформы: I - Северо-Американская; II - Восточно-Европейская; III - Сибирская; IV - Южно-Американская; V - Африкано-Аравийская; VI - Индийская; VII - Восточно-Китайская; VIII - Южно-Китайская; IX - Австралийская; X - Антарктическая

Фундамент более молодых платформ образован в периодыбайкальской ,каледонской или герцинской складчатости. Области мезозойской складчатости не принято называть платформами, хотя они и являются таковыми на сравнительно раннем этапе развития.

В рельефе платформам соответствуют равнины. Однако некоторые платформы испытали серьезную перестройку, выразившуюся в общем поднятии, глубоких разломах и крупных вертикальных перемещениях глыб относительно друг друга. Так возникли складчато-глыбовые горы, примером которых могут служить горы Тянь-Шань, где возрождение горного рельефа произошло во время альпийского орогенеза.

На протяжении всей геологической истории в континентальной земной коре происходило наращивание площади платформ и сокращение геосинклинальных зон.

Внешние (экзогенные) процессы обусловлены поступающей на Землю энергией солнечного излучения. Экзогенные процессы сглаживают неровности, выравнивают поверхности, заполняют понижения. Они проявляются на земной поверхности и как разрушительные, и как созидательные.


Разрушительные процессы - это разрушение горных пород, происходящее из-за перепада температур, действия ветра, размывания потоками воды, движущимися ледниками.Созидательные процессы проявляются в накоплении переносимых водой и ветром частиц в понижениях суши, на дне водоемов.

Самым сложным внешним фактором является выветривание.

Выветривание - совокупность естественных процессов, приводящих к разрушению горных пород.

Выветривание условно подразделяется на физическое и химическое.

Основными причинамифизического выветривания являются колебания температуры, связанные с суточными и сезонными изменениями. В результате перепалов температур образуются трещины. Вода, попадающая в них, замерзая и оттаивая, расширяет трещины. Так происходит выравнивание выступов горных пород, появляются осыпи.

Важнейшим факторомхимического выветривания также является вода и растворенные в ней химические соединения. При этом значительную роль играют климатические условия и живые организмы, продукты жизнедеятельности которых влияют на состав и растворяющие свойства воды. Большой разрушительной силой обладает и корневая система растений.

Процесс выветривания приводит к образованию рыхлых продуктов разрушения горных пород, которые называютсякорой выветривания. Именно на ней постепенно образуется почва.

Из-за выветривания поверхность Земли все время обновляется, стираются следы прошлого. В то же время внешние процессы создают формы рельефа, обусловленные деятельностью рек, ледников, ветра. Все они образуют специфические формы рельефа - речные долины, овраги, ледниковые формы и т. д.

Земная кора составляет самую верхнюю оболочку твердой Земли и одевает планету почти сплошным слоем, изменяя свою мощность от 0 на некоторых участках средин-но-океанических хребтов и океанских разломов до 70-75 км под высокими горными сооружениями (Хаин, Ломизе, 1995). Мощность коры на континентах, определяемая по возраста­нию скорости прохождения продольных сейсмических волн до 8-8,2 км/с (граница Мохоровичича , или граница Мохо ), достигает 30-75 км, а в океанических впадинах 5-15 км. Первый тип земной коры был назван океаническим, вто­рой - континентальным.

Океанская кора занимает 56% земной поверхности и обладает небольшой мощностью – 5–6 км. В ее строении вы­деляется три слоя (Хаин, Ломизе, 1995).

Первый , или осадочный, слой мощностью не более 1 км встречается в центральной части океанов и достигает мощности 10–15 км на их периферии. Он полностью отсут­ствует в осевых зонах срединно-океанических хребтов. В со­став слоя входят глинистые, кремнистые и карбонатные глу­боководные пелагические осадки (рис. 6.1). Карбонатные осадки распространены не глубже критической глубины на­копления карбонатов. Ближе к континенту появляется при­месь обломочного материала, снесенного с суши; это так на­зываемые гемипелагические осадки. Скорость распростра­нения продольных сейсмических волн здесь составляет 2–5 км/с. Возраст осадков этого слоя не превышает 180 млн лет.

Второй слой в своей основной верхней части (2А) сложен базальтами с редкими и тонкими прослоями пелаги-

Рис. 6.1. Разрез литосферы океанов в сравнении с усреднен­ным разрезом офиолитовых аллохтонов. Внизу – модель формирования главных единиц разреза в зоне океанского спрединга (Хаин, Ломизе, 1995). Условные обозначения: 1 –

пелагические осадки; 2 – излившиеся базальты; 3 – комплекс параллельных даек (долериты); 4 – верхние (не расслоенные) габброиды и габбро-долериты; 5, 6 – расслоенный комплекс (кумуляты): 5 – габброиды, 6 – ультрабазиты; 7 – тектонизи-рованные перидотиты; 8 – базальный метаморфический оре­ол; 9 – базальтовая магма смена I–IV – последовательная смена условий кристаллизации в очаге по мере удаления от оси спрединга

ческих осадков; базальты нередко обладают характерной по­душечной (в поперечном сечении) отдельностью (пиллоу-лавы), но встречаются и покровы массивных базальтов. В нижней части второго слоя (2В) развиты параллельные дай­ки долеритов. Общая мощность 2-го слоя 1,5–2 км, а ско­рость продольных сейсмических волн 4,5–5,5 км/с.

Третий слой океанской коры состоит из полнокри­сталлических магматических пород основного и подчиненно ультраосновного состава. В его верхней части обычно разви­ты породы типа габбро, а нижнюю часть составляет «полос­чатый комплекс», состоящий из чередования габбро и ульт-рамафитов. Мощность 3-го слоя 5 км. Скорость продольных волн в этом слое достигает 6–7,5 км/с.

Считается, что породы 2-го и 3-го слоев образовались одновременно с породами 1-го слоя.

Океанская кора, вернее кора океанского типа, не ограни­чивается в своем распространении ложем океанов, а развита также в глубоководных котловинах окраинных морей, таких как Японское море, Южно-Охотская (Курильская) котловина Охотского моря, Филиппинское, Карибское и многие другие

моря. Кроме того, имеются серьезные основания подозре­вать, что в глубоких впадинах континентов и мелководных внутренних и окраинных морей типа Баренцева, где мощ­ность осадочного чехла составляет 10-12 км и более, он подстилается корой океанского типа; об этом свидетельст­вуют скорости продольных сейсмических волн порядка 6,5 км/с.

Выше говорилось, что возраст коры современных океанов (и окраинных морей) не превышает 180 млн лет. Однако в пределах складчатых поясов континентов мы на­ходим и гораздо более древнюю, вплоть до раннедокембрий-ской, кору океанского типа, представленную так называе­мыми офиолитовыми комплексами (или просто офиолита-ми). Термин этот принадлежит немецкому геологу Г. Штейнманну и был предложен им еще в начале XX в. для обозначения характерной «триады» пород, обычно встре­чающихся вместе в центральных зонах складчатых систем, а именно серпентинизированных ультрамафитов (аналог слоя 3), габбро (аналог слоя 2В), базальтов (аналог слоя 2А) и ра­диоляритов (аналог слоя 1). Сущность этого парагенеза по­род долго интерпретировалась ошибочно, в частности, габб­ро и гипербазиты считались интрузивными и более молоды­ми, чем базальты и радиоляриты. Только в 60-г годы, когда были получены первые достоверные сведения о составе оке­анской коры, стало очевидным, что офиолиты-это океан­ская кора геологического прошлого. Это открытие имело кардинальное значение для правильного понимания условий зарождения подвижных поясов Земли.

Структуры земной коры океанов

Области сплошного распространения земной коры океа­нического типа выражены в рельефе Земли океаническими впадинами . В пределах океанических впадин выделяются два крупнейших элемента: океанические платформы и океани­ческие орогенные пояса . Океанические платформы (или та-лассократоны) в рельефе дна имеют вид обширных абис­сальных плоских или холмистых равнин. К океаническим орогенным поясам относятся срединно-океанические хреб­ты, имеющие высоту над окружающей равниной до 3 км (местами поднимаются в виде островов над уровнем океана). Вдоль оси хребта часто прослеживается зона рифтов - уз­ких грабенов шириной 12-45 км при глубине до 3-5 км, указывающих на господство в этих участках растяжения земной коры. Для них характерны высокая сейсмичность, резко повышенный тепловой поток, низкая плотность верх­ней мантии. Геофизические и геологические данные свиде­тельствуют о том, что мощность осадочного покрова умень­шается по мере приближения к осевым зонам хребтов, а океаническая кора испытывает заметное поднятие.

Следующий крупный элемент земной коры - пере­ходная зона между континентом и океаном. Это область максимального расчленения земной поверхности, где нахо­дятся островные дуги , отличающиеся высокой сейсмично­стью и современным андезитовым и андезито-базальтовым вулканизмом, глубоководные желоба и глубоководные впа­дины окраинных морей. Очаги землетрясений образуют здесь сейсмофокальную зону (зону Беньофа-Заварицкого), погружающуюся под континенты. Переходная зона наиболее

ярко проявлена в западной части Тихого океана. Для нее ха­рактерен промежуточный тип строения земной коры.

Континентальная кора (Хаин, Ломизе, 1995) распро­странена не только в пределах собственно континентов, т. е. суши, за возможным исключением наиболее глубоких впа­дин, но и в пределах шельфовых зон континентальных окра­ин и отдельных участков внутри океанских бассейнов-мик­роконтинентов. Тем не менее общая площадь развития кон­тинентальной коры меньше, чем океанской, и составляет 41% земной поверхности. Средняя мощность континенталь­ной коры 35-40 км; она уменьшается к окраинам континен­тов и в пределах микроконтинентов и возрастает под горны­ми сооружениями до 70-75 км.

В общем, континентальная кора , так же как и океан­ская, имеет трехслойное строение, но состав слоев, особенно двух нижних, существенно отличается от наблюдаемых в океанской коре.

