Закон Архимеда: история открытия и суть явления для чайников. Архимед - биография, информация, личная жизнь

Архимед – греческий механик, физик, математик, инженер. Родился в Сиракузах (Сицилия). Его отец Фидий был астрономом и математиком. Отец занимался воспитанием и образованием сына. От него Архимед унаследовал способности к математике, астрономии и механике. Архимед обучался в Александрии (Египет), которая в то время была культурным и научным центром. Там он познакомился с Эратосфеном – греческим математиком, астрономом, географом и поэтом, который стал наставником Архимеда и покровительствовал ему долгое время.

Архимед сочетал в себе таланты инженера-изобретателя и ученого-теоретика. Он стал основателем теоретической механики и гидростатики, разработал методы нахождения площадей поверхностей и объемов различных фигур и тел.

По легенде, Архимеду принадлежит множество удивительных технических изобретений, которые завоевали ему славу среди современников. Предполагают, что Архимед с помощью зеркал и отражения солнечных лучей смог поджечь римский флот, который осадил Александрию. Этот случай является наглядным примером отличного владения оптикой.

Архимеду также приписывают изобретение катапульты, военной метательной машины, конструирование планетария, в котором планеты двигались. Учёный создал винт для подъёма воды (Архимедов винт), который до сих пор используется и представляет собой водоподъемную машину, вал с винтовой поверхностью, находящийся в наклонной трубе, погруженной в воду. Во время вращения винтовая поверхность вала перемещает воду по трубе на разные высоты.

Архимед написал много научных трудов: «О спиралях», «О коноидах и сфероидах», «О шаре и цилиндре», «О рычагах», «О плавающих телах». А в трактате «О песчинках» он подсчитал количество песчинок в объёме земного шара.

Свой знаменитый закон Архимед открыл при интересных обстоятельствах. Царь Гиреон II, которому служил Архимед, хотел узнать, не подмешивали ли ювелиры серебро к золоту, когда изготавливали корону. Для этого необходимо определить не только массу, но объём короны, чтобы рассчитать плотность металла. Определить объём изделия неправильной формы непростая задача, над которой Архимед долго размышлял.

Решение пришло Архимеду в голову, когда он погрузился в ванну: уровень воды в ванне поднялся после того, как тело учёного было опущено в воду. То есть объем его тела вытеснил равный ему объем воды. С криком «Эврика!» Архимед побежал во дворец, даже не потрудившись одеться. Он опустил корону в воду и определил объем вытесненной жидкости. Задача была решена!

Таким образом, Архимед открыл принцип плавучести. Если твердое тело погрузить в жидкость, оно вытеснит объем жидкости, равный объему погруженной в жидкость части тела. Тело может плавать в воде, если его средняя плотность меньше плотности жидкости, в которую его поместили.

Закон Архимеда гласит: на всякое тело, погруженное в жидкость или газ, действует выталкивающая сила, направленная вверх и равная весу вытесненной им жидкости или газа.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Архимед Это удивительный человек, имя которого люди помнят уже более 2 000 лет. Он был талантливым математиком, механиком и инженером. Каждому школьнику знакомо чиcло π, правило равновесия рычага, «золотое» правило механики, закон плавания тел и т. д. Имя Архимеда живёт в легендах.

Содержание: 1. Биография 2. Математические труды 3. Архимедов винт 4. Архимедова спираль 5. Небесная сфера» Архимеда 6. Правило равновесия рычага 7. Золотое правило механики 8. Устройство блока 9. Легенды 10. Заключение

Математические труды Архимед был замечательным механиком-практиком и теоретиком, но основным делом его жизни была математика. По словам Плутарха, Архимед был просто одержим ею. Он забывал о пище, совершенно не заботился о себе. Его работы относились почти ко всем областям математики того времени: ему принадлежат замечательные исследования по геометрии, арифметике, алгебре. Он нашёл все полуправильные многогранники, которые теперь носят его имя, значительно развил учение о конических сечениях, дал геометрический способ решения кубических уравнений, корни которых он находил с помощью пересечения параболы и гиперболы. Архимед провёл и полное исследование этих уравнений, то есть нашёл, при каких условиях они будут иметь действительные положительные различные корни и при каких корни будут совпадать. Усечённый тетраэдр Курносый куб Кубоктаэдр

