Принцип работы термоядерного реактора. Термоядерная электростанция - ITER проект

Человечество постепенно подходит к границе необратимого истощения углеводородных ресурсов Земли. Мы почти два столетия добываем из недр планеты нефть, газ и уголь, и уже понятно, что их запасы истощаются с огромной скоростью. Ведущие страны мира давно задумались над созданием нового источника энергии, экологически чистого, безопасного с точки зрения эксплуатации, с колоссальными топливными запасами.

Термоядерный реактор

Сегодня много говорят об использовании так называемых альтернативных видов энергии – возобновляемых источников в виде фотовольтаики, ветроэнергетики и гидроэнергетики. Очевидно, что в силу своих свойств данные направления могут выступить лишь в роли вспомогательных источников энергоснабжения.

В качестве долгосрочной перспективы человечества можно рассматривать только энергетику на основе ядерных реакций.

С одной стороны, интерес к строительству ядерных реакторов на своей территории проявляет все больше государств. Но все же насущной проблемой для ядерной энергетики является переработка и захоронение радиоактивных отходов, а это сказывается на экономических и экологических показателях. Еще в середине XX века ведущие мировые ученые-физики в поисках новых видов энергии обратились к источнику жизни на Земле – Солнцу, в недрах которого при температуре около 20 миллионов градусов протекают реакции синтеза (слияния) легких элементов с выделением колоссальной энергии.

Лучше всех с задачей разработки установки для реализации ядерных реакций синтеза в земных условиях справились отечественные специалисты. Знания и опыт в области управляемого термоядерного синтеза (УТС), полученные в России, легли в основу проекта, являющегося без преувеличения энергетической надеждой человечества – Международного экспериментального термоядерного реактора (ИТЭР, ITER), который возводится в Кадараше (Франция).

История термоядерного синтеза

Первые термоядерные исследования начались в странах, работавших над своей атомной оборонной программой. Это не удивительно, ведь на заре атомной эры главной целью появления реакторов с дейтериевой плазмой было исследование физических процессов в горячей плазме, знание которых было необходимо в том числе и для создания термоядерного оружия. Согласно рассекреченным данным, СССР и США практически одновременно начали в 1950-х гг. работы по УТС. Но, в тоже время, есть исторические свидетельства, что еще в 1932 г. старый революционер и близкий друг вождя мирового пролетариата Николай Бухарин, занимавший в тот период пост председателя комитета ВСНХ и следивший за развитием советской науки, предлагал развернуть в стране проект по исследованию контролируемых термоядерных реакций.

История советского термоядерного проекта не обошлась без забавного факта. Будущего знаменитого академика и создателя водородной бомбы Андрея Дмитриевича Сахарова натолкнуло на идею магнитной термоизоляции высокотемпературной плазмы письмо солдата советской армии. В 1950 г. служивший на Сахалине сержант Олег Лаврентьев направил в Центральный комитет Всесоюзной коммунистической партии письмо, в котором предложил использовать в водородной бомбе дейтерид лития-6 вместо сжиженного дейтерия и трития, а также создать систему с электростатическим удержанием горячей плазмы для осуществления управляемого термоядерного синтеза. Письмо попало на отзыв к тогда еще молодому ученому Андрею Сахарову, который в своем отзыве написал, что «считает необходимым детальное обсуждение проекта товарища Лаврентьева».

Уже к октябрю 1950 г. Андрей Сахаров и его коллега Игорь Тамм сделали первые оценки магнитного термоядерного реактора (МТР). Первая тороидальная установка с сильным продольным магнитным полем, основанная на идеях И. Тамма и А. Сахарова, была построена в 1955 г. в ЛИПАНе. Ее назвали ТМП – тор с магнитным полем. Последующие установки уже назывались ТОКАМАК, по комбинации начальных слогов в словосочетании «ТОроидальная КАмера МАгнитная Катушка». В своем классическом варианте токамак - это тороидальная камера в виде бублика, помещенная в тороидальное магнитное поле. С 1955 по 1966 гг. в Курчатовском институте было построено 8 таких установок, на которых проводилась масса различных исследований. Если до 1969 г. вне СССР был построен токамак только в Австралии, то в последующие годы их возвели в 29 странах, включая США, Японию, страны Европы, Индию, Китай, Канаду, Ливию, Египет. Всего в мире до настоящего времени было построено около 300 токамаков, в том числе 31 в СССР и России, 30 в США, 32 в Европе и 27 в Японии. Фактически три страны – СССР, Великобритания и США вели негласное соревнование, кто первым сумеет обуздать плазму и фактически начать производство энергии «из воды».

Важнейший плюс термоядерного реактора - снижение радиационной биологической опасности примерно в тысячу раз в сравнении со всеми современными атомными энергореакторами.

Термоядерный реактор не выбрасывает СО2 и не нарабатывает «тяжелые» радиоактивные отходы. Этот реактор можно ставить где угодно, в любом месте.

Шаг длиной в полвека

В 1985 г. академик Евгений Велихов от имени СССР предложил ученым Европы, США и Японии вместе создать термоядерный реактор, и уже в 1986 г. в Женеве было достигнуто соглашение о проектировании установки, получившей в дальнейшем имя ИТЭР. В 1992 г. партнеры подписали четырехстороннее соглашение о разработке инженерного проекта реактора. Первый этап строительства по плану должен завершиться к 2020 г., когда запланировано получить первую плазму. В 2011 г. на площадке ИТЭР началось реальное строительство.

Схема ИТЭРа повторяет классический российский токамак, разработанный еще в 1960-х гг. Планируется, что на первом этапе реактор будет работать в импульсном режиме при мощности термоядерных реакций 400–500 МВт, на втором этапе будет отрабатываться режим непрерывной работы реактора, а также система воспроизводства трития.