1. Осадочный слой, обычно именуемый осадочным чехлом. Его мощность изменяется от нуля на щитах и менее крупных поднятиях фундамента платформ и осевых зон складчатых сооружений до 10 и даже 20 км во впадинах платформ, передовых и межгорных прогибах горных поясов. Правда, в этих впадинах кора, подстилающая осадки и обычно называемая консолидированной, может уже быть ближе по своему характеру к океанской, чем к континен­тальной. В состав осадочного слоя входят различные оса­дочные породы преимущественно континентального или мелководного морского, реже батиального (опять-таки в пределах глубоких впадин) происхождения, а также, далеко

не повсеместно, покровы и силлы основных магматических пород, образующие трапповые поля. Скорость продольных волн в осадочном слое составляет 2,0-5,0 км/с с максиму­мом для карбонатных пород. Возрастной диапазон пород осадочного чехла-до 1,7 млрд лет, т. е. на порядок выше, чем осадочного слоя современных океанов.

2. Верхний слой консолидированной коры выступа­ет на дневную поверхность на щитах и массивах платформ и в осевых зонах складчатых сооружений; он вскрыт на глуби­ну 12 км в Кольской скважине и на значительно меньшую глубину в скважинах в Волго-Уральской области на Русской плите, на плите Мидконтинента США и на Балтийском щите в Швеции. Золотодобывающая шахта в Южной Индии про­шла по данному слою до 3,2 км, в Южной Африке-до 3,8 км. Поэтому состав этого слоя, по крайней мере его верхней части, в общем хорошо известен-главную роль в его сло­жении играют различные кристаллические сланцы, гнейсы, амфиболиты и граниты, в связи с чем он нередко именуется гранито-гнейсовым. Скорость продольных волн в нем со­ставляет 6,0-6,5 км/с. В фундаменте молодых платформ, имеющем рифейско-палеозойский или даже мезозойский возраст, а частично и во внутренних зонах молодых складча­тых сооружений этот же слой сложен менее сильнометамор-физованными (зеленосланцевая фация вместо амфиболито-вой) породами и содержит меньше гранитов; поэтому здесь его часто называют гранитно-метаморфическим слоем, а типичные скорости продольных воли в нем порядка 5,5-6,0 км/с. Мощность данного слоя коры достигает 15-20 км на платформах и 25-30 км в горных сооружениях.

3. Нижний слой консолидированной коры. Перво­начально предполагалось, что между двумя слоями консоли­дированной коры существует четкая сейсмическая граница, получившая по имени ее первооткрывателя-немецкого геофизика-название границы Конрада. Бурение только что упоминавшихся скважин поставило под сомнение существо­вание такой четкой границы; иногда вместо нее сейсмика обнаруживает в коре не одну, а две (К 1 и К 2) границы, что дало основание выделить в нижней коре два слоя (рис. 6.2). Состав пород, слагающих нижнюю кору, как отмечалось, недостаточно известен, так как скважинами она не достигну­та, а на поверхности обнажается фрагментарно. Исходя из

Рис. 6.2. Строение и мощность континентальной коры (Хаин, Ломизе, 1995). А - главные типы разреза по сейсми­ческим данным: I-II - древние платформы (I - щиты, II

Синеклизы), III - шельфы, IV -молодые орогены. K 1 , К 2 -поверхности Конрада, М-поверхность Мохоровичича, скорости указаны для продольных волн; Б - гистограмма распределения мощностей континентальной коры; В - про­филь обобщенной прочности

общих соображений, В. В. Белоусов пришел к заключению, что в нижней коре должны преобладать, с одной стороны, породы, находящиеся на более высокой ступени метамор­физма и, с другой стороны, породы более основного состава, чем в верхней коре. Поэтому он назвал этот слой коры гра- нулит-базитовым. Предположение Белоусова в общем под­тверждается, хотя обнажения показывают, что в сложении нижней коры участвуют не только основные, но и кислые гранулиты. В настоящее время большинство геофизиков различают верхнюю и нижнюю кору по другому признаку- по их отличным реологическим свойствам: верхняя кора же­сткая и хрупкая, нижняя-пластичная. Скорость продольных волн в нижней коре 6,4-7,7 км/с; принадлежность к коре или мантии низов этого слоя со скоростями более 7,0 км/с нередко спорна.

Между двумя крайними типами земной коры-океан­ским и континентальным - существуют переходные типы. Один из них - субокеанская кора - развит вдоль континен­тальных склонов и подножий и, возможно, подстилает дно котловин некоторых не очень глубоких и широких окраин­ных и внутренних морей. Субокеанская кора представляет собой утоненную до 15-20 км и пронизанную дайками и силлами основных магматических пород континентальную

кору. Она вскрыта скважиной глубоководного бурения у входа в Мексиканский залив и обнажена на побережье Крас­ного моря. Другой тип переходной коры - субконтинен­тальный -образуется в том случае, когда океанская кора в энсима-тических вулканических дугах превращается в кон­тинентальную, но еще не достигает полной «зрелости», об­ладая пониженной, менее 25 км, мощностью и более низкой степенью консолидированности, что отражается в понижен­ных скоростях сейсмических волн - не более 5,0-5,5 км/с в низах коры.

Некоторые исследователи выделяют в качестве особых типов еще две разновидности океанской коры, о которых уже шла речь выше; это, во-первых, утолщенная до 25-30 км океанская кора внутренних поднятий океана (Исландия и др.) и, во-вторых, кора океанского типа, «надстроенная» мощным, до 15-20 км, осадочным чехлом (Прикаспийская впадина и др.).

Поверхность Мохоровичича и состав верхней ман­ тии. Граница между корой и мантией, обычно сейсмически достаточно четко выраженная скачком скоростей продоль­ных волн от 7,5-7,7 до 7,9-8,2 км/с, известна как поверх­ность Мохоровичича (или просто Мохо и даже М), по имени установившего ее хорватского геофизика. В океанах эта гра­ница отвечает переходу от полосчатого комплекса 3-го слоя с преобладанием габброидов к сплошным серпентинизиро-ванным перидотитам (гарцбургитам, лерцолитам), реже ду-нитам, местами выступающим на поверхность дна, а в ска­лах Сан-Паулу в Атлантике против берегов Бразилии и на о. Забаргад в Красном море, возвышающимся над поверхно-

стью океана. Верхи океанской мантии можно наблюдать местами на суше в составе низов офиолитовых комплексов. Их мощность в Омане достигает 8 км, а в Папуа-Новой Гви­нее, возможно, даже 12 км. Сложены они перидотитами, в основном гарцбургитами (Хаин, Ломизе, 1995).

Изучение включений в лавах и кимберлитах из трубок показывает, что и под континентами верхняя мантия в ос­новном сложена перидотитами, причем как здесь, так и под океанами в верхней части это шпинелевые перидотиты, а ниже-гранатовые. Но в континентальной мантии, по тем же данным, кроме перидотитов в подчиненном количестве при­сутствуют эклогиты, т. е. глубокометаморфизованные ос­новные породы. Эклогиты могут представлять собой мета-морфизованные реликты океанской коры, затащенные в ман­тию в процессе поддвига этой коры (субдукции).

Верхняя часть мантии вторично обеднена рядом ком­понентов: кремнеземом, щелочами, ураном, торием, редкими землями и другими некогерентными элементами благодаря выплавлению из нее базальтовых пород земной коры. Эта «истощенная» («деплетированная») мантия простирается под континентами на большую глубину (охватывая всю или почти всю ее литосферную часть), чем под океанами, сменя­ясь глубже «неистощенной» мантией. Средний первичный состав мантии должен быть близок к шпинелевому лерцоли-ту или гипотетической смеси перидотита и базальта в про­порции 3:1, названной австралийским ученым А. Е. Ринг-вудом пиролитом.

На глубине около 400 км начинается быстрое возрас­тание скорости сейсмических волн; отсюда до 670 км про-

стирается слой Голицына, названный так в честь русского сейсмолога Б.Б. Голицына. Его выделяют еще в качестве средней мантии, или мезосферы - переходной зоны между верхней и нижней мантией. Возрастание скоростей упругих колебаний в слое Голицына объясняется увеличением плот­ности вещества мантии примерно на 10% в связи с перехо­дом одних минеральных видов в другие, с более плотной упаковкой атомов: оливина в шпинель, пироксена в гранат.

Нижняя мантия (Хаин, Ломизе, 1995) начинается с глубины порядка 670 км. Нижняя мантия должна быть сло­жена в основном перовскитом (МgSiO 3) и магнезиовюсти-том (Fе, Мg)O - продуктами дальнейшего изменения мине­ралов, слагающих среднюю мантию. Ядро Земли в своей внешней части, по данным сейсмологии, является жидким, а внутреннее-снова твердым. Конвекция во внешнем ядре генерирует главное магнитное поле Земли. Состав ядра по­давляющим большинством геофизиков принимается желез­ным. Но опять же по экспериментальным данным приходит­ся допустить некоторую примесь никеля, а также серы, либо кислорода, либо кремния, чтобы объяснить пониженную плотность ядра по сравнению с определенной для чистого железа.

По данным сейсмотомографии, поверхность ядра яв­ляется неровной и образует выступы и впадины с амплиту­дой до 5-6 км. На границе мантии и ядра выделяют пере­ходный слой с индексом D" (кора обозначается индексом А, верхняя мантия-В, среднюю-С, нижнюю - D, верхнюю часть нижней мантии D"). Мощность слоя D" местами дости­гает 300 км.

Литосфера и астеносфера. В отличие от коры и ман­тии, выделяемым по геологическим данным (по веществен­ному составу) и данным сейсмологии (по скачку скоростей сейсмических волн на границе Мохоровичича), литосфера и астеносфера-понятия чисто физические, вернее реологиче­ские. Исходным основанием для выделения астеносферы- ослабленной, пластичной оболочки. подстилающей более же­сткую и хрупкую литосферу,-была необходимость объяс­нения факта изостатической уравновешенности коры, обна­руженного при измерениях силы тяжести у подножия гор­ных сооружений. Первоначально ожидалось, что такие со­оружения, особенно столь грандиозные, как Гималаи, долж­ны создавать избыточное притяжение. Однако когда в сере­дине XIX в. были произведены соответствующие измерения, оказалось, что такого притяжения не наблюдается. Следова­тельно, даже крупные неровности рельефа земной поверх­ности чем-то компенсированы, уравновешены на глубине для того, чтобы на уровне земной поверхности не проявля­лось значительных отклонений от средних значений силы тяжести. Таким образом, исследователи пришли к выводу что имеется общее стремление земной коры к уравновешен­ности за счет мантии; явление это получило название изо-стазии (Хаин, Ломизе, 1995).