До нас дошло 13 трактатов Архимеда Трактат "О шаре и цилиндре" установил, что соотношение их объемов равно 2/3. Шар вписанный в цилиндр был выбит на его могиле. Сочинение "О равновесии плоских фигур" посвящена исследованию центра тяжести различных фигур. В трактате "О коноидах и сфероидах" Архимед рассматривает шар, эллипсоид, параболоид и гиперболоид вращения и их сегменты и определяет их объемы. В сочинении "О спиралях" исследует свойства кривой, получившей его имя и касательной к ней. В трактате "Измерение круга" Архимед предлагает метод определения числа Пи, который использовался до конца 17 в. В "Псаммите" ("Исчисление песчинок") Архимед предлагает систему счисления, позволявшую записывать сверхбольшие числа, что поражало воображение современников. «Сосчитал» их вплоть до 10 64. В "Квадратуре параболы" определяет площадь сегмента параболы сначала с помощью "механического" метода, а затем доказывает результаты геометрическим путем. Архимеду принадлежат "Книга лемм", "Стомахион" и обнаруженные только в 20 в. "Метод" (или "Эфод") и "Правильный семиугольник". В "Методе" Архимед описывает процесс открытия в математике, проводя четкое различие между своими механическими приемами и математическим доказательством.

Сохранившиеся сочинения Архимеда можно разделить на три группы: Первая группа - определение площадей криволинейных фигур или соответственно, объёмов тел. Архимед нашёл общий метод, позволяющий найти любую площадь или объём. Он определил с помощью своего метода площади и объёмы почти всех тел, которые рассматривались в античной математике. Лучшим своим достижением он считал определение площади поверхности и объёма шара. Идеи Архимеда легли в основу интегрального исчисления.

Вторую группу составляют работы по геометрическому анализу статистических гидростатических задач: «О равновесии плоских фигур» . Знаменитый закон гидростатики, вошедший в науку как закон Архимеда, сформулирован в трактате «О плавающих телах» . На всякое тело, погруженное в жидкость, действует выталкивающая сила, направленная вверх и равная весу вытесненной им жидкости. Закон Архимеда справедлив и для газов. FА = ρж·g∙VТ = Рж

Он сумел оценить точность этого приближения: Для доказательства он построил для круга вписанный и описанный 96 -угольники и вычислил длины их сторон.

Архимедов винт Архимед прославился многими механическими конструкциями. Изобретённый им бесконечный винт для вычерпывания воды перемещает воду по трубе на высоту до 4 м. Он до сих пор применяется в Египте.

Архимедова спираль плоская кривая, траектория точки М, движущейся из точки О с постоянной скоростью по лучу, вращающемуся около полюса О с постоянной угловой скоростью. Уравнение в полярных координатах: r = a∙f, где a - постоянная.

«Небесная сфера» Архимеда Архимед построил планетарий или «небесную сферу» , при движении которой можно было наблюдать движение пяти планет, восход Солнца и Луны, фазы и затмения Луны, исчезновение обоих тел за линией горизонта. После гибели Архимеда планетарий был вывезен Марцеллом в Рим, где на протяжении нескольких веков вызывал восхищение

Открыл «золотое» правило механики: во сколько раз механизм дает выигрыш в силе, во столько же раз получается проигрыш в расстоянии «Дайте мне точку опоры, и я переверну весь мир»

Легенды Легенда рассказывает, что построенный Гиероном в подарок египетскому царю Птолемею роскошный корабль «Сирокосия» никак не удавалось спустить на воду. Архимед соорудил систему блоков (полиспаст), с помощью которой он смог проделать эту работу с помощью немногих людей.

Легенда о короне Существует легенда о том, как царь Гиерон поручил Архимеду проверить, не подмешал ли ювелир серебра в его золотую корону. Целостность изделия нарушать было нельзя. Архимед долго не мог выполнить эту задачу. Решение пришло случайно, когда он лег в ванную и обратил внимание на вытеснение жидкости. Архимед закричал: «Эврика!» - «Нашел!» , и выбежал голым на улицу. Он понял, что объем тела, погруженного в воду, равен объему вытесненной воды. Таким образом, Архимед узнал, что в золото было подмешано серебро, разоблачил обманщика и открыл основной закон гидростатики!

Осада Сиракуз Инженерный гений Архимеда с особой силой проявился во время осады Сиракуз римлянами в 212 до н. э. А ведь в это время ему было уже 75 лет! Построенные Архимедом мощные метательные машины забрасывали римские войска тяжёлыми камнями. Думая, что они будут в безопасности у самых стен города, римляне кинулись туда, но в это время лёгкие метательные машины близкого действия забросали их градом ядер. Мощные краны захватывали железными крюками корабли, приподнимали их кверху, а затем бросали вниз, так что корабли переворачивались и тонули. По легенде, во время осады римский флот был сожжён защитниками города, которые при помощи зеркал и отполированных до блеска щитов сфокусировали на них солнечные лучи по приказу Архимеда.