Реактор ИТЭР не зря называют энергетическим будущим человечества. Во-первых, это крупнейший мировой научный проект, ведь на территории Франции его строят практически всем миром: участвуют ЕС+Швейцария, Китай, Индия, Япония, Южная Корея, Россия и США. Соглашение о сооружении установки было подписано в 2006 г. Страны Европы вносят около 50% объема финансирования проекта, на долю России приходится примерно 10% от общей суммы, которые будут инвестированы в форме высокотехнологичного оборудования. Но самый главный вклад России – сама технология токамака, легшая в основу реактора ИТЭР.

Во-вторых, это будет первая крупномасштабная попытка использовать для получения электроэнергии термоядерную реакцию, которая происходит на Солнце. В-третьих, эта научная работа должна принести вполне практические плоды, и к концу века мир ожидает появления первого прототипа коммерческой термоядерной электростанции.

Ученые предполагают, что первую плазму на международном экспериментальном термоядерном реакторе удастся получить в декабре 2025 г.

Почему такой реактор стали строить буквально всем мировым научным сообществом? Дело в том, что многие технологии, которые планируется использовать при возведении ИТЭРа, не принадлежат сразу всем странам. Не может одно, даже самое высокоразвитое в научно-техническом плане государство иметь сразу сотню технологий высшего мирового уровня во всех областях техники, применяемой в таком высокотехнологичном и прорывном проекте, как термоядерный реактор. А ведь ИТЭР – это сотни подобных технологий.

Россия по многим технологиям термоядерного синтеза превосходит общемировой уровень. Но, к примеру, и японские атомщики также обладают уникальными компетенциями в этой области, вполне применимыми в ИТЭРе.

Поэтому еще в самом начале проекта страны-партнеры пришли к договоренностям о том, кто и что будет поставлять на площадку, и что это должна быть не просто кооперация в инжиниринге, а возможность для каждого из партнеров получить новые технологии от других участников, чтобы в будущем развивать их у себя самостоятельно.

Андрей Ретингер, журналист-международник

Сегодня многие страны принимают участие в термоядерных исследованиях. Лидерами являются Европейский союз, США, Россия и Япония, а программы Китая, Бразилии, Канады и Кореи стремительно наращиваются. Первоначально термоядерные реакторы в США и СССР были связаны с разработкой ядерного оружия и оставались засекреченными до конференции «Атомы для мира», которая состоялась в Женеве в 1958 году. После создания советского токамака исследования ядерного синтеза в 1970 годы стали «большой наукой». Но стоимость и сложность устройств увеличивалась до точки, когда международное сотрудничество стало единственной возможностью продвигаться вперед.

Термоядерные реакторы в мире

Начиная с 1970 годов, начало коммерческого использования энергии синтеза постоянно отодвигалось на 40 лет. Однако в последние годы произошло многое, благодаря чему этот срок может быть сокращен.

Построено несколько токамаков, в том числе европейский JET, британский MAST и экспериментальный термоядерный реактор TFTR в Принстоне, США. Международный проект ITER в настоящее время находится в стадии строительства в Кадараше, Франция. Он станет самым крупным токамаком, когда заработает в 2020 годах. В 2030 г. в Китае будет построен CFETR, который превзойдет ITER. Тем временем КНР проводит исследования на экспериментальном сверхпроводящем токамаке EAST.

Термоядерные реакторы другого типа - стеллаторы - также популярны у исследователей. Один из крупнейших, LHD, начал работу в японском Национальном институте в 1998 году. Он используется для поиска наилучшей магнитной конфигурации удержания плазмы. Немецкий Институт Макса Планка в период с 1988 по 2002 год проводил исследования на реакторе Wendelstein 7-AS в Гархинге, а в настоящее время - на Wendelstein 7-X, строительство которого длилось более 19 лет. Другой стелларатор TJII эксплуатируется в Мадриде, Испания. В США Принстонская лаборатория (PPPL), где был построен первый термоядерный реактор данного типа в 1951 году, в 2008 году остановила строительство NCSX из-за перерасхода средств и отсутствия финансирования.

Кроме того, достигнуты значительные успехи в исследованиях инерциального термоядерного синтеза. Строительство National Ignition Facility (NIF) стоимостью 7 млрд $ в Ливерморской национальной лаборатории (LLNL), финансируемое Национальной администрацией по ядерной безопасности, было завершено в марте 2009 г. Французский Laser Mégajoule (LMJ) начал работу в октябре 2014 года. Термоядерные реакторы используют доставленные лазерами в течение нескольких миллиардных долей секунды около 2 млн джоулей световой энергии в цель размером в несколько миллиметров для запуска реакции ядерного синтеза. Основной задачей NIF и LMJ являются исследования по поддержке национальных военных ядерных программ.

ITER

В 1985 г. Советский Союз предложил построить токамак следующего поколения совместно с Европой, Японией и США. Работа велась под эгидой МАГАТЭ. В период с 1988 по 1990 год были созданы первые проекты Международного термоядерного экспериментального реактора ITER, что также означает «путь» или «путешествие» на латыни, с целью доказать, что синтез может вырабатывать больше энергии, чем поглощать. Канада и Казахстан также приняли участие при посредничестве Евратома и России соответственно.

Через 6 лет совет ITER одобрил первый комплексный проект реактора на основе устоявшейся физики и технологии стоимостью 6 млрд $. Тогда США вышли из консорциума, что вынудило вдвое сократить затраты и изменить проект. Результатом стал ITER-FEAT стоимостью 3 млрд долл., но позволяющий достичь самоподдерживающей реакции и положительного баланса мощности.