Существуют два способа осуществления изостазии. Пер­вый заключается в том, что горы обладают корнями, погру­женными в мантию, т. е. изостазия обеспечивается вариа­циями мощности земной коры и нижняя поверхность по­следней обладает рельефом, обратным рельефу земной по­верхности; это гипотеза английского астронома Дж. Эри

(рис. 6.3). В региональном масштабе она обычно оправдыва­ется, так как горные сооружения действительно обладают более толстой корой и максимальная толщина коры наблю­дается у наиболее высоких из них (Гималаи, Анды, Гинду-куш, Тянь-Шань и др.). Но возможен и другой механизм реализации изостазии: участки повышенного рельефа долж­ны быть сложены менее плотными породами, а участки по­ниженного-более плотными; это гипотеза другого англий­ского ученого-Дж. Пратта. В этом случае подошва земной коры может быть даже горизонтальной. Уравновешенность континентов и океанов достигается комбинацией обоих ме­ханизмов-кора под океанами и много тоньше, и заметно плотнее, чем под континентами.

Большая часть поверхности Земли находится в состоянии, близком к изостатическому равновесию. Наибольшие откло­нения от изостазии-изостатические аномалии-обнаружи­вают островные дуги и сопряженные с ними глубоководные желоба.

Для того чтобы стремление к изостатическому равнове­сию было эффективным, т. е. под дополнительной нагрузкой происходило бы погружение коры, а при снятии нагрузки - ее подъем, надо, чтобы под корой существовал достаточно пластичный слой, способный к перетеканию из областей по­вышенного геостатического давления в области пониженно­го давления. Именно для этого слоя, первоначально выде­ленного гипотетически, американский геолог Дж. Баррелл и предложил в 1916 г. название астеносфера, что оз начает «слабая оболочка». Это предположение было подтверждено лишь много позднее, в 60-е годы, когда сейсмоло-

Рис. 6.3. Схемы изостатического равновесия земной коры:

а - по Дж. Эри, б - по Дж. Пратту (Хаин, Короновский, 1995)

логами (Б. Гутенберг) было обнаружено существование на некоторой глубине под корой зоны понижения или отсутст­вия повышения, естественного при увеличении давления, скорости сейсмических волн. В дальнейшем появился дру­гой метод установления астеносферы-метод магнитотел-лурического зондирования, при котором астеносфера прояв­ляет себя как зона понижения электрического сопротивле­ния. Кроме того, сейсмологи выявили еще один признак ас­теносферы - повышенные затухания сейсмических волн.

Астеносфере принадлежит также ведущая роль в дви­жениях литосферы. Течение астеносферного вещества увле­кает за собой литосферные пластины-плиты и вызывает их горизонтальные перемещения. Подъем поверхности астено­сферы приводит к подъему литосферы, а в предельном слу­чае- к разрыву ее сплошности, образованию раздвига и опусканию. К последнему ведет также отток астеносферы.

Таким образом, из двух оболочек, составляющих тек-тоносферу: астеносфера является активным, а литосфера- относительно пассивным элементом. Их взаимодействием оп­ределяется тектоническая и магматическая «жизнь» земной коры.

В осевых зонах срединно-океанских хребтов, особенно на Восточно-Тихоокеанском поднятии, кровля астеносферы на­ходится на глубине всего 3-4 км, т. е. литосфера ограничи­вается лишь верхней частью коры. По мере движения к пе­риферии океанов толщина литосферы увеличивается за счет

низов коры, а в основном верхов мантии и может достигать 80-100 км. В центральных частях континентов, особенно под щитами древних платформ, таких как Восточно­Европейская или Сибирская, мощность литосферы измеря­ется уже 150-200 км и более (в Южной Африке 350 км); по некоторым представлениям, она может достигать 400 км, т. е. здесь вся верхняя мантия выше слоя Голицына должна входить в состав литосферы.

Трудность обнаружения астеносферы на глубинах бо­лее 150- 200 км породила у некоторых исследователей со­мнения в ее существовании под такими областями и привела их к альтернативному представлению, что астеносферы как сплошной оболочки, т. е. именно геосферы, не существует, а имеется серия разобщенных «астенолинз». С этим выводом, который мог бы иметь важное значение для геодинамики, нельзя согласиться, так как именно указанные области де­монстрируют высокую степень изостатической уравнове­шенности, ведь к ним относятся приведенные выше примеры областей современного и древнего оледенения-Гренландия и др.

Причина того, что астеносферу не везде легко обнару­жить, состоит, очевидно, в изменении ее вязкости но латера-ли.

Основные структурные элементы земной коры континентов

На континентах выделяются два структурных элемента земной коры: платформы и подвижные пояса (Историческая геология, 1985).

Определение: платформа – стабильный жесткий уча­сток земной коры континентов, имеющий изометричную форму и двухэтажное строение (рис. 6.4). Нижний (первый) структурный этаж – кристаллический фундамент , представ­ленный сильно дислоцированными метаморфизованными породами, прорванными интрузиями. Верхний (второй) структурный этаж – полого залегающий осадочный чехол , слабодислоцированный и неметаморфизованный. Выходы на дневную поверхность нижнего структурного этажа называ­ются щитом . Участки фундамента, перекрытые осадочным чехлом называются плитой . Мощность осадочного чехла плиты составляет первые километры.

Пример : на Восточно-Европейской платформе выде­ляются два щита (Украинский и Балтийский) и Русская пли­та.

Структуры второго этажа платформы (чехла) бывают отрицательные (прогибы, синеклизы) и положительные (ан-теклизы). Синеклизы имеют форму блюдца, а антеклизы – перевернутого блюдца. Мощность отложений всегда больше на синеклизе, а на антеклизе – меньше. Размеры этих струк­тур в поперечнике могут достигать сотен или первых тысяч километров, а падение слоев на крыльях обычно - первые метры на 1 км. Существуют два определения этих структур.

Определение: синеклиза – геологическая структура, падение слоев которой направлено от периферии к центру. Антеклиза - геологическая структура, падение слоев которой направлено от центра к периферии.

Определение: синеклиза – геологическая структура, в ядре которой выходят более молодые отложения, а по краям

Рис. 6.4. Схема строения платформы. 1 - складчатый фундамент; 2 - платформенный чехол; 3 разломы (Историческая геология, 1985)

– более древние. Антеклиза – геологическая структура, в яд­ре которой выходят более древние отложения, а по краям – более молодые.

Определение: прогиб – вытянутое (удлиненное) гео­логическое тело, имеющее в поперечном сечении вогнутую форму.

Пример: на Русская плите Восточно-Европейской платформы выделяются антеклизы (Белорусская, Воронеж­ская, Волго-Уральская и др.), синеклизы (Московская, При­каспийская и др.) и прогибы (Ульяновско-Саратовский, Приднестровско-Причерноморский и др.).

Существует структура нижних горизонтов чехла - ав-лакоген.

Определение: авлакоген – узкая вытянутая впадина, протягивающаяся через платформу. Авлакогены располага­ются в нижней части верхнего структурного этажа (чехла) и могут достигать в длину до сотен километров, в ширину – десятки километров. Авлакогены формируются в условиях горизонтального растяжения. В них накапливаются мощные толщи осадков, которые могут быть смяты в складки и близ­кие по составу к формациям миогеосинклиналей. В нижней части разреза присутствуют базальты.

Пример: Пачелмский (Рязано-Саратовский) авлако-ген, Днепрово-Донецкий авлакоген Русской плиты.

История развития платформ. В истории развития мож­но выделить три этапа. Первый – геосинклинальный, на ко­тором происходит формирование нижнего (первого) струк­турного элемента (фундамента). Второй - авлакогенный, на котором в зависимости от климата происходит накопление

красноцветных, сероцветных или угленосных осадков в ав-лакогенах. Третий – плитный, на котором осадконакопление происходит на значительной площади и формируется верх­ний (второй) структурный этаж (плита).

Процесс накопления осадков, как правило, происходит циклично. Сначала накапливается трансгрессивная морская терригенная формация, затем – карбонатная формация (максимум трансгрессии, табл. 6.1). При регрессии в услови­ях аридного климата формируется соленосная красноцвет-ная формация, а в условиях гумидного климата – параличе-ская угленосная формация. В конце цикла осадконакопления формируются осадки континентальной формации. В любой момент этап может прерваться формированием трапповой формации.

Таблица 6.1. Последовательность накопления плитных

формаций и их характеристика.

Окончание таблицы 6.1.

Для подвижных поясов (складчатых областей) харак­терны:

    линейность их контуров;

    громадная мощность накопившихся отложений (до 15-25 км);

    выдержанность состава и мощности этих отложе­ний по простиранию складчатой области и резкие изменения вкрест ее простирания ;

    наличие своеобразных формаций- комплексов по­род, образовавшихся на определенных стадиях раз­вития этих районов (аспидная , флишевая , спилито- кератофировая , молассовая и другие формации);

    интенсивный эффузивный и интрузивный магма­тизм (особенно характерны крупные гранитные ин­трузии-батолиты);

    сильный региональный метаморфизм;

7) сильная складчатость, обилие разломов, в том числе

надвигов, указывающих на господство сжатия. Складчатые области (пояса) возникают на месте гео­синклинальных областей (поясов).

Определение: геосинклиналь (рис. 6.5) - подвижная область земной коры, в которой первоначально накаплива­лись мощные осадочные и вулканогенные толщи, затем про­исходило их смятие в сложные складки, сопровождающееся образованием разломов, внедрением интрузий и метамор­физмом. В развитии геосинклинали различают две стадии.