Уже в 212 г. до н. э. с помощью крюков и захватов, соединенных с блоками, сиракузцы захватывали у римлян средства осады. Сооружением военных машин и обороной города руководил Архимед.

Легенды о смерти По первой, в разгар боя он сидел на пороге своего дома, углубленно размышляя над чертежами, сделанными им прямо на дорожном песке. В это время пробегавший мимо римский воин наступил на чертёж, и возмущенный ученый бросился на римлянина с криком: «Не тронь моих чертежей!» . Эта фраза стоила Архимеду жизни. Солдат остановился и хладнокровно зарубил старика мечом.

Вторая версия гласит, что полководец римлян Марцелл специально послал воина на поиски Архимеда. Воин разыскал ученого и сказал: - Иди со мной, тебя зовет Марцелл. - Какой еще Марцелл? ! Я должен решить задачу! Разгневанный римлянин выхватил меч и убил Архимеда.

Об Архимеде в стихах И до нас за очень много лет В трудный год родные Сиракузы Защищал ученый Архимед. Замыслом неведомым охвачен Он не знал, что в городе враги, И в раздумье на земле горячей Выводил какие-то круги. Он чертил задумчивый, не гордый, Позабыв текущие дела, - И внезапно непонятной хордой Тень копья чертеж пересекла. Но убийц спокойствием пугая, Он, не унижаясь, не дрожа, Руку протянул, оберегая Не себя, а знаки чертежа.

Наметив в самых общих чертах принципы кинематического описания движения жидкостей и газов, приступим к рассмотрению основных идей динамики движения, то есть выяснения причин того или иного вида движения. Основным понятием динамики является взаимодействие тел и его характеристика − сила. Следовательно, для динамического описания движения жидкостей и газов необходимо рассмотреть взаимодействие различных частей жидкой среды между собой.
 Как мы уже отмечали, эти силы обусловлены межмолекулярными взаимодействиями, их полное описание чрезвычайно сложно. Но сейчас нам нет необходимости досконально знать законы этих взаимодействий − достаточно принять во внимание, что при деформации жидкости (то есть изменении расстояния между молекулами) возникают силы упругости.
 Помимо межмолекулярных сил (сил давления, обусловленных деформацией жидкости), на жидкость могут действовать и внешние силы, например, гравитационные (в частности, сила тяжести), инерционные, электрические, магнитные и т. д. Имеет смысл разделить эти внешние силы на две группы − объемные, действующие на все части жидкости, и поверхностные, действующие только на поверхность жидкости со стороны окружающих тел (например, стенок сосуда).
 Пусть жидкость находится в состоянии покоя. В качестве исходных «аксиом» примем законы динамики Ньютона и очевидный экспериментальный факт: жидкость обладает свойством текучести. Полученные в данном разделе результаты в равной мере применимы и к газам.
 Рассмотрим, какие следствия можно извлечь из этих «аксиом».

1. Сила, с которой покоящаяся жидкость действует р на стенки сосуда, направлена перпендикулярно к этой стенке (рис. 189).

Рис. 189
 Докажем это утверждение методом от противного. Пусть в некоторой части сосуда сила давления F д , действующая на стенку, направлена под некоторым (не прямым) углом к последней. По третьему закону Ньютона, стенка действует на жидкость с силой F , равной по величине и противоположной по направлению: F = −F д . Разложим эту силу на нормальную (направленную перпендикулярно стенке) F n и тангенциальную (направленную по касательной к стенке) F τ составляющие (рис. 190).

рис. 190
 При наличии тангенциальной силы, действующей на жидкость, жидкость, вследствие текучести, придет в движение. В состоянии равновесия таких сил быть не может. Следовательно, силы взаимодействия стенки и жидкости нормальны к стенке.

2. Силы, действующие на границу мысленно выделенного объема неподвижной жидкости, перпендикулярны этой границе (рис. 191).