В 2003 г. США вновь присоединились к консорциуму, а Китай объявил о своем желании в нем участвовать. В результате в середине 2005 года партнеры договорились о строительстве ITER в Кадараше на юге Франции. ЕС и Франция вносили половину от 12,8 млрд евро, а Япония, Китай, Южная Корея, США и Россия - по 10% каждый. Япония предоставляла высокотехнологичные компоненты, содержала установку IFMIF стоимостью 1 млрд евро, предназначенную для испытания материалов, и имела право на возведение следующего тестового реактора. Общая стоимость ITER включает половину затрат на 10-летнее строительство и половину - на 20 лет эксплуатации. Индия стала седьмым членом ИТЭР в конце 2005 г.

Эксперименты должны начаться в 2018 г. с использованием водорода, чтобы избежать активации магнитов. Использование D-T плазмы не ожидается ранее 2026 г.

Цель ITER - выработать 500 МВт (хотя бы в течение 400 с), используя менее 50 МВт входной мощности без генерации электроэнергии.

Двухгигаваттная демонстрационная электростанция Demo будет производить крупномасштабное на постоянной основе. Концептуальный дизайн Demo будет завершен к 2017 году, а его строительство начнется в 2024 году. Пуск состоится в 2033 году.

JET

В 1978 г. ЕС (Евратом, Швеция и Швейцария) начали совместный европейский проект JET в Великобритании. JET сегодня является крупнейшим работающим токамаком в мире. Подобный реактор JT-60 работает в японском Национальном институте термоядерного синтеза, но только JET может использовать дейтерий-тритиевое топливо.

Реактор был запущен в 1983 году, и стал первым экспериментом, в результате которого в ноябре 1991 года был проведен управляемый термоядерный синтез мощностью до 16 МВт в течение одной секунды и 5 МВт стабильной мощности на дейтерий-тритиевой плазме. Было проведено множество экспериментов с целью изучения различных схем нагрева и других техник.

Дальнейшие усовершенствования JET касаются повышения его мощности. Компактный реактор MAST разрабатывается вместе с JET и является частью проекта ITER.

K-STAR

K-STAR - корейский сверхпроводящий токамак Национального института термоядерных исследований (NFRI) в Тэджоне, который произвел свою первую плазму в середине 2008 года. ITER, являющийся результатом международного сотрудничества. Токамак радиусом 1,8 м - первый реактор, использующий сверхпроводящие магниты Nb3Sn, такие же, которые планируется использовать в ITER. В ходе первого этапа, завершившегося к 2012 году, K-STAR должен был доказать жизнеспособность базовых технологий и достигнуть плазменных импульсов длительностью до 20 с. На втором этапе (2013-2017) проводится его модернизация для изучения длинных импульсов до 300 с в режиме H и перехода к высокопроизводительному AT-режиму. Целью третьей фазы (2018-2023) является достижение высокой производительности и эффективности в режиме длительных импульсов. На 4 этапе (2023-2025) будут испытываться технологии DEMO. Устройство не способно работать с тритием и D-T топливо не использует.

K-DEMO

Разработанный в сотрудничестве с Принстонской лабораторией физики плазмы (PPPL) Министерства энергетики США и южно-корейским институтом NFRI, K-DEMO должен стать следующим шагом на пути создания коммерческих реакторов после ITER, и будет первой электростанцией, способной генерировать мощность в электрическую сеть, а именно 1 млн кВт в течение нескольких недель. Его диаметр составит 6,65 м, и он будет иметь модуль зоны воспроизводства, создаваемый в рамках проекта DEMO. Министерство образования, науки и технологий Кореи планирует инвестировать в него около триллиона корейских вон (941 млн $).

EAST

Китайский экспериментальный усовершенствованный сверхпроводящий токамак (EAST) в Институте физики Китая в Хефее создал водородную плазму температурой 50 млн °C и удерживал ее в течение 102 с.

TFTR

В американской лаборатории PPPL экспериментальный термоядерный реактор TFTR работал с 1982 по 1997 годы. В декабре 1993 г. TFTR стал первым магнитным токамаком, на котором производились обширные эксперименты с плазмой из дейтерий-трития. В следующем году реактор произвел рекордные в то время 10,7 МВт управляемой мощности, а в 1995 году был достигнут рекорд температуры в 510 млн °C. Однако установка не достигла цели безубыточности энергии термоядерного синтеза, но с успехом выполнила цели проектирования аппаратных средств, сделав значительный вклад в развитие ITER.

LHD

LHD в японском Национальном институте термоядерного синтеза в Токи, префектура Гифу, был самым большим стелларатором в мире. Запуск термоядерного реактора состоялся в 1998 г., и он продемонстрировал качества удержания плазмы, сравнимые с другими крупными установками. Была достигнута температура ионов 13,5 кэВ (около 160 млн °C) и энергия 1,44 МДж.

Wendelstein 7-X

После года испытаний, начавшихся в конце 2015 года, температура гелия на короткое время достигла 1 млн °C. В 2016 г. термоядерный реактор с водородной плазмой, используя 2 МВт мощности, достиг температуры 80 млн °C в течение четверти секунды. W7-X является крупнейшим стелларатором в мире и планируется его непрерывная работа в течение 30 минут. Стоимость реактора составила 1 млрд €.

NIF

National Ignition Facility (NIF) в Ливерморской национальной лаборатории (LLNL) был завершен в марте 2009 года. Используя свои 192 лазерных лучей, NIF способен сконцентрировать в 60 раз больше энергии, чем любая предыдущая лазерная система.

Холодный ядерный синтез

В марте 1989 года два исследователя, американец Стенли Понс и британец Мартин Флейшман, заявили, что они запустили простой настольный холодный термоядерный реактор, работающий при комнатной температуре. Процесс заключался в электролизе тяжелой воды с использованием палладиевых электродов, на которых ядра дейтерия концентрировались с высокой плотностью. Исследователи утверждают, что производилось тепло, которое можно было объяснить только с точки зрения ядерных процессов, а также имелись побочные продукты синтеза, включая гелий, тритий и нейтроны. Однако другим экспериментаторам не удалось повторить этот опыт. Большая часть научного сообщества не считает, что холодные термоядерные реакторы реальны.