Первая стадия (собственно геосинклинальная) харак­теризуется преобладанием опускания. Большая мощность осадков в геосинклинали - это результат растяжения земной коры и ее прогибания. В первую половину первой стадии обычно накапливаются песчано-глинистые и глини­стые осадки (в результате метаморфизма они потом образу­ют черные глинистые сланцы, выделяемые в аспидную фор­мацию) и известняки. Прогибание может сопровождаться разрывами, по которым поднимается магма основного соста­ва и изливается в подводных условиях. Возникшие породы после метаморфизма вместе с сопровождающими субвулка­ническими образованиями дают спилит-кератофировую формацию. Одновременно с ней обычно образуются кремни­стые породы, яшмы.

океаническая

Рис. 6.5. Схема строения геосинк-

линали на схемати­ческом разрезе че­рез Зондскую дугу в Индонезии (Струк­турная геология и тектоника плит, 1991). Условные обозначения: 1 – осадки и осадочные породы; 2 – вулка-

нические породы; 3 – фундамент конти-метаморфические породы

Указанные формации накапливаются одновременно , но на разных площадях . Накопление спилито-кератофировой формации обычно происходит во внутрен­ней части геосинклинали - в эвгеосинклинали . Для эвгео- синклинали характерны формирование мощных вулканоген­ных толщ, обычно основного состава, и внедрение интрузии габбро, диабазов и ультраосновных пород. В краевой части геосинклинали, по ее границе с платформой, обычно распо­лагаются миогеосинклинали. Здесь накапливаются главным образом терригенные и карбонатные толщи; вулканические породы отсутствуют, интрузии не типичны.

В первую половину первой стадии большая часть геосинклинали представляет собой море со значительными глубинами . Доказательством служат тонкая зернистость осадков и редкость находок фауны (преимущественно нек­тона и планктона).

К середине первой стадии вследствие разных скоро­стей опускания в различных частях геосинклинали образу­ются участки относительного поднятия (интрагеоантик-линали ) и относительного опускания (интрагеосинклина-ли ). В это время может происходить внедрение небольших интрузий плагиогранитов.

Во вторую половину первой стадии в результате по­явления внутренних поднятий море в геосинклинали мелеет. Теперь это архипелаг , разделенный проливами. Море из-за обмеления наступает на смежные платформы. В геосинкли­нали накапливаются известняки, мощные песчано-глинистые ритмично построенные толщи, образующие флишевую фор-216

мацию; происходит излияние лав среднего состава, слагаю­щих порфиритовую формацию.

К концу первой стадии интрагеосинклинали исчеза­ют, интрагеоантиклинали сливаются в одно центральное поднятие. Это - общая инверсия; она соответствует глав­ной фазе складчатости в геосинклинали. Складчатость обычно сопровождается внедрением крупных синорогенных (одновременных со складчатостью) гранитных интрузий. Происходит смятие пород в складки, часто осложняющееся надвигами. Все это вызывает региональный метаморфизм. На месте интрагеосинклиналей возникают синклинории - сложно построенные структуры синклинального типа, а на месте интрагеоантиклиналей - антиклинории . Геосинкли­наль «закрывается», превращаясь в складчатую область.

В строении и развитии геосинклинали очень важная роль принадлежит глубинным разломам - длительно живу­щим разрывам, которые рассекают все земную кору и уходят в верхнюю мантию. Глубинные разломы определяют конту­ры геосинклиналей, их магматизм, разделение геосинклина­ли на структурно-фациальные зоны, различающиеся соста­вом осадков, их мощностью, магматизмом и характером структур. Внутри геосинклинали иногда выделяют средин­ные массивы, ограниченные глубинными разломами. Это блоки более древней складчатости, сложенные породами то­го основания, на котором заложилась геосинклиналь. По со­ставу осадков и их мощности срединные массивы близки платформам, но их отличают сильный магматизм и складча­тость пород, преимущественно по краям массива.

Вторая стадия развития геосинклинали называется орогенной и характеризуется преобладанием поднятий. Осадконакопление происходит на ограниченных площадях по периферии центрального поднятия - в краевых прогибах, возникающих по границе геосинклинали и платформы и час­тично накладывающихся на платформу, а также в межгор­ных прогибах, образующихся иногда внутри центрального поднятия. Источник осадков - разрушение постоянно воз­дымающегося центрального поднятия. В первую половину второй стадии это поднятие, вероятно, имеет холмистый рельеф; при его разрушении накапливаются морские, иногда лагунные осадки, образующие нижнюю молассовую форма­цию. В зависимости от климатических условий это могут быть угленосные паралические или соленосные толщи. В это же время обычно происходит внедрение крупных гранитных интрузий - батолитов.

Во вторую половину стадии резко возрастает ско­рость воздымания центрального поднятия, что сопровожда­ется его расколами и обрушением отдельных участков. Это явление объясняется тем, что вследствие складчатости, ме­таморфизма, внедрения интрузий складчатая область (уже не геосинклиналь!) становится жесткой и на продолжающееся поднятие реагирует расколами. Море покидает эту террито­рию. В результате разрушения центрального поднятия, кото­рое в это время представляло собой горную страну, накапли­ваются континентальные грубообломочные толщи, обра­зующие верхнюю молассовую формацию. Раскалывание сво­довой части поднятия сопровождается наземным вулканиз­мом; обычно это лавы кислого состава, которые вместе с

субвулканическими образованиями дают порфировую фор­мацию. С ней бывают связаны трещинные щелочные и ма­лые кислые интрузий. Таким образом, в результате развития геосинклинали возрастает мощность континентальной коры.

К концу второй стадии складчатая горная область, возникшая на месте геосинклинали, разрушается, территория постепенно выравнивается и становится платформой. Гео­синклиналь из области накопления осадков превращается в область разрушения, из подвижной территории - в мало­подвижную жесткую выровненную территорию. Поэтому амплитуды движений на платформе невелики. Обычно море, даже мелкое, покрывает здесь обширные площади. Эта тер­ритория уже не испытывает столь сильного прогибания, как раньше, поэтому и мощность осадков значительно меньше (в среднем 2-3 км). Опускание неоднократно прерывается, поэтому наблюдаются частые перерывы в осадконакопле-нии; тогда могут образовываться коры выветривания. Не происходит и энергичных поднятий, сопровождаемых складчатостью. Поэтому вновь образованные маломощные, обычно мелководные осадки на платформе не метамор-физованы и залегают горизонтально или слабо наклонно. Из­верженные породы редки и представлены обычно наземны­ми излияниями лав базальтового состава.

Кроме геосинклинальной модели существует модель тектоники литосферных плит.

Модель тектоники литосферных плит

Тектоника плит (Структурная геология и тектоника плит, 1991) – модель, которая создана с целью объяснения наблю­даемой картины распределения деформаций и сейсмичности во внешней оболочке Земли. Она основывается на обширных геофизических данных, полученных в 1950-е и 1960-е годы. Теоретические основы тектоники плит базируются на двух предпосылках.

    Самая внешняя оболочка Земли, называемая литосфе­рой, непосредственно залегает на слое, называемом ас­ теносферой, которая является менее прочной, чем лито­сфера.

    Литосфера разбита на ряд жестких сегментов, или плит (рис. 6.6), которые постоянно движутся относительно друг друга и площадь поверхности которых также не­прерывно меняется. Большая часть тектонических про­цессов с интенсивным обменом энергией действует на границах между плитами.

Хотя мощность литосферы нельзя измерить с большой точ­ностью, исследователи согласны в том, что внутри плит она меняется от 70-80 км под океанами до максимальной вели­чины более 200 км под некоторыми частями континентов при среднем значении около 100 км. Подстилающая лито­сферу астеносфера распространяется вниз до глубины около 700 км (предельная глубина распространения очагов глубо­кофокусных землетрясений). Ее прочность растет с глуби­ной, и некоторые сейсмологи считают, что ее нижняя грани-

Рис. 6.6. Литосфер-ные плиты Земли и их активные гра­ницы. Двойными линиями показаны дивергентные гра­ницы (оси спредин-га); линиями с зуб­цами - конвергент­ные гпянины П.ПИТ

одинарными линиями - трансформные разломы (сдвиги); крапом покрыты участки континентальной ко­ры, подвергающиеся активному разломообразованию (Структурная геология и тектоника плит, 1991)

ца расположена на глубине 400 км и совпадает с небольшим изменением физических параметров.

Границы между плитами делятся на три типа:

    дивергентные;

    конвергентные;

    трансформные (со смещениями по простиранию).

На дивергентных границах плит, представленных пре­имущественно рифтами, происходит новообразование лито­сферы, что приводит к раздвиганию океанического дна (спредингу). На конвергентных границах плит литосфера по­гружается в астеносферу, т. е. поглощается. На трансформ­ных границах две литосферные плиты скользят относитель­но друг друга, и вещество литосферы на них не создается и не разрушается.

Все литосферные плиты непрерывно перемещают­ся относительно друг друга . Предполагается, что общая площадь всех плит остается неизменной в течение значи­тельного периода времени. При достаточном удалении от окраин плит горизонтальные деформации внутри них незна­чительны, что позволяет считать плиты жесткими. Посколь­ку смещения по трансформным разломам происходят вдоль их простирания, движение плит должно быть параллельным современным трансформным разломам. Так как все это про­исходит на поверхности сферы, то в соответствии с теоремой Эйлера, каждый участок плиты описывает траекторию, экви­валентную вращению на сферической поверхности Земли. Для относительного перемещения каждой пары плит в лю­бой момент времени можно определить ось, или полюс вра­щения. По мере удаления от этого полюса (вплоть до угло-

вого расстояния в 90°) скорости спрединга, естественно, воз­растают, но угловая скорость для любой данной пары плит относительно их полюса вращения постоянна. Отметим так­же, что в геометрическом отношении полюсы вращения единственны для любой пары плит и никак не связаны с по­люсом вращения Земли как планеты.

Тектоника плит является эффективной моделью про­исходящих в коре процессов, так как она хорошо согласует­ся с известными данными наблюдений, дает изящное объяс­нение ранее несвязанным явлениям и открывает возможно­сти для прогноза.

Цикл Уилсона (Структурная геология и тектоника плит, 1991). В 1966 г. профессор Уилсон из Университета Торонто опубликовал статью, в которой он доказывал, что континентальный дрейф происходил не только после ранне-мезозойского раскола Пангеи, но и в допангейские времена. Цикл раскрытия и закрытия океанов относительно смежных континентальных окраин называется теперь циклом Уилсона.