рис. 191
 Это утверждение доказывается аналогично предыдущему − методом от противного.
 Итак, вопрос о направлении сил взаимодействия жидкости с сосудом и различных частей жидкости решается однозначно: эти силы направлены по нормали к границе раздела. Если внутри жидкости выделить некоторую малую площадку, то модуль силы, действующей на одну сторону этой площадки, не зависит от ее ориентации. Это свойство внутренних сил позволяет ввести скалярную силовую характеристику взаимодействий внутри жидкости − давление.
 Строго говоря, силы взаимодействия между различными частями жидкости изменяются от точки к точке, поэтому изменение ориентации не малой площадки приведет к изменению силы, действующей на нее.  Для малой 1 же площадки можно пренебречь изменением сил взаимодействия в ее пределах. Поэтому модуль рассматриваемой силы в этом случае оказывается пропорциональным площади. Следовательно, отношение модуля силы к площади площадки является характеристикой сил упругости внутри жидкости.
Давление − отношение модуля силы, действующей на выделенную малую площадку, к площади этой площадки:

 Как мы уже отмечали, жидкость может быть как сжата, так и растянута, поэтому силы давления (силы упругости), оставаясь нормальными, могут быть направлены в разные стороны от границы жидкости. Для указания направления можно указывать знак давления. Принято считать давление положительным, если сила давления жидкости направлена наружу от рассматриваемого объема, что соответствует сжатой жидкости, в случае же растянутой жидкости силы упругости направлены внутрь жидкости, поэтому давление такой жидкости считается отрицательным.
 Понятно, что сила, действующая на площадку, может зависеть от ее положения внутри жидкости, поэтому и давление может изменяться при переходе от одной точки объема жидкости к другой. В этом смысле давление следует рассматривать как точечную характеристику, то есть как функцию координат р(х, у, z) .

Конечно, измерить давление «в данной точке» невозможно − измерению поддается только сила, действующая на площадку конечной площади. Кроме того, бессмысленно говорить о давлении на площадях, сравнимых с размерами отдельной молекулы. Однако, с точки зрения простоты математического описания, удобней рассматривать давление именно как функцию координат, понимая физическую ограниченность этого понятия.

Учитывая, что сила, действующая на малую площадку, направлена по нормали к площадке, а ее модуль выражается из формулы (1), вектор силы можно записать в виде

где n − единичный вектор нормали к площадке.
 Для вычисления суммарной силы давления на некоторую поверхность внутри жидкости необходимо разбить эту поверхность на малые участки (рис. 192),

рис. 192
вычислить силу, действующую на каждую площадку, и просуммировать все эти силы:

 Продолжим рассмотрение следствий из условий равновесия жидкости.

3. Векторная сумма внешних сил, действующих на любую мысленно выделенную часть неподвижной жидкости, равна нулю.
 Это утверждение просто повторяет общее условие равновесия любого тела, в том числе и жидкого.

4. При отсутствии объемных сил, действующих на жидкость, давление во всех точках объема одинаково.
 Для доказательства этого положения мысленно выделим внутри жидкости произвольно ориентированный узкий цилиндр (рис. 193).

рис. 193
 Так как жидкость в выделенном объеме находится в покое, то силы, действующие на основания цилиндра, равны по модулю и противо-положны по направлению: F 1 = F 2 . Из этого соотношения и определения давления следует, что давления в точках оснований цилиндров равны. Аналогичные рассуждения справедливы для любого цилиндра, следовательно, давление во всех точках жидкости одинаково.
 Справедливо и обратное утверждение.

5. Если давление жидкости во всех точках одинаково, то суммарная сила, действующая на произвольную замкнутую поверхность, полностью находящуюся внутри жидкости, равна нулю.
 Выделим внутри объема жидкости произвольную замкнутую поверхность. На каждый малый участок поверхности действует сила давления жидкости, направленная перпендикулярно данному участку. Докажем, что сумма проекций сил давления на произвольное направление (например, ось X ) равна нулю. Для этого разобьем выделенную часть объема на узкие цилиндры, боковые поверхности которых параллельны выделенной оси (рис. 194).


рис. 194
 На основания этих цилиндров действуют силы давления, равные:
F 1 = pS 1 , F 2 = pS 2 ,
где S 1 , S 2 − площади оснований цилиндров.
Проекции сил на выбранное направление оси равны:
F 1х = рS 1 cosα 1 , F 2х = −рS 2 соsα 2 ,
где α 1 , α 2 − углы между нормалями к основаниям и осью X .
 Теперь заметим, что
S 1 cosα 1 = S 2 cosα 2 = S o ,
где S o − площадь поперечного сечения выбранного цилиндра, поэтому
F 1x + F 2х = 0.
 Аналогичное соотношение справедливо для всех цилиндров, на которые разбито тело, поэтому сумма проекций сил на ось X равна нулю. Так как ось X выбрана произвольно, то сумма проекций сил давления на любую ось равна нулю, следовательно, и векторная сумма рассматриваемых сил также равна нулю.