Низкоэнергетические ядерные реакции

Инициированные претензиями на «холодный термоядерный синтез», исследования продолжились в области низкоэнергетических имеющих некоторую эмпирическую поддержку, но не общепринятое научное объяснение. По-видимому, для создания и захвата нейтронов используются слабые ядерные взаимодействия (а не мощная сила, как при или их синтезе). Эксперименты включают проникновение водорода или дейтерия через каталитический слой и реакцию с металлом. Исследователи сообщают о наблюдаемом высвобождении энергии. Основным практическим примером является взаимодействие водорода с порошком никеля с выделением тепла, количество которого больше, чем может дать любая химическая реакция.

Недавно в Московском физико-техническом институте состоялась российская презентация проекта ИТЭР, в рамках которого планируется создать термоядерный реактор, работающий по принципу токамака. Группа ученых из России рассказала о международном проекте и об участии российских физиков в создании этого объекта. «Лента.ру» посетила презентацию ИТЭР и поговорила с одним из участников проекта.

ИТЭР (ITER, International Thermonuclear Experimental Reactor - Международный термоядерный экспериментальный реактор) - проект термоядерного реактора, позволяющий продемонстрировать и исследовать термоядерные технологии для их дальнейшего использования в мирных и коммерческих целях. Создатели проекта считают, что управляемый термоядерный синтез может стать энергетикой будущего и служить альтернативой современным газу, нефти и углю. Исследователи отмечают безопасность, экологичность и доступность технологии ИТЭР по сравнению с обычной энергетикой. По сложности проект сравним с Большим адронным коллайдером; установка реактора включает в себя более десяти миллионов конструктивных элементов.

Об ИТЭР

Для тороидальных магнитов токамака необходимо 80 тысяч километров сверхпроводящих нитей; общий их вес достигает 400 тонн. Сам реактор будет весить около 23 тысяч тонн. Для сравнения - вес Эйфелевой башни в Париже равен всего 7,3 тысячи тонн. Объем плазмы в токамаке будет достигать 840 кубических метров, тогда как, например, в крупнейшем действующем в Великобритании реакторе такого типа - JET - объем равен ста кубическим метрам.

Высота токамака составит 73 метра, из которых 60 метров будут находиться над землей и 13 метров - под ней. Для сравнения, высота Спасской башни Московского Кремля равна 71 метру. Основная платформа реактора будет занимать площадь, равную 42 гектарам, что сопоставимо с площадью 60 футбольных полей. Температура в плазме токамака будет достигать 150 миллионов градусов Цельсия, что в десять раз выше температуры в центре Солнца.

В строительстве ИТЭР во второй половине 2010 годов планируется задействовать одновременно до пяти тысяч человек - в их число войдут как рабочие и инженеры, так и административный персонал. Многие компоненты ИТЭР будут доставляться от порта у Средиземного моря по специально сооруженной дороге длиной около 104 километров. В частности, по ней будет перевезен самый тяжелый фрагмент установки, масса которого составит более 900 тонн, а длина - около десяти метров. Более 2,5 миллионов кубометров земли вывезут с места строительства установки ИТЭР.

Общие затраты на проектные и строительные работы оцениваются в 13 миллиардов евро. Эти средства выделяются семью основными участниками проекта, представляющими интересы 35 стран. Для сравнения, совокупные расходы на строительство и обслуживание Большого адронного коллайдера почти в два раза меньше, а строительство и поддержание работоспособности Международной космической станции обходится почти в полтора раза дороже.

Токамак

Сегодня в мире существуют два перспективных проекта термоядерных реакторов: токамак (то роидальная ка мера с ма гнитными к атушками) и стелларатор. В обеих установках плазма удерживается магнитным полем, однако в токамаке она имеет форму тороидального шнура, по которому пропускается электрический ток, тогда как в стеллараторе магнитное поле наводится внешними катушками. В термоядерных реакторах происходят реакции синтеза тяжелых элементов из легких (гелия из изотопов водорода - дейтерия и трития), в отличие от обычных реакторов, где инициируются процессы распада тяжелых ядер на более легкие.

Фото: НИЦ «Курчатовский институт»/ nrcki.ru

Электрический ток в токамаке используется также и для начального разогрева плазмы до температуры около 30 миллионов градусов Цельсия; дальнейший разогрев производится специальными устройствами.

Теоретическая схема токамака была предложена в 1951 советскими физиками Андреем Сахаровым и Игорем Таммом , и в 1954 году в СССР была построена первая установка. Однако, ученым не удавалось продолжительное время поддерживать плазму в стационарном режиме, и к середине 1960 годов в мире сложилось убеждение, что управляемый термоядерный синтез на основе токамака невозможен.

Но уже через три года на установке Т-3 в Институте атомной энергии имени Курчатова под руководством Льва Арцимовича удалось нагреть плазму до температуры более пяти миллионов градусов Цельсия и ненадолго удержать ее; ученые из Великобритании, присутствовавшие на эксперименте, на своем оборудовании зафиксировали температуру около десяти миллионов градусов. После этого в мире начался настоящий бум токамаков, так что в мире было построено около 300 установок, самые крупные из которых находятся в Европе, Японии, США и России.

Изображение: Rfassbind/ wikipedia.org

Управление ИТЭР

На чем основана уверенность в том, что ИТЭР заработает через 5-10 лет? На каких практических и теоретических разработках?