На рис. 6.7 приведено схематическое пояснение ос­новной концепции цикла Уилсона в рамках представлений об эволюции литосферных плит.

Рис. 6.7, а представляет начало цикла Уилсона на­чальную стадию раскола континента и формирования аккреционной окраины плиты. Известно, что жесткая

Рис. 6.7. Схема цикла Уилсона развития океанов в рамках эволюции литосферных плит (Структурная геология и тек­тоника плит, 1991)

литосфера покрывает более слабую, частично расплавлен­ную зону астеносферы – так называемый слой низких скоро­стей (рис 6.7, б). При продолжении разделения континентов развиваются рифтовая долина (рис. 6.7, 6) и небольшой оке­ан (рис. 6.7, в). Это – стадии раннего раскрытия океана в цикле Уилсона . Подходящими примерами служат Афри­канский рифт и Красное море. С продолжением дрейфа ра­зобщенных континентов, сопровождающегося симметрич­ной аккрецией новой литосферы на окраинах плит, на грани­це континента с океаном за счет размыва континента накап­ливаются шельфовые осадки. Полностью сформировав­шийся океан (рис. 6.7, г) со срединным хребтом на границе плит и развитым континентальным шельфом называется океаном атлантического типа.

Из наблюдений океанических желобов, их связи с сейсмичностью и реконструкцией по рисунку океанических магнитных аномалий вокруг желобов известно, что океани­ческая литосфера расчленяется и погружается в мезосферу. На рис. 6.7, д показан океан с плитой , имеющей простые окраины приращения и поглощения литосферы, – это на­чальная стадия закрытия океана в цикле Уилсона . Расчле­нение литосферы по соседству с континентальной окраиной ведет к превращению последней в ороген андского типа в результате тектонических и вулканических процессов, про­исходящих на поглощающей границе плит. Если это расчле­нение происходит на значительном расстоянии от континен­тальной окраины в сторону океана, то образуется островная дуга типа Японских островов. Поглощение океанической литосферы приводит к изменению геометрии плит и в конце

концов к полному исчезновению аккрециопной окраины плиты (рис. 6.7, е). В течение этого времени противополож­ный континентальный шельф может продолжать разрастать­ся, превращаясь в полуокеан атлантического типа. По мере сокращения океана противоположная континентальная ок­раина в конечном счете вовлекается в режим поглощения плиты и участвует в развитии аккреционного орогена анд-ского типа . Это – ранняя стадия столкновения двух кон­тинентов (коллизии ) . На следующей стадии благодаря пла­вучести континентальной литосферы, поглощение плиты прекращается. Литосферная пластина отрывается внизу, под растущим орогеном гималайского типа, и наступает завер­шающая орогенная стадия цикла Уилсона с зрелым гор­ным поясом , представляющим собой шов между вновь со­единившимися континентами. Антиподом аккреционного орогена андского типа является коллизионный ороген гима­лайского типа .

Наиболее крупными структурными элементами земной коры являются континенты и океаны, характеризующиеся различным строением земной коры. Следовательно, эти структурные элементы должны пониматься в геологическом, вернее даже в геофизическом смысле, так как определить тип строения земной коры возможно только сейсмическими методами. Отсюда ясно, что не все пространство, занятое водами океана, представляет собой в геофизическом смысле океанскую структуру, так как обширные шельфовые области, например в Северном Ледовитом океане, обладают континентальной корой. Различия между этими двумя крупнейшими структурными элементами не ограничиваются типом земной коры, а прослеживаются и глубже, в верхнюю мантию, которая под континентами построена иначе, чем под океанами, и эти различия охватывают всю литосферу, а местами и тектоносферу, т.е. прослеживаются до глубин примерно в 700 км.

В пределах океанов и континентов выделяются менее крупные структурные элементы, во-первых, это стабильные структуры - платформы, которые могут быть как в океанах, так и на континентах. Они характеризуются, как правило, выровненным, спокойным рельефом, которому соответствует такое же положение поверхности на глубине, только под континентальными платформами она находится на глубинах 30-50 км, а под океанами 5-8 км, так как океанская кора гораздо тоньше континентальной.

В океанах, как структурных элементах, выделяются срединно-океинские подвижные пояса, представленные срединно-океанскими хребтами с рифтовыми зонами в их осевой части, пересеченными трансформными разломами и являющиеся в настоящее время зонами спрединга, т.е. расширения океанского дна и наращивания новообразованной океанской коры. Следовательно, в океанах как структурах выделяются устойчивые платформы (плиты) и мобильные срединно-океанские пояса.

На континентах как структурных элементах высшего ранга выделяются стабильные области - платформы и эпиплатформенные орогенные пояса, сформировавшиеся в неоген-четвертичное время в устойчивых структурных элементах земной коры после периода платформенного развития. К таким поясам можно отнести современные горные сооружения Тянь-Шаня, Алтая, Саян, Западного и Восточного Забайкалья, Восточную Африку и др. Кроме того, подвижные геосинклинальные пояса, подвергнувшиеся складчатости и орогенезу в альпийскую эпоху, т.е. также в неоген-четвертичное время, составляют эпигеосинклинальные орогенные пояса, такие, как Альпы, Карпаты, Динариды, Кавказ, Копетдаг, Камчатка и др.



На территории некоторых континентов, в зоне перехода континент-океан (в геофизическом смысле) находятся окраинно-континентальные, по терминологии В.Е. Хаина, подвижные геосинклинальные пояса, представляющие собой сложное сочетание окраинных морей, островных дуг и глубоководных желобов. Это пояса высокой современной тектонической активности, контрастности движений, сейсмичности и вулканизма. В геологическом прошлом функционировали и межконтинентальные геосинклинальные пояса, например Урало-Охотский, связанный с древним палео-Азиатским океанским бассейном, и др.

Учение о геосинклиналях в 1973 г. отметило свое столетие с того времени, как американский геолог Д. Дэна ввел это понятие в геологию, а еще раньше, в 1857 г., также американец Дж. Холл сформулировал в целом эту концепцию, показав, что горно-складчатые структуры возникли на месте прогибов, ранее выполнявшихся разнообразными морскими отложениями. В силу того, что общая форма этих прогибов была синклинальной, а масштабы прогибов очень большими, их и назвали геосинклиналями.

За прошедшее столетие учение о геосинклиналях набирало силу, разрабатывалось, детализировалось и благодаря усилиям большой армии геологов различных стран сформировалось в стройную концепцию, представляющую собой эмпирическое обобщение огромного фактического материала, но страдавшую одним существенным недостатком: оно не давало, как совершенно справедливо полагает В.Е. Хаин, геодинамической интерпретации наблюдаемых конкретных закономерностей развития отдельных геосинклиналей. Устранить этот недостаток в настоящее время способна концепция тектоники литосферных плит, возникшая всего лишь 25 лет назад, но быстро превратившаяся в ведущую геотектоническую теорию. С точки зрения этой теории геосинклинальные пояса возникают на границах взаимодействия различных литосферных плит. Рассмотрим основные структурные элементы земной коры более подробно.

Древние платформы являются устойчивыми глыбами земной коры, сформировавшимися в позднем архее или раннем протерозое. Их отличительная черта - двухэтажность строения. Нижний этаж, или фундамент сложен складчатыми, глубоко метаморфизованными толщами пород, прорванными гранитными интрузивами, с широким развитием гнейсовых и гранитогнейсовых куполов или овалов - специфической формой метаморфогенной складчатости (рис. 16.1). Фундамент платформ формировался в течение длительного времени в архее и раннем протерозое и впоследствии подвергся очень сильному размыву и денудации, в результате которых вскрылись породы, залегавшие раньше на большой глубине. Площадь древних платформ на материках приближается к 40 % и для них характерны угловатые очертания с протяженными прямолинейными границами - следствием краевых швов (глубинных разломов). Складчатые области и системы либо надвинуты на платформы, либо граничат с ними через передовые прогибы, на которые в свою очередь надвинуты складчатые орогены. Границы древних платформ резко несогласно пересекают их внутренние структуры, что свидетельствует об их вторичном характере в результате раскола суперматерика Пангеи-1, возникшего в конце раннего протерозоя.

Верхний этаж платформ представлен чехлом, или покровом, полого залегающих с резким угловым несогласием на фундаменте неметаморфизованных отложений - морских, континентальных и вулканогенных. Поверхность между чехлом и фундаментом отражает самое важное структурное несогласие в пределах платформ. Строение платформенного чехла оказывается сложным и на многих платформах на ранних стадиях его образования возникают грабены, грабенообразные прогибы - авлакогены (от греч. "авлос" - борозда, ров; "ген" - рожденный, т.е. рожденные рвом), как их впервые назвал Н.С. Шатский. Авлакогены чаще всего формировались в позднем протерозое (рифее) и образовывали в теле фундамента протяженные системы. Мощность континентальных и реже морских отложений в авлакогенах достигает 5-7 км, а глубокие разломы, ограничивавшие авлакогены, способствовали проявлению щелочного, основного и ультраосновного магматизма, а также специфического для платформ траппового магматизма с континентальными толеитовыми базальтами, силлами и дайками. Этот нижний структурный ярус платформенного чехла, соответствующий авлакогенному этапу развития, сменяется сплошным чехлом платформенных отложений, чаще всего начинающимся с вендского времени.

Среди наиболее крупных структурных элементов платформ выделяются щиты и плиты. Щит - это выступ на поверхность фундамента платформы, который на протяжении всего платформенного этапа развития испытывал тенденцию к поднятию. Плита - часть платформы, перекрытая чехлом отложений и обладающая тенденцией к прогибанию. В пределах плит различаются более мелкие структурные элементы. В первую очередь это синеклизы - обширные плоские впадины, под которыми фундамент прогнут, и антеклизы - пологие своды с поднятым фундаментом и относительно утоненным чехлом.