6. Закон Паскаля. Давление на поверхность жидкости, произведенное внешними силами, передается жидкостью во все стороны одинаково.
 Данный закон справедлив и в том случае, когда на жидкость действуют объемные силы.
Пусть жидкость находится в сосуде под поршнем (рис. 195).

рис. 195
 Приложим к поршню дополнительную нормальную силу F . Под действием этой силы жидкость дополнительно сожмется, что приведет к увеличению давления. В состоянии равновесия эта дополнительная сила будет скомпенсирована равным увеличением силы давления на поршень со стороны жидкости. Следовательно, увеличение давления жидкости непосредственно под поршнем будет равно:
Δp o = F/S o ,
где S o − площадь поршня.
 Выделим внутри жидкости произвольную замкнутую поверхность, часть которой совпадает с поверхностью поршня. В состоянии равновесия сумма объемных сил F об , действующих на выделенную часть жидкости, и поверхностных сил давления

равна нулю:

 Дополнительная сила давления на часть выбранной поверхности под поршнем должна быть скомпенсирована увеличением поверхностных сил давления на остальную поверхность. Обозначим увеличение давления вблизи части ΔS i , поверхности − Δp i . В состоянии равновесия должно выполняться соотношение, аналогичное (2):

Учитывая, что суммарная объемная сила не изменилась, из (2), (3) следует, что соотношение

должно выполняться для любой поверхности внутри объема жидкости, что возможно только в том случае, если величины Δpi одинаковы во всех точках жидкости, то есть
Δp i = Δp o = F/S o .
 Отметим, что закон Паскаля можно интерпретировать следующим образом: в состоянии равновесия изменение давления в одной точке жидкости приводит к равному изменению давления во всех остальных точках жидкости.

Существенным в данной формулировке является упомина¬ние о состоянии равновесия, потому что при увеличении давления в некоторой точке жидкости требуется некоторый промежуток времени, чтобы произошло установление равновесия в остальных частях объема жидкости, иными словами, возмущение жидкости распространяется внутри объема с конечной скоростью. Позднее мы покажем, что эта скорость есть скорость распространения упругих волн (т. е. звука) в данной жидкости.

Важными следствием закона Паскаля является так называемый «гидростатический парадокс»: давление жидкости на дно сосуда не зависит от формы сосуда. Он проявляется в свойствах сообщающихся сосудов. Закон Паскаля также является теоретическим обоснованием таких устройств, как гидравлический пресс, сифон и т. д.

7. В поле тяжести земли давление жидкости на глубине определяется по формуле
p = ρgh, (4)
где ρ − плотность жидкости, g − ускорение свободного падения.
 Давление, определяемое формулой (4), называется гидростатическим.
 Для вывода этой формулы достаточно выделить внутри объема жидкости вертикальный цилиндр высотой h , верхнее основание которого площадью S находится на свободной поверхности жидкости, и рассмотреть условия его равновесия. Объемные силы, действующие на жидкость внутри выделенного цилиндра (в данном случае это сила тяжести mg = ρgV = ρghS ), уравновешиваются силой давления на нижнее основание цилиндра pS . Из условия равенства этих сил следует формула (4).

Заметим, что формула (4) описывает только ту часть давления, которая обусловлена силой тяжести, действующей на жидкость. В общем случае, полное давление на глубине h будет равно сумме гидростатического давления и внешнего давления на поверхность жидкости (например, атмосферного давления).

8. Закон Архимеда. На погруженное в жидкость тело действует выталкивающая сила, равная суммарной объемной силе, действующей на жидкость в объеме тела.
 Доказательство этого закона достаточно просто. По своей природе выталкивающая сила есть векторная сумма сил давления жидкости на поверхность тела (рис. 196).