С российской стороны заявленный график работ мы выполняем и не собираемся нарушать. К сожалению, мы видим некоторое запаздывание работ, выполняемых другими, в основном Европой; частично есть запаздывание у Америки и наблюдается тенденция к тому, что проект будет несколько задержан. Задержан, но не остановлен. Есть уверенность в том, что он заработает. Концепт самого проекта полностью теоретически и практически просчитан и надежен, поэтому я думаю, что он заработает. Даст ли он в полной мере заявленные результаты... поживем - увидим.

Проект скорее носит исследовательский характер?

Конечно. Заявленный результат не есть полученный результат. Если он будет получен в полной мере, я буду предельно счастлив.

Какие новые технологии появились, появляются или будут появляться в проекте ИТЭР?

Проект ИТЭР является не просто сверхсложным, но еще и сверхнапряженным проектом. Напряженным в плане энергонагрузки, условий эксплуатации определенных элементов, в том числе наших систем. Поэтому новые технологии просто обязаны рождаться в этом проекте.

А есть пример?

Космос. Например, наши алмазные детекторы. Мы обсуждали возможность применения наших алмазных детекторов на космических грузовиках, которые представляют собой ядерные машины, перевозящие некоторые объекты типа спутников или станций с орбиты на орбиту. Есть такой проект космического грузовика. Так как это аппарат с ядерным реактором на борту, то сложные условия эксплуатации требуют анализа и контроля, так что наши детекторы вполне могли бы это сделать. На данный момент тема создания такой диагностики пока не финансируется. Если она будет создана, то может быть применена, и тогда в нее не нужно будет вкладывать деньги на стадии разработки, а только на стадии освоения и внедрения.

Какова доля современных российских разработок нулевых и девяностых годов в сравнении с советскими и западными разработками?

Доля российского научного вклада в ИТЭР на фоне общемирового очень велика. Я не знаю ее точно, но она очень весома. Она явно не меньше российского процента финансового участия в проекте, потому что во многих других командах есть большое количество русских, которые уехали за границу работать в другие институты. В Японии и Америке, везде, мы с ними очень хорошо контактируем и работаем, кто-то из них представляет Европу, кто-то - Америку. Кроме того, там есть и свои научные школы. Поэтому, насчет того, сильнее мы или больше развиваем то, что делали раньше... Один из великих сказал, что «мы стоим на плечах титанов», поэтому та база, которая была наработана в советские времена, неоспоримо велика и без нее мы ничего бы не смогли. Но и в данный момент мы не стоим на месте, мы движемся.

А чем занимается именно ваша группа в ИТЭР?

У меня сектор в отделе. Отдел занимается разработкой нескольких диагностик, наш сектор занимается конкретно разработкой вертикальной нейтронной камеры, нейтронной диагностики ИТЭР и решает большой круг задач от проектирования до изготовления, а также проводит сопутствующие научно-исследовательские работы, связанные с разработкой, в частности, алмазных детекторов. Алмазный детектор - уникальный прибор, первоначально созданный именно в нашей лаборатории. Ранее использовавшийся на многих термоядерных установках, сейчас он применяется достаточно широко многими лабораториями от Америки до Японии; они, скажем так, пошли за нами следом, но мы продолжаем оставаться на высоте. Сейчас мы делаем алмазные детекторы и собираемся выйти на уровень их промышленного производства (мелкосерийного производства).

В каких отраслях промышленности могут использоваться эти детекторы?

В данном случае это термоядерные исследования, в дальнейшем мы предполагаем, что они будут востребованы в ядерной энергетике.

Что именно делают детекторы, что они измеряют?

Нейтроны. Более ценного продукта, чем нейтрон, не существует. Мы с вами также состоим из нейтронов.

Какие характеристики нейтронов они измеряют?

Спектральные. Во-первых, непосредственная задача, которая решается в ИТЭРе, это измерение энергетических спектров нейтронов. Кроме того, они мониторят количество и энергию нейтронов. Вторая, дополнительная задача, касается ядерной энергетики: у нас есть параллельные разработки, которые могут измерять и тепловые нейтроны, являющиеся основой ядерных реакторов. У нас эта задача второстепенная, но она также отрабатывается, то есть мы можем работать здесь и в тоже время делать наработки, которые могут быть вполне успешно применены в ядерной энергетике.

Какими методами вы пользуетесь в своих исследованиях: теоретическими, практическими, компьютерным моделированием?

Всеми: от сложной математики (методов математической физики) и математического моделирования до экспериментов. Все самые разные типы расчетов, которые мы проводим, подтверждаются и проверяются экспериментами, потому что у нас непосредственно экспериментальная лаборатория с несколькими работающими нейтронными генераторами, на которых мы проводим тестирование тех систем, которые сами же и разрабатываем.

У вас в лаборатории есть действующий реактор?

Не реактор, а нейтронный генератор. Нейтронный генератор, по сути, это минимодель тех термоядерных реакций, о которых идет речь. В нем идет все то же самое, только там процесс несколько иной. Он работает по принципу ускорителя - это пучок определенных ионов, ударяющий по мишени. То есть в случае плазмы мы имеем горячий объект, в котором каждый атом имеет большую энергию, а в нашем случае специально ускоренный ион ударяется по мишени, насыщенной подобными же ионами. Соответственно, происходит реакция. Скажем так, это один из способов, которым вы можете делать ту же самую термоядерную реакцию; единственное только, что доказано, что данный способ не обладает высоким КПД, то есть вы не получите положительный энерговыход, но саму реакцию вы получаете - мы непосредственно наблюдаем данную реакцию и частицы и все, что в ней идет.

Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER

Управляемый термоядерный синтез - голубая мечта физиков и энергетических компаний, которую они лелеют не одно десятилетие. Заключить искусственное Солнце в клетку - прекрасная идея. «Но проблема в том, что мы не знаем, как создать такую коробку», - говорил нобелевский лауреат Пьер Жиль де Жен в 1991 году. Однако к середине 2018 года мы уже знаем как. И даже строим. Лучшие умы мира трудятся над проектом международного экспериментального термоядерного реактора ITER - самого амбициозного и дорогого эксперимента современной науки.