По краям платформ, там, где они граничат со складчатыми поясами, часто образуются глубокие впадины, называемые перикратонными (т.е. на краю кратона, или платформы). Нередко антеклизы и синеклизы осложнены второстепенными структурами меньших размеров: сводами, впадинами, валами. Последние возникают над зонами глубоких разломов, крылья которых испытывают разнонаправленные движения и в чехле платформы выражены узкими выходами древних отложений чехла из-под более молодых. Углы наклона крыльев валов не превышают первых градусов. Часто встречаются флексуры - изгибы слоев чехла без разрыва их сплошности и с сохранением параллельности крыльев, возникающие над зонами разломов в фундаменте при подвижке его блоков. Все платформенные структуры очень пологие и в большинстве случаев непосредственно измерить наклоны их крыльев невозможно.

Состав отложений платформенного чехла разнообразный, но чаще всего преобладают осадочные породы - морские и континентальные, образующие выдержанные пласты и толщи на большой площади. Весьма характерны карбонатные формации, например, белого писчего мела, органогенных известняков, типичных для гумидного климата и доломитов с сульфатными осадками, образующимися в аридных климатических условиях. Широко развиты континентальные обломочные формации, приуроченные, как правило, к основанию крупных комплексов, отвечающих определенным этапам развития платформенного чехла. На смену им нередко приходят эвапоритовые или угленосные паралические формации и терригенные - песчаные с фосфоритами, глинисто-песчаные, иногда пестроцветные. Карбонатные формации знаменуют собой обычно "зенит" развития комплекса, а далее можно наблюдать смену формаций в обратной последовательности. Для многих платформ типичны покровно-ледниковые отложения.

Платформенный чехол в процессе формирования неоднократно претерпевал перестройку структурного плана, приуроченную к рубежам крупных геотектонических циклов: байкальского, каледонского, герцинского, альпийского и др. Участки платформ, испытывавшие максимальные погружения, как правило, примыкают к той пограничной с платформой подвижной области или системе, которая в это время активно развивалась.

Для платформ характерен и специфический магматизм, проявляющийся в моменты их тектономагматической активизации. Наиболее типична трапповая формация, объединяющая вулканические продукты - лавы и туфы и интрузивы, сложенные толеитовыми базальтами континентального типа с несколько повышенным по отношению к океанским содержанием оксида калия, но все же не превышающим 1- 1,5 %. Объем продуктов трапповой формации может достигать 1-2 млн. км 3 , как, например, на Сибирской платформе. Очень важное значение имеет щелочно-ультраосновная (кимберлитовая) формация, содержащая алмазы в продуктах трубок взрыва (Сибирская платформа, Южная Африка).

Кроме древних платформ выделяют и молодые, хотя чаще их называют плитами, сформировавшимися либо на байкальском, каледонском или герцинском фундаменте, отличающемся большей дислоцированностью чехла, меньшей степенью метаморфизма пород фундамента и значительной унаследованностью структур чехла от структур фундамента. Примерами таких платформ (плит) являются: эпибайкальская Тимано-Печорская, эпигерцинская Скифская, эпипалеозойская Западно-Сибирская и др.

Подвижные геосинклинальные пояса являются чрезвычайно важным структурным элементом земной коры, обычно располагающимся в зоне перехода от континента к океану и в процессе эволюции формирующим мощную континентальную кору. Смысл эволюции геосинклинали заключается в образовании прогиба в земной коре в условиях тектонического растяжения. Этот процесс сопровождается подводными вулканическими излияниями, накоплением глубоководных терригенных и кремнистых отложений. Затем возникают частные поднятия, структура прогиба усложняется и за счет размыва поднятий, сложенных основными вулканитами, формируются граувакковые песчаники. Распределение фаций становится более прихотливым, появляются рифовые постройки, карбонатные толщи, а вулканизм более дифференцированным. Наконец, поднятия разрастаются, происходит своеобразная инверсия прогибов, внедряются гранитные интрузивы и все отложения сминаются в складки. На месте геосинклинали возникает горное поднятие, перед фронтом которого растут передовые прогибы, заполняемые молассами. - грубообломочными продуктами разрушения гор, а в последних развивается наземный вулканизм, поставляющий продукты среднего и кислого состава - андезиты, дациты, риолиты. В дальнейшем горно-складчатое сооружение размывается, так как темп поднятий падает, и ороген превращается в пенепленизированную равнину. Такова общая идея геосинклинального цикла развития.

Рис. 16.2. Схематический разрез через срединно-океанский хребет (по Т. Жюто, с упрощением)

Успехи в изучении океанов привели в 60-е годы нашего века к созданию новой глобальной геотектонической теории - тектоники литосферных плит, позволившей на актуалистической основе воссоздать историю развития подвижных геосинклинальных областей и перемещения континентальных плит. Суть этой теории заключается в выделении крупных литосферных плит, границы которых маркируются современными поясами сейсмичности, и во взаимодействии плит путем их перемещения и вращения. В океанах происходит наращивание, расширение океанской коры путем ее новообразования в рифтовых зонах срединно-океанских хребтов (рис. 16. 2). Поскольку радиус Земли существенно не меняется, новообразованная кора должна поглощаться и уходить под континентальную, т.е. происходит ее субдукция (погружение).

Эти районы отмечены мощной вулканической деятельностью, сейсмичностью, наличием островных дуг, окраинных морей, глубоководных желобов, как, например, на восточной периферии Евразии. Все эти процессы отмечают собой активную континентальную окраину, т.е. зону взаимодействия океанской и континентальной коры. Напротив, те участки континентов, которые составляют с частью океанов единую литосферную плиту, как, например, по западной и восточной окраин Атлантики, называются пассивной континентальной окраиной и лишены всех перечисленных выше признаков, но характеризуются мощной толщей осадочных пород над континентальным склоном (рис. 16.3). Сходство вулканогенных и осадочных пород ранних стадий развития геосинклиналей, так называемой офиолитовой ассоциации, с разрезом коры океанского типа позволило предположить, что последние закладывались на океанской коре и дальнейшее развитие океанского бассейна приводило сначала к его расширению, а затем закрытию с образованием вулканических островных дуг, глубоководных желобов и формированию мощной континентальной коры. В этом видят сущность геосинклинального процесса.

Таким образом, благодаря новым тектоническим идеям, учение о геосинклиналях обретает как бы "второе дыхание", позволяющее реконструировать геодинамическую обстановку их эволюции на базе актуалистических методов. Исходя из сказанного, под геосинклинальным поясом, (окраинно- или межконтинентальным) понимается подвижной пояс протяженностью в тысячи километров, закладывающийся на границе литосферных плит, характеризующийся длительным проявлением разнообразного вулканизма, активного осадконакопления и на конечных стадиях развития превращающийся в горно-складчатое сооружение с мощной континентальной корой. Примером таких глобальных поясов являются: межконтинентальные - Урало-Охотский палеозойский; Средиземноморский альпийский; Атлантический палеозойский; окраинно-континентальные - Тихоокеанский мезозойско-кайнозойский и др. Геосинклинальные пояса подразделяются на геосинклинальные области - крупные отрезки поясов, отличающиеся историей развития, структурой и отделяющиеся друг от друга глубокими поперечными разломами, пережимами и т.д. В свою очередь, в пределах областей могут быть выделены геосинклинальные системы, разделяющиеся жесткими блоками земной коры - срединными массивами или микроконтинентами, структурами, которые во время погружения окружающих районов оставались стабильными, относительно приподнятыми и на которых накапливался маломощный чехол. Как правило, эти массивы являются обломками той первичной древней платформы, которая подверглась дроблению при заложении подвижного геосинклинального пояса.

В конце 30-х годов нашего столетия Г. Штилле и М. Кэй подразделили геосинклиналии на эв- и миогеосинклинали. Эвгеосинклиналью ("полной, настоящей, геосинклиналью") они называли более внутреннюю по отношению к океану зону подвижного пояса, отличавшуюся особо мощным вулканизмом, ранним (или начальным) подводным, основного состава; наличием ультраосновных интрузивных (поих мнению) пород; интенсивной складчатостью и мощным метаморфизмом. В то же время миогеосинклиналь ("не настоящая геосинклиналь") характеризовалась внешним положением (по отношению к океану), контактировала с платформой, закладывалась на коре континентального типа, отложения в ней были слабее метаморфизованы, вулканизм также был развит слабо или совсем отсутствовал, а складчатость наступала позднее, чем в эвгеосинклинали. Такое разделение геосинклинальных областей на эв- и миогеосинклинальные прекрасно выражено на Урале, в Аппалачах, Североамериканских Кордильерах и в других складчатых областях.

Важную роль стала играть офиолитовая ассоциация пород, широко распространенная в разнообразных эвгеосинклиналях. Нижняя часть разреза такой ассоциации состоит из ультраосновных, часто серпентинизированных пород - гарцбургитов, дунитов; выше располагается так называемый расслоенный или кумулятивный комплекс габброидов и амфиболитов; еще выше - комплекс параллельных даек, сменяющийся подушечными толеитовыми базальтами, перекрываемыми кремнистыми сланцами (рис. 16.4). Такая последовательность близка разрезу океанской коры. Значение этого сходства трудно переоценить. Офиолитовая ассоциация в складчатых областях, залегающая, как правило, в покровных пластинах, является реликтом, следами былого морского бассейна (не обязательно океана!) с корой океанского типа. Отсюда не следует, что океан отождествляется с геосинклинальным поясом. Кора океанского типа могла располагаться только в его центре, а по периферии это была сложная система островных дуг, окраинных морей, глубоководных желобов и т.д., да и сама кора океанского типа могла быть в окраинных морях. Последующее сокращение океанского пространства приводило к сужению подвижного пояса в несколько раз. Океанская кора в основании эвгеосинклинальных зон может быть как древней, так и новообразованной, сформировавшейся при раскалывании и раздвиге континентальных массивов.

Литосфера- внешняя сфера «твердой» оболочки Земли. Верхняя часть ее называется земной корой. Средняя плотность земной коры составляет 2,8 г/см 3 . Она отделяется от верхней мантии границей резкого изменения скорости распространения сейсмических волн с 6 до 8 км/с. На материках это происходит на глубине 35 – 70 км; в пределах океанов - 5 - 15 км. Эта граница получила название границы Мохоровичича(по имени открывшего её югославского ученого Андрея Мохоровичича).