рис. 196
 Следовательно, эта сила определяется распределением давления жидкости вблизи поверхности тела. Мысленно уберем тело из жидкости, оставив только его «оболочку», которую заполним той же жидкостью. От такой замены суммарная сила давления на поверхность не изменится. С другой стороны, очевидно, что жидкость в объеме тела, находящаяся в такой же жидкости, будет находиться в равновесии. Поэтому суммарная сила давления будет равна по величине и противоположна по направлению объемной силе, действующей на жидкость в объеме тела.
 В частном случае, если единственной объемной силой является сила тяжести и при постоянной плотности жидкости ρ выталкивающая сила (сила Архимеда F A ) по модулю равна силе тяжести, действующей на жидкость в объеме тела V и противоположна ей по направлению, то
F A = ρgV,
векторной форме,

 Заметим, что выталкивающая сила появляется только в том случае, когда давление внутри жидкости различно в различных точках. В случае постоянного давления (каким бы большим оно не было) суммарная сила давления равна нулю. Различие давлений обусловлено только объемными силами, действующими на жидкость. Поверхностные силы, как было нами показано, не могут привести к возникновению разности давлений в различных точках жидкости. Допустим, что жидкость находится под поршнем − увеличение силы давления на поршень не приведет к увеличению выталкивающей силы, действующей на погруженное в жидкость тело.
 В общем случае, выталкивающая сила может описываться более сложными формулами, которые могут учитывать изменение плотности жидкости, изменение ускорения свободного падения как по величине, так и по направлению, присутствие других объемных сил − инерционных, электрических, магнитных и т. д.

1 Точнее, следует говорить о бесконечно малой площадке.


Исторические дополнения
Блез Паскаль (фр. Blaise Pascal) родился 19 июня 1623 года в городе Клермон-Ферран (Франция) в семье председателя налогового управления (рис.). В 1631 году, после смерти матери, семья переехала в Париж.
 Ранние работы Блеза относились к естественным и прикладным наукам. Отец Блеза был сборщиком налогов, и, наблюдая за его бесконечными утомительными расчетами, Паскаль задумал создать вычислительное устройство, которое могло бы помочь этой работе. В 1634 году (в 11 лет) где-то за обеденным столом кто-то зацепил ножом фаянсовое блюдо. Оно зазвучало. Но стоило прикоснуться к блюду пальцем, как звук исчез. Чтобы найти этому объяснение, Паскаль проводит опыты, результаты которых ложатся в основу его «Трактата о звуках».
 В 1639 году, в 16 лет, он написал замечательный трактат о предмете проективной геометрии. В это же время он доказал теорему Паскаля: если вершины шестиугольника лежат на некотором коническом сечении, то три точки пересечения прямых, содержащих противоположные стороны, лежат на одной прямой. Этот результат и 400 следствий из него Паскаль изложил в виде трактата (не сохранился).
 В 1642 году (в 19 лет) Паскаль начал создание своей суммирующей машины − «паскалины» − и до 1652 года построил около 50 ее вариантов. Изобретённый Паскалем принцип связанных колёс почти на три столетия стал основой создания большинства вычислительных устройств.
 В 1648 году, несмотря на болезнь ног, Паскаль завершил «опыты, касающиеся пустоты», и доказал, что в природе нет так называемого «страха пустоты». Он изучал равновесие жидкости под действием атмосферного давления. В историю физики Паскаль вошел, установив основной закон гидростатики и подтвердив предположение Торричелли о существовании атмосферного давления. Исходя из своих открытий, Паскаль изобрел гидравлический пресс, на века опередивший технологию того времени.
 В 1654 году, в переписке с Пьером де Ферма, закладываются основы теории вероятностей. В комбинаторике исследованы свойства «треугольника Паскаля» и его применение к подсчёту числа сочетаний.
 19 августа 1662 года после мучительной, продолжительной болезни Блез Паскаль умер.