Такой реактор стоит в пять раз больше, чем Большой адронный коллайдер. Над проектом работают сотни ученых по всему миру. Его финансирование запросто может перевалить за 19 млрд евро, а первую плазму по реактору пустят только в декабре 2025 года. И несмотря на постоянные задержки, технологические трудности, недостаточное финансирование со стороны отдельных стран-участниц, самый большой в мире термоядерный «вечный двигатель» строится. Преимуществ у него куда больше, чем недостатков. Каких? Рассказ о самой грандиозной научной стройке современности начинаем с теории.

Что такое токамак?

Под действием огромных температур и гравитации в глубинах нашего Солнца и других звезд происходит термоядерный синтез. Ядра водорода сталкиваются, образуют более тяжелые атомы гелия, а заодно высвобождают нейтроны и огромное количество энергии.

Современная наука пришла к выводу, что при наименьшей исходной температуре наибольшее количество энергии производит реакция между изотопами водорода - дейтерием и тритием. Но для этого важны три условия: высокая температура (порядка 150 млн градусов по Цельсию), высокая плотность плазмы и высокое время ее удержания.

Дело в том, что создать такую колоссальную плотность, как у Солнца, нам не удастся. Остается только нагревать газ до состояния плазмы посредством сверхвысоких температур. Но ни один материал не способен вынести соприкосновения со столь горячей плазмой. Для этого академик Андрей Сахаров (с подачи Олега Лаврентьева) в 1950-е годы предложил использовать тороидальные (в виде пустотелого бублика) камеры с магнитным полем, которое удерживало бы плазму. Позже и термин придумали - токамак.

Современные электростанции, сжигая ископаемое топливо, конвертируют механическую мощность (кручения турбин, например) в электричество. Токамаки будут использовать энергию синтеза, абсорбируемую в виде тепла стенками устройства, для нагрева и производства пара, который и будет крутить турбины.

Первый токамак в мире. Советский Т-1. 1954 год

Небольшие экспериментальные токамаки строились по всему миру. И они успешно доказали, что человек может создать высокотемпературную плазму и удерживать ее некоторое время в стабильном состоянии. Но до промышленных образцов еще далеко.

Монтаж Т-15. 1980-е годы

Преимущества и недостатки термоядерных реакторов

Типичные ядерные реакторы работают на десятках тонн радиоактивного топлива (которые со временем превращаются в десятки тонн радиоактивных отходов), тогда как термоядерному реактору необходимы лишь сотни грамм трития и дейтерия. Первый можно вырабатывать на самом реакторе: высвобождающиеся во время синтеза нейтроны будут воздействовать на стенки реактора с примесями лития, из которого и появляется тритий. Запасов лития хватит на тысячи лет. В дейтерии тоже недостатка не будет - его в мире производят десятками тысяч тонн в год.

Термоядерный реактор не производит выбросов парниковых газов, что характерно для ископаемого топлива. А побочный продукт в виде гелия-4 - это безвредный инертный газ.

К тому же термоядерные реакторы безопасны. При любой катастрофе термоядерная реакция попросту прекратится без каких-либо серьезных последствий для окружающей среды или персонала, так как нечему будет поддерживать реакцию синтеза: уж слишком тепличные условия ей необходимы.

Однако есть у термоядерных реакторов и недостатки. Прежде всего это банальная сложность запуска самоподдерживающейся реакции. Ей нужен глубокий вакуум. Сложные системы магнитного удержания требуют огромных сверхпроводящих магнитных катушек.

И не стоит забывать о радиации. Несмотря на некоторые стереотипы о безвредности термоядерных реакторов, бомбардировку их окружения нейтронами, образующимися во время синтеза, не отменить. Эта бомбардировка приводит к радиации. А потому обслуживание реактора необходимо проводить удаленно. Забегая вперед, скажем, что после запуска непосредственным обслуживанием токамака ITER будут заниматься роботы.

К тому же радиоактивный тритий может быть опасен при попадании в организм. Правда, достаточно будет позаботиться о его правильном хранении и создать барьеры безопасности на всех возможных путях его распространения в случае аварии. К тому же период полураспада трития - 12 лет.

Когда необходимый минимальный фундамент теории заложен, можно перейти и к герою статьи.

Самый амбициозный проект современности

В 1985 году в Женеве состоялась первая за долгие годы личная встреча глав СССР и США. До этого холодная война достигла своего пика: сверхдержавы бойкотировали Олимпиады, наращивали ядерный потенциал и на какие-либо переговоры идти не собирались. Этот саммит двух стран на нейтральной территории примечателен и другим важным обстоятельством. Во время него генсек ЦК КПСС Михаил Горбачев предложил реализовать совместный международный проект по развитию термоядерной энергетики в мирных целях.

Спустя год между американскими, советскими, европейскими и японскими учеными было достигнуто соглашение по проекту, началась проработка концептуального дизайна крупного термоядерного комплекса ITER. Проработка инженерных деталей затянулась, США то выходили, то возвращались в проект, к нему со временем присоединились Китай, Южная Корея и Индия. Участники разделяли обязанности по финансированию и непосредственным работам, а в 2010 году наконец стартовала подготовка котлована под фундамент будущего комплекса. Его решили строить на юге Франции возле города Экс-ан-Прованс.

Так что же такое ITER? Это огромный научный эксперимент и амбициозный энергетический проект по строительству самого большого токамака в мире. Сооружение должно доказать возможность коммерческого использования термоядерного реактора, а также решить возникающие физические и технологические проблемы на этом пути.

Из чего состоит реактор ITER?