Земная кора различна по составу, строению и мощности на континентах и в океане (рис. 3.1).

Рис. 3.1. Схема строения литосферы: 1 – вода океана; 2 – осадочный слой; 3 - гранитный слой; 4 – базальтовый слой; 5 - верхняя мантия; 6 – межблоковые разломы

Континентальная (материковая) кора имеет мощность 30-40 км, достигая 70-75 км под Гималаями и Андами. В строении континенталь­ной коры различают три слоя:

· осадочный слой, состоящий из осадочных пород мощностью до 20 км и плотностью 1,8 – 2,5 г/см 3 ;

· «гранитный», образованный гранитоидами - светлоокрашенными горными породами мощностью 10 - 40 км и плотностью 2,5 – 2,8 г/см 3 . Скорость распространения волн в этом слое 5,5 – 6,2 км/с;

· «базальтовый», скорость распространения сейсмических волн в этом слое 6,1-7,4 км/с, что характерно для базальта, отсюда название слоя - базальтовый. Мощность базальтового слоя 15-30 км. Граница между гранитным и базальтовым слоем называется границей Конрада.

Океаническая кора обычно не содержит «гранитного» слоя, а мощность осадочного слоя, представленного глубоководными осадками, не превышает 600 – 700 м. Нижний «базальтовый» слой распространен повсеместно и имеет мощность 4,1-5,8 км.

Сплошность земной коры прерывается большим количеством вертикальных и наклонных нарушений, разбивающих её на блоки. Некоторые нарушения уходят в мантию, образуя коромантийные блоки.

Структурными элементами земной коры являются литосферные плиты (платформы), геосинклинали (подвижные пояса) и океанические плиты.

Платформы (массивы, глыбы) занимают огромные пространства на Земле. К ним относятся Русская платформа, Австралийская, Северо-Африканская и др. Платформы чаще всего имеют двухэтажное строение. Их основанием (фундаментом) являются складчатые осадочные породы либо метаморфические и магматические породы. На фундаменте располагаются породы осадочного происхождения в относительно горизонтальном залегании, которые называются осадочным чехлом платформы. Для платформ, как наиболее жестких частей земной коры, характерны сравнительно спокойные колебательные движения вертикаль­ного характера.

Платформы являются центральной частью более обширных структур­ных образований - литосферных плит с континентальной корой, на которых располагаются современные материки.

океанические плиты - это обширные области дна океанов, которые являются слоем океанической коры базальтового состава, с незначительным по мощности осадочным чехлом. В них через рифтовые зоны, или зоны спрединга (англ. spreading, от spread- растягивать, расширять) поступают вещество и тепло из верхней мантии, постоянно наращивая океаническую кору.

На современном уровне знаний утвердились представления о развитии Земного шара в последние 4 млрд лет путем его расширения. Глобальные тектонические процессы сопровождались постепенным увеличением радиуса Земли и её поверхности за счет постоянного прироста площади океанических плит. Действующее со стороны расширяющихся океанов горизонтальное давление на континенты не является уравновешенным. При преобладающем давлении с какой-либо стороны происходит перемещение литосферных плит, «дрейф» материков по верхней мантии Земли.

перемещаясь по верхней мантии Земли, континентальные плиты надвигаются на океанические, которые, являясь более тяжелыми, погружаются, переплавляются и уходят в глубины Земли (рис. 3.1).

Между континентальными и океаническими плитами находятся глубокие прогибы, которые называются геосинклиналями (от греч.Ge - земля + Syn - вместе + Klino – наклоняюсь). Геосинклиналь - обширная, обычно линейно вытянутая, дугообразная в плане тектоническая структура, отличающаяся повышенной подвижностью, большой мощностью осадочных отложений, которые легко проницаемы для внедряющейся

в них магмы.

В начале своего развития они представляют собой морские бассейны, дно которых испытывает прогибание. В них сносится обломочный материал, накапливаются многокилометровые толщи осадков. Примером геосинклиналей такой стадии развития являются Японское и Средиземное моря.



Рис. 3.2. Положение и динамика основных структурных элементов земной коры. 1 – гранитный слой континентальной коры; 2 – базальтовый слой; 3 – осадочный слой; 4 - направление горизонтальных сдвигов от океанических рифтов; 5 – вынос глубинных базальтовых расплавов и тепла через рифтовые зоны

Со временем, в результате горизонтального движения и давления плит, геосинклинальные осадки, зажатые между плитами, сминаются в складки и, являясь более легким материа­лом по сравнению с расплавом океанической коры, как бы выталкиваются («всплывают») из-под воды в виде горных сооружений. Так возникли складчатые горные хребты Альп, Карпат, Крыма, Кавказа, Памира и т. д. Для районов геосинклиналей типичны интенсивные и разнообразные тектонические движения. Это вызывает изменение первоначального положения пород. Горизонтальное залегание пород сменяется смятием, перемещением, разрывами. Районам геосинклиналей свойственны повышенная сейсмичность (землетрясения). К ним приурочено большинство современных вулканических поясов.

Тепловой режим земной коры

Развитие земной коры происходило последние 4 млрд лет за счет поступающей энергии Солнца и внутреннего тепла Земли. Примерное количество поступающей солнечной энергии на поверхность Земли – 1,72*10 17 Вт. Конвективный перенос тепла из внутренних сфер Земли к её поверхности оценивается в 3,05*10 13 Вт. Соотношение поступающей энергии на поверхность Земли от Солнца и из недр планеты составляет 140:1, что обусловливает сложный характер изменений температуры в толщах горных пород.

В верхней части земной коры выделяют три температурные зоны: I - сезонных колебаний, II-постоянной температуры и III-нарастания температур (рис. 3.3). Изменение температур в зоне I определяется климатическими условиями местности – сезонной прогреваемостью и промерзанием почвогрунтов.

Рис. 3.3. Схема распределения температур в земной коре

Общая мощность зоны I достигает 12-15 м. По мере углубления в недра Земли влияние суточных и сезонных колебаний температур уменьшается и на глубине примерно 15-40 м находится зона постоянной температуры, равная среднегодовой для данной местности. В северном полушарии она равна +15,5°С, а в южном - +13,6°С.

В пределах зоны III температура с глубиной возрастает. Величина нарастания температуры на каждые 100 м глубины называется геотермическим градиентом,а разность глубин, при которой температура повышается на один градус, называется геотермической ступенью. Средняя величина этой ступени составляет 33 м. В районах вулканической деятельности, где в недрах земли располагаются участки расплавленной магмы, величина геотермической ступени уменьшается до 5-7 м.

О температуре глубоких зон земной коры и верхней мантии можно судить по температуре лав вулканов. Она примерно равна +1 500°С.

За счет энергии Солнца происходят основные геодинамические процессы на поверхности Земли. Их принято называть экзогенными. Источниками внутреннего или эндогенного тепла, является энергия, постоянно возникающая за счет гравитационного уплотнения ядра и распада радиоактивных элементов, находящихся в земной коре и мантии. За счет эндогенного тепла в земной коре происходят такие процессы, как горообразование, тектонические деформации и подвижки, землетрясения. Возникают и существуют очаги и зоны расплавленных магм, вулканические пояса и геотермальные системы.

Совокупность долговременных в геологическом масштабе времени эндогенных и экзогенных процессов в земной коре привело к формированию современного облика и состава земной поверхности, в том числе современной конфигурации континентов и морей, их структурного и вещественного строения.

Вещество земной коры

Вещество земной коры представлено различными горными породами (гранитами, песчаниками, песками, глинами и др.), которые, в свою очередь, состоят из минералов.

Минералы - это природные соединения, имеющие определенный химический состав и внутреннее строение, образующиеся в недрах земной коры и на ее поверхности. Они представляют собой хорошо ограненные кристаллы или зерна с элементами огранки, обладающие определенными физическими свойствами.

3.3.1. Происхождение минералов

В земной коре содержится более I7 000 видов и разновидностей минералов, но лишь около 100 из них имеют широкое распространение и слагают главнейшие горные породы. Эти минералы называют породообразующими, а остальные - второстепенными.

Все многообразные процессы их образования можно разделить на три группы: эндогенные, экзогенные и метаморфические.

Эндогенные процессы протекают в недрах Земли. Минералы рожда­ются по мере кристаллизации магмы - силикатного огненно-жидкого расплава, при высоких температурах и давлениях. Эти минералы плотные, с большой твердостью, стойкие к воде, кислотам, щелочам (кварц, силикаты и др.).

Экзогенные процессы свойственны поверхности земной коры, где имеют место сложные явления взаимодействия литосферы с гидросферой, атмосферой и биосферой. В этих процессах минералы образуются на суше, а также путем выпадения их из водных растворов (озер, морей и др.). Экзогенные минералы в большинстве случаев имеют низкую твердость и активно взаимодействуют с водой или растворяются в ней.

Метаморфические процессы - это перерождение ранее образовавших­ся минералов (эндогенных и экзогенных) под воздействием высоких температур, давлений, а также магматических газов и воды.

Наиболее крупными структурными элементами земной коры являются континенты и океаны, характеризующиеся различным её строением. Эти структурные элементы выделяются по геологическим и геофизическим признакам. Не все пространство, занятое водами океана, представляет собой единую структуру океанического типа. Обширные шельфовые области, например, в Северном Ледовитом океане, обладают континентальной корой. Различия между этими двумя крупнейшими структурными элементами не ограничиваются типом земной коры, а прослеживаются и глубже, в верхнюю мантию, которая под континентами построена иначе, чем под океанами. Эти различия охватывают всю литосферу, подверженную тектоносферным процессам, т.е. прослеживаются до глубин примерно в 750 км.

На континентах выделяются два главных типа структур земной коры: спокойные устойчивые – платформы и подвижные - геосинклинали . По площади распространения эти структуры вполне соизмеримы. Отличие наблюдается в скорости накопления и в величине градиента изменения мощностей: платформы характеризуются плавным постепенным изменением мощностей, а геосинклинали - резким и быстрым. На платформах магматические и интрузивные породы встречаются редко, в геосинклиналях они многочисленны. В геосинклиналях подстилающими являются флишевые формации осадков. Это ритмично многослойные глубоководные терригенные отложения, формирующиеся при быстром погружении геосинклинальной структуры. В конце развития геосинклинальные области подвергаются складкообразованию и превращаются в горные сооружения. В дальнейшем эти горные сооружения проходят стадию разрушения и постепенного перехода в платформенные образования с глубоко дислоцированным нижним этажом отложений горных пород и полого залегающими слоями в верхнем этаже.