Архимед (ок. 287 − 212 до н. э.) , величайший древнегреческий математик и механик (рис.).
Уроженец греческого города Сиракузы на острове Сицилия, Архимед был приближенным управлявшего городом царя Гиерона (и, вероятно, его родственником). Возможно, какое-то время Архимед жил в Александрии − знаменитом научном центре того времени. То, что сообщения о своих открытиях он адресовал математикам, связанным с Александрией, например, Эратосфену, подтверждает мнение о том, что Архимед являлся одним из деятельных преемников Евклида, развивавших математические традиции александрийской школы. Вернувшись в Сиракузы, Архимед находился там вплоть до своей гибели при захвате Сиракуз римлянами в 212 до н. э.
В разгар боя 75-летний Архимед сидел на пороге своего дома, углублённо размышляя над чертежами, сделанными им прямо на до-рожном песке. В это время пробегавший мимо римский воин наступил на чертёж, и возмущённый ученый бросился на римлянина с криком: «Не тронь моих чертежей!». Солдат остановился и хладнокровно зарубил старика мечом. Кроме того, Плутарх сообщает, что Архимед, «как утверждают, завещал родным и друзьям установить на его могиле описанный вокруг шара цилиндр с указанием отношения объема описанного тела к вписанному», что было одним из наиболее славных его открытий.
Легенды об Архимеде . Помимо замечательных математических работ, Архимед прославился как изобретатель различного рода механических устройств и инструментов. Правда, авторство Архимеда во многих случаях вызывает сомнения. Так, считается, что Архимед был изобретателем так называемого архимедова винта, который служил для подъема воды на поля и явился прообразом корабельных и воздушных винтов, хотя, судя по всему, такого рода устройство использовалось и раньше.
 Плутарх рассказывает, что в ответ на просьбу царя Гиерона продемонстрировать, как тяжелый груз может быть сдвинут малой силой, Архимед взял трехмачтовое грузовое судно, которое перед этим с превеликим трудом вытянули на берег много людей, усадил на него множество народа и загрузил обычным грузом. После этого Архимед сел поодаль и стал без особых усилий тянуть на себя канат, перекинутый через полиспаст, отчего судно легко и плавно, словно по воде, «поплыло» к нему». Именно в связи с этой историей связываются слова Архимеда: «Дайте мне, где стать, и я сдвину Землю». Известна также история, что царь Гиерон поручил Архимеду проверить, из чистого ли золота сделана его корона или же ювелир присвоил часть золота, сплавив его с серебром. «Размышляя над этой задачей, Архимед как-то зашел в баню и там, погрузившись в ванну, заметил, что количество воды, переливающейся через край, равно количеству воды, вытесненной его телом. Это наблюдение подсказало Архимеду решение задачи о короне, и он, не медля ни секунды, выскочил из ванны и, как был нагой, бросился домой, крича во весь голос о своем открытии: «Эврика! Эврика!» (греч. «Нашел! Нашел!»)».
 Инженерный гений Архимеда с особой силой проявился во время осады Сиракуз римлянами в 212 году до н. э. в ходе Второй Пунической войны. А ведь в это время ему было уже 75 лет! Построенные Архимедом мощные метательные машины забрасывали римские войска тяжёлыми камнями. Думая, что они будут в безопасности у самых стен города, римляне кинулись туда, но в это время лёгкие метательные машины близкого действия забросали их градом ядер. Мощные краны захватывали железными крюками корабли, приподнимали их кверху, а затем бросали вниз, так что корабли переворачивались и тонули.
 Римляне вынуждены были отказаться от мысли взять город штурмом и перешли к осаде. Знаменитый историк древности Полибий писал: «Такова чудесная сила одного человека, одного дарования, умело направленного на какое-либо дело... римляне могли бы быстро овладеть городом, если бы кто-либо изъял из среды сиракузян одного старца».

 Архимед известен как один из основоположников успешного применения геометрии к статике и гидростатике. В книге «О равновесии плоских фигур» он приводит чисто геометрический вывод закона рычага. По сути, его доказательство основано на сведении общего случая рычага с плечами, обратно пропорциональными приложенным к ним силам, к частному случаю равноплечего рычага и равных сил. Все доказательство от начала и до конца пронизано идеей геометрической симметрии.
 В своем сочинении «О плавающих телах» Архимед применяет аналогичный метод к решению задач гидростатики. Архимед доказывает теоремы относительно величины погруженной части тела и веса тела в жидкости как с большей, так и с меньшей плотностью, чем само тело. Далее он формулирует закон, согласно которому «всякое тело, погруженное в жидкость, теряет по сравнению со своим весом в воздухе столько, сколько весит вытесненная им жидкость».

Жидкостей и газов, согласно которому на всякое тело, пог-руженное в жидкость (или газ), действует со стороны этой жидкости (или газа) выталкивающая сила, равная весу вытесненной телом жидкости (газа) и направленная по вертикали вверх.

Этот закон был открыт древнегреческим ученым Архимедом в III в. до н. э. Свои исследования Архимед описал в трактате «О плавающих телах», который считается одним из последних его научных трудов.

Ниже приведены выводы, следующие из закона Архимеда .

Действие жидкости и газа на погруженное в них тело.

Если погрузить в воду мячик, наполненный воздухом, и отпустить его, то он всплывет. То же самое произойдет со щепкой, с пробкой и многими другими телами. Какая же сила заставляет их всплывать?