Токамак - это тороидальная вакуумная камера с магнитными катушками и криостатом массой в 23 тыс. тонн. Как уже понятно из определения, у нас есть камера. Глубокая вакуумная камера. В случае с ITER это будет 850 кубометров свободного объема камеры, в котором на старте будет всего 0,1 грамма смеси дейтерия и трития.

1. Вакуумная камера, где и обитает плазма. 2. Инжектор нейтрального луча и радиочастотный нагрев плазмы до 150 млн градусов. 3. Сверхпроводящие магниты, которые обуздают плазму. 4. Бланкеты, защищающие камеру и магниты от бомбардировки нейтронами и нагрева. 5. Дивертор, который отводит тепло и продукты термоядерной реакции. 6. Инструменты диагностики для изучения физики плазмы. Включают манометры и нейтронные камеры. 7. Криостат - огромный термос с глубоким вакуумом, который защищает от нагрева магниты и вакуумную камеру

А вот так выглядит «маленькая» вакуумная камера с моделями работников внутри. Она 11,4 метра в высоту, а вместе с бланкетами и дивертором будет весить 8,5 тыс. тонн

На внутренних стенках камеры расположены специальные модули, которые называют бланкетами. Внутри них циркулирует вода. Вырывающиеся из плазмы свободные нейтроны попадают в эти бланкеты и тормозятся водой. Из-за чего она нагревается. Сами бланкеты защищают всю остальную махину от теплового, рентгеновского и уже упомянутого нейтронного излучения плазмы.

Такая система необходима для того, чтобы продлить срок работы реактора. Каждый бланкет весит порядка 4,5 тонны, их будет менять роботизированная рука примерно раз в 5-10 лет, так как этот первый ряд обороны будет подвержен испарению и нейтронному излучению.

Но это далеко не все. К камере присоединяется внутрикамерное оборудование, термопары, акселерометры, уже упомянутые 440 блоков бланкетной системы, системы охлаждения, экранирующий блок, дивертор, магнитная система из 48 элементов, высокочастотные нагреватели плазмы, инжектор нейтральных атомов и т. д. И все это находится внутри огромного криостата высотой 30 метров, имеющего такой же диаметр и объем 16 тыс. кубометров. Криостат гарантирует глубокий вакуум и ультрахолодную температуру для камеры токамака и сверхпроводящих магнитов, которые охлаждаются жидким гелием до температуры –269 градусов по Цельсию.

Днище. Одна третья часть основания криостата. Всего этот «термос» будет состоять из 54 элементов

А так выглядит криостат на рендере. Его производство поручено Индии. Внутри «термоса» соберут реактор

Криостат уже собирают. Тут, например, вы можете видеть окошко, через которое в реактор будут забрасывать частицы для нагрева плазмы

Производство всего этого оборудования разделено между странами-участницами. Например, над частью бланкетов работают в России, над корпусом криостата - в Индии, над сегментами вакуумной камеры - в Европе и Корее.

Но это отнюдь не быстрый процесс. К тому же права на ошибку у конструкторов нет. Команда ITER сперва моделирует нагрузки и требования к элементам конструкции, их испытывают на стендах (например, под воздействием плазменных пушек, как дивертор), улучшают и дорабатывают, собирают прототипы и опять тестируют перед тем, как выдать финальный элемент.

Первый корпус тороидальной катушки. Первый из 18 гигантских магнитов. Одну половину сделали в Японии, другую - в Корее

18 гигантских магнитов D-образной формы, расставленные по кругу так, чтобы образовать непроницаемую магнитную стену. Внутри каждого из них заключены 134 витка сверхпроводящего кабеля

Каждая такая катушка весит примерно 310 тонн

Но одно дело собрать. И совсем другое - все это обслуживать. Из-за высокого уровня радиации доступ к реактору заказан. Для его обслуживания разработано целое семейство роботизированных систем. Часть будет менять бланкеты и кассеты дивертора (весом под 10 тонн), часть - управляться удаленно для устранения аварий, часть - базироваться в карманах вакуумной камеры с HD-камерами и лазерными сканерами для быстрой инспекции. И все это необходимо делать в вакууме, в узком пространстве, с высокой точностью и в четком взаимодействии со всеми системами. Задачка посложнее ремонта МКС.Токамак ITER станет первым термоядерным реактором, который будет вырабатывать больше энергии, чем необходимо для нагрева самой плазмы. К тому же он сможет поддерживать ее в стабильном состоянии намного дольше ныне существующих установок. Ученые утверждают, что именно для этого и нужен столь масштабный проект.

С помощью такого реактора специалисты собираются преодолеть разрыв между нынешними небольшими экспериментальными установками и термоядерными электростанциями будущего. Например, рекорд по термоядерной мощности был установлен в 1997 году на токамаке в Британии - 16 МВт при затраченных 24 МВт, тогда как ITER конструировали с прицелом на 500 МВт термоядерной мощности от 50 МВт вводимой тепловой энергии.

На токамаке будут испытаны технологии нагрева, контроля, диагностики, криогеники и дистанционного обслуживания, то есть все методики, необходимые для промышленного образца термоядерного реактора.

Объемов мирового производства трития будет недостаточно для электростанций будущего. А потому на ITER отработают также технологию размножающегося бланкета, содержащего литий. Из него под действием термоядерных нейтронов и будут синтезировать тритий.

Однако не стоит забывать, что это пускай и дорогой, но эксперимент. Токамак не будет оборудован турбинами или другими системами конвертации тепла в электричество. То есть коммерческого выхлопа в виде непосредственной генерации энергии не будет. Почему? Потому что это только усложнило бы проект с инженерной точки зрения и сделало бы его еще более дорогим.

Схема финансирования довольно запутанная. На стадии строительства, создания реактора и прочих систем комплекса примерно 45% расходов несут страны Евросоюза, остальные участники - по 9%. Однако бóльшая часть взносов - это «натура». Большинство компонентов поставляются в ITER напрямую от стран-участниц.