Таким образом, геосинклинальная стадия развития земной коры – это самая ранняя стадия, далее геосинклинали отмирают и преобразуются в орогенные горные сооружения и в последующем в платформы. Цикл завершается. Всё это стадии единого процесса развития земной коры.

Платформы - основные структуры континентов, изометричной формы, занимающие центральные области, характеризующиеся выровненным рельефом и спокойными тектоническими процессами. Площадь древних платформ на материках приближается к 40% и для них характерны угловатые очертания с протяженными прямолинейными границами - следствием краевых швов (глубинных разломов), горных систем, линейно вытянутых прогибов. Складчатые области и системы либо надвинуты на платформы, либо граничат с ними через передовые прогибы, на которые в свою очередь надвинуты складчатые орогены (горные цепи). Границы древних платформ резко несогласно пересекают их внутренние структуры, что свидетельствует об их вторичном характере в результате раскола суперматерика Пангеи, возникшего в конце раннего протерозоя.

Например, Восточно-Европейская платформа, выделенная в границах от Урала до Ирландии; от Кавказа, Черного моря, Альп до северных пределов Европы.

Различают древние и молодые платформы .

Древние платформы возникли на месте докембрийской геосинклинальной области. Восточно-Европейская, Сибирская, Африканская, Индийская, Австралийская, Бразильская, Северо-Американская и др. платформы образованы в позднем архее - раннем протерозое, представлены докембрийским кристаллическим фундаментом и осадочным чехлом. Их отличительная черта - двухэтажность строения.

Нижний этаж, или фундамент сложен складчатыми, глубоко метаморфизованными тол­щами пород смятыми в складки, прорванными гранитными интрузивами, с широким развитием гнейсовых и гранито-гнейсовых куполов - специфической формой метаморфогенной складчатости (рис. 7.3). Фундамент платформ формировался в течение длительного времени в архее и раннем протерозое и впоследствии подвергся очень сильному размыву и денудации, в результате которых вскрылись породы, залегавшие раньше на большой глубине.

Рис. 7.3. Принципиальный разрез платформы

1 - породы фундамента; породы осадочного чехла: 2 - пески, песчаник, гравелиты, конгломераты; 3 - глины и карбонаты; 4 - эффузивы; 5 - разломы; 6 - валы

Верхний этаж платформ представлен чехлом, или покровом, пологозалегающих с резким угловым несогласием на фундаменте неметаморфизованных отложений - морских, континентальных и вулканогенных. Поверхность между чехлом и фундаментом отражает основное структурное несогласие в пределах платформ. Строение платформенного чехла оказывается сложным и на многих платформах на ранних стадиях его образования возникат грабены, грабенообразные прогибы - авлакогены (авлос - борозда, ров; ген - рожденный, т.е. рожденные рвом). Авлакогены чаще всего формировались в позднем протерозое (рифее) и образовывали в теле фундамента протяженные системы. Мощность континентальных и реже морских отложений в авлакогенах достигает 5-7 км, а глубокие разломы, ограничивавшие авлакогены, способствовали проявлению щелочного, основного и ультраосновного магматизма, а также специфического для платформ траппового (пород основного состава) магматизма с континентальными базальтами, силлами и дайками. Очень важное значение имеет щелочно-ультраосновная (кимберлитовая) формация, содержащая алмазы в продуктах трубок взрыва (Сибирская платформа, Южная Африка). Этот нижний структурный ярус платформенного чехла, соответствующий авлакогенному этапу развития, сменяется сплошным чехлом платформенных отложений. На начальном этапе развития платформы имели тенденцию медленного погружения с накоплением карбонатно-терригенных толщ, а в более поздний этап развития отмечается накоплением терригенных угленосных толщ. В позднем этапе развития платформ в них образовывались глубокие впадины заполненные терригенными или карбонатно-терригенными отложениями (Прикаспийская, Вилюйская).

Платформенный чехол в процессе формирования неоднократно претерпевал перестройку структурного плана, приуроченную к рубежам геотектонических циклов: байкальского, каледонского, герцинского, альпийского. Участки платформ, испытывавшие максимальные погружения, как правило, примыкают к той пограничной с платформой подвижной области или системе, которая в это время активно развивалась (перикратонные, т.е. на краю кратона, или платформы).

Среди наиболее крупных структурных элементов платформ выделяются щиты и плиты .

Щит - это выступ поверхности кристаллического фундамента платформы ((нет осадочного чехла) ), который на протяжении всего платформенного этапа развития испытывал тенденцию к поднятию. Примерами щитов можно указать: Украинский, Балтийский.

Плиту считают или частью платформы, обладающей тенденцией к прогибанию, или самостоятельной молодой развивающейся платформой (Русская, Скифская, Западно-Сибирская). В пределах плит различаются более мелкие структурные элементы. Это синеклизы (Московская, Балтийская, Прикаспийская) - обширные плоские впадины, под которыми фундамент прогнут, и антеклизы (Белорусская, Воронежская) - пологие своды с поднятым фундаментом и относительно утоненным чехлом.

Молодые платформы сформировались либо на байкальском, каледонском или герцинском фундаменте, отличаются большей дислоцированностью чехла, меньшей степенью метаморфизма пород фундамента и значительной унаследованностью структур чехла от структур фундамента. Эти платформы имеют трехярусное строение: фундамент из метаморфизованных пород геосинклинального комплекса перекрыт толщей из продуктов денудации геосинклинальной области и слабометаморфизованным комплексом осадочных пород.

Кольцевые структуры . Место кольцевых структур в механизме геолого-тектонических процессов пока точно не определено. Самыми крупными планетарными кольцевыми структурами (морфоструктурами) являются впадина Тихого океана, Антарктида, Австралия и др. Выделение подобных структур можно считать условным. Более тщательное изучение кольцевых структур позволило выявить во многих из них элементы спиралеобразных, вихревых структур).

Однако можно выделить структуры эндогенного, экзогенного и космогенного генезиса.

Эндогенные кольцевые структуры метаморфического и магматического и тектоногенного (своды, выступы, впадины, антеклизы, синеклизы) происхождения имеют размеры диаметра от единиц километров до сотен и тысяч километров (рис. 7.4).

Рис. 7.4. Кольцевые структуры к северу от Нью-Йорка

Крупные кольцевые структуры обусловлены процессами, происходящими в глубинах мантии. Боле мелкие структуры обусловлены диапировыми процессами магматических пород, поднимающихся к поверхности Земли и прорывающих и приподнимающих верхний осадочный комплекс. Кольцевые структуры обуславливаются и вулканическими процессами (конусы вулканов, вулканические острова), и процессами диапиризма пластичных горных пород типа солей и глин, плотность которых меньше, чем плотность вмещающих пород.

Экзогенные кольцевые структуры в литосфере образуются в результате воздействия выветривания, выщелачивания, Это карстовые воронки, провалы.

Космогенные (метеоритные) кольцевые структуры – астроблемы. Эти структуры возникают в результате ударов метеоритов. Метеориты диаметром около 10 километров падают на Землю с периодичностью один раз в 100 млн лет, менее крупные значительно чаще Кратер структуры имеет чашеобразную форму с центральным поднятием и валом из выброшенных пород. Метеоритные кольцевые структуры могут иметь диаметр от десятков метров до сотен метров и километров. Например: Прибалхашско-Илийская (700 км); Юкотан (200км.), глубина – более 1км: Аризона (1,2км), глубина более 185м; Южная Африка (335км), от астероида поперечником около 10км.

В геологическом строении Беларуси можно отметить кольцевые структуры тектономагматического происхождения (Оршанская впадина, Белорусский массив), диапировые солевые структуры Припятского прогиба, вулканические древние каналы типа кимберлитовых трубок (на Жлобинской седловине, Северной части Белорусского массива), астроблема в районе Плещениц диаметром 150 метров.

Кольцевые структуры характеризуются аномалиями геофизических полей: сейсмического, гравитационного, магнитного.

Рифтовые структуры континентов (рис. 7.5, 7.6) небольшой ширины до 150 -200 км выражены протяженными литосферными поднятиями своды которых осложнены грабенами проседания: Рейнский (300 км), Байкальский (2500 км), Днепровско-Донецкий (4 000 км), Восточно-Африканский (6 000 км) и др.

Рис. 7.5. Разрез Припятского континентального рифта

Континентальные рифтовые системы состоят из цепочки отрицательных структур (прогибов, рифтов) ранжированного времени заложения и развития, разделенных поднятиями литосферы (седловинами). Рифтовые структуры континентов могут находиться между другими структурами (антеклизами, щитами), пересекать платформы и продолжаться на других платформах. Строение континентальных и океанических рифтовых структур подобно, они имеют симметричное строение относительно оси (рис. 7.5, 7.6), отличие заключается в протяженности, степени раскрытия и наличием некоторых особых черт (трансформных разломов, выступов-мостиков между звеньями).

Рис. 7.6. Профильные разрезы континентальных рифтовых систем

1-фундамент; 2-хемогенно-биогенные осадочные отложения; 3- хемогенно-биогенно -вулканогенная формация; 4- терригенные отложения; 5, 6-разломы

Частью (звеном) Днепровско-Донецкой континентальной рифтовой структуры является Припятский прогиб. Верхним звеном считается Подляско-Брестская впадина, возможно она имеет генетическую связь с аналогичными структурами Западной Европы. Нижним звеньями структуры является Днепровско-Донецкая впадина, затем аналогичные структуры Карпинская и Мангышлакская и далее структуры средней Азии (общая протяженность от Варшавы до Гиссарского хребта). Все звенья рифтовой структуры континентов ограничены листрическими разломами, имеют иерархическое соподчинение по возрасту возникновения, обладают мощной осадочной толщей перспективной на содержание углеводородных залежей.