Они прибывают во Францию по морю, а из порта к стройплощадке доставляются по дороге, специально переделанной французским правительством. На 104 км «Пути ITER» страна потратила 110 млн евро и 4 года работы. Трасса была расширена и усилена. Дело в том, что до 2021 года по ней пройдут 250 конвоев с огромными грузами. Самые тяжелые детали достигают 900 тонн, самые высокие - 10 метров, самые длинные - 33 метра.

Пока ITER не ввели в эксплуатацию. Однако уже существует проект электростанции DEMO на термоядерном синтезе, задача которой как раз и продемонстрировать привлекательность коммерческого использования технологии. Этот комплекс должен будет непрерывно (а не импульсно, как ITER) генерировать 2 ГВт энергии.

Сроки реализации нового глобального проекта зависят от успехов ITER, но по плану 2012 года первый пуск DEMO произойдет не раньше 2044 года.

Уже больше полувека в разных странах идет напряженная работа. Ученые пытаются подобрать ключ к еще одной, самой грандиозной энергетической кладовой. Они хотят добывать энергию из воды. Многим термоядерная электростанция справедливо видится единственным путем освобождения человечества из углеводородной ловушки.

Чем выше температура вещества, тем быстрее движутся его частицы. Но даже в плазме два свободных атомных ядра сталкиваются между собой без всяких последствий. Слишком велики у атомных ядер силы взаимного отталкивания. Но если поднять температуру плазмы до сотен миллионов градусов, энергия быстрых частиц может сделаться выше «барьера отталкивания». Тогда из двух легких атомных ядер при столкновении получится одно, более тяжелое ядро.

И рождение нового вещества произойдет с мощным выбросом энергии

Водород, как самый легкий элемент на Земле, особенно пригоден для участия в термоядерных реакциях. Точнее, не тот водород, который вместе с кислородом составляет обычную воду, а его тяжелый собрат дейтерий, атомный вес которого вдвое больше. Добывать его можно из тяжелой воды, которую он образует, соединяясь с кислородом. На шесть тысяч капель обыкновенной воды приходится в природе одна капля тяжелой. Сперва кажется, что это очень мало, но подсчеты показывают: только океаны нашей планеты содержат около 38 000 млрд. т тяжелой воды.

Если мы научимся эффективно добывать скрытую в ней энергию, человечество будет обеспечено таким запасом на миллиарды лет благодаря термоядерным электростанциям.

Термоядерные реакции (так называют соединения легких атомных ядер с образованием более тяжелых ядер и с выделением энергии) уже проведены искусственно на Земле. Но пока что это были мгновенные, неуправляемые, разрушительные реакции - взрывы водородных (а точнее, дейтериевых) бомб вроде «Кузькиной матери». И если с термоядерным оружием дела обстоят прекрасно, то вот с мирным реактором все не так просто.

Физики многих стран ведут международные исследования, направленные на создание промышленного термоядерного реактора и построения электростанции на его основе. Такой реактор позволит овладеть поистине неисчерпаемыми запасами энергии, выведет человечество на принципиально новый уровень существования. На сегодняшний день, существующие реакторы (токамаки) работают непродолжительное время. За все время исследований было построено порядка 300 термоядерных реакторов. Лишь в 2007 году была впервые произведена безубыточная энергетическая реакция, когда токамак выдал на четверть (1:1,25) больше потребляемой энергии.

В ближайшее время предполагается довести это соотношение до 1:50. В связи с этим, токамаки можно рассматривать только как экспериментальные, но не как промышленные установки. Из всех технических задач современной науки, вопрос промышленного термоядерного синтеза можно без преувеличения назвать самым амбициозным начинанием, способным перевернуть представления о производстве, экологии, строительстве, сельском хозяйстве и транспорте.

Термоядерный синтез способен кардинально перекроить как политическую, так и экономическую карту мира. Если любая страна сможет иметь в своем распоряжении безграничный источник экологически чистой энергии, в скором времени пустыни зацветут, а от бензина и газа придется отказаться. Энергоемкие процессы, вроде плавки металла, или выработки алюминия смогут производиться в любом месте. Станет возможной добыча и разработка ранее невыгодных месторождений металлов и веществ.

Появятся новые быстрые фантастические виды транспорта

Поистине, ни одно изобретение не меняло и не изменит наш мир так, как термоядерный реактор, наше маленькое земное солнце. Ясно, что тормозом развития промышленного термоядерного синтеза является не только сама наука. Фундаментальные исследования ведутся, причем нельзя сказать, что они безуспешны. Однако вопрос ввода в серию рабочего агрегата наталкивается на мощнейшее лобби сырьевых и перерабатывающих корпораций. Стоит учитывать, что бюджеты многих нефтедобывающих консорциумов превышают бюджеты многих стран. И эти монстры не собираются утрачивать свои астрономические доходы и власть.

Поэтому, как бы грустно это не звучало, действующий термоядерный реактор, а тем более, электростанцию, мы увидим либо по исчерпанию нефти и газа, либо по исчерпанию капиталистической модели общества. Причем, даже по окончании нефти и газа, энергетическое лобби вряд ли позволит получать всем подряд доступ к безграничной энергетике. А раз так, то и вывод напрашивается печальный – термоядерная электростанция не может быть построена и запущена в серию капиталистами. Она может быть реализована только в социалистическом обществе. Для корпоратократов такой реактор смертельно опасен и работа над ним не будет завершена никогда.

Просто о сложном – Термоядерные электростанции для производства электроэнергии

  • Галерея изображений, картинки, фотографии.
  • Термоядерные электростанции – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Термоядерные электростанции.
  • Ссылки на материалы и источники – Термоядерные электростанции для производства электроэнергии.