На тело, погруженное в воду, со всех сторон действуют силы давления воды (рис. а ). В каж-дой точке тела эти силы направлены перпендикулярно его поверхности. Если бы все эти силы были одинаковы, тело испытывало бы лишь всестороннее сжатие. Но на разных глубинах гидростати-ческое давление различно: оно возрастает с увеличением глубины. Поэтому силы давления, приложенные к нижним участкам тела, оказываются больше сил давления, действующих иа тело сверху.

Если заменить все силы давления , приложенные к погруженному в воду телу, одной (резуль-тирующей или равнодействующей) силой, оказывающей на тело то же самое действие, что и все эти отдельные силы вместе, то результирующая сила будет направлена вверх. Это и заставляет тело всплывать. Эта сила называется выталкивающей силой, или архимедовой силой (по имени Архимеда, который впервые указал на ее существование и установил, от чего она зависит). На рисунке б она обозначена как F A .

Архимедова (выталкивающая) сила действует на тело не только в воде, но и в любой другой жидкости, т. к. в любой жидкости существует гидростатическое давление, разное на разных глу-бинах. Эта сила действует и в газах, благодаря чему летают воздушные шары и дирижабли.

Благодаря выталкивающей силе вес любого тела, находящегося в воде (или в любой другой жидкости), оказывается меньше, чем в воздухе, а в воздухе меньше, чем в безвоздушном про-странстве. В этом легко убедиться, взвесив гирю с помощью учебного пружинного динамометра сначала в воздухе, а затем опустив ее в сосуд с водой.

Уменьшение веса происходит и при переносе тела из вакуума в воздух (или какой-либо другой газ).

Если вес тела в вакууме (например, в сосуде, из которого откачан воздух) равен P 0 , то его вес в воздухе равен:

,

где F´ A — архимедова сила, действующая на данное тело в воздухе. Для большинства тел эта сила ничтожно мала и ею можно пренебречь, т. е. можно считать, что P возд. =P 0 =mg .

Вес тела в жидкости уменьшается значительно сильнее, чем в воздухе. Если вес тела в воздухе P возд. =P 0 , то вес тела в жидкости равен P жидк = Р 0 — F A . Здесь F A — архимедова сила, действующая в жидкости. Отсюда следует, что

Поэтому чтобы найти архимедову силу, действующую на тело в какой-либо жидкости, нужно это тело взвесить в воздухе и в жидкости. Разность полученных значений и будет архимедовой (выталкивающей) силой.

Другими словами, учитывая формулу (1.32), можно сказать:

Выталкивающая сила, действующая на погруженное в жидкость тело, равна весу жидкости, вытесненной этим телом.

Определить архимедову силу можно также теоретически. Для этого предположим, что тело, погруженное в жидкость, состоит из той же жидкости, в которую оно погружено. Мы имеем пра-во это предположить, так как силы давления, действующие на тело, погруженное в жидкость, не зависят от вещества, из которого оно сделано. Тогда приложенная к такому телу архимедова сила F A будет уравновешена действующей вниз силой тяжести m ж g (где m ж — масса жидкости в объеме данного тела):

Но сила тяжести равна весу вытесненной жидкости Р ж . Таким образом.

Учитывая, что масса жидкости равна произведению ее плотности ρ ж на объем, формулу (1.33) можно записать в виде:

где V ж — объем вытесненной жидкости. Этот объем равен объему той части тела, которая погру-жена в жидкость. Если тело погружено в жидкость целиком, то он совпадает с объемом V всего тела; если же тело погружено в жидкость частично, то объем V ж вытесненной жидкости меньше объема V тела (рис. 1.39).

Формула (1.33) справедлива и для архимедовой силы, действующей в газе. Только в этом слу-чае в нее следует подставлять плотность газа и объем вытесненного газа, а не жидкости.

С учетом вышеизложенного закон Архимеда можно сформулировать так:

На всякое тело, погруженное в покоящуюся жидкость (или газ), действует со стороны этой жидкости (или газа) выталкивающая сила, равная произведению плотности жидкости (или га-за), ускорения свободного падения и объема той части тела, которая погружена в жидкость (или газ).

Наименование параметра Значение
Тема статьи: Архимед.
Рубрика (тематическая категория) География

Это ученый-естественник в строгом смысле, не философ, хотя очень разносторонний ученый. Он - математик , взявшийся за труднейшие проблемы своего времени: вычисление площадей криволинœейных фигур, вычисление поверхностей и объёма цилиндра и шара. В его методах проявляются элементы высшей математики, в частности, интегральные методы. Причем уже древние восхищались строгостью, изяществом и простотой его доказательств. Он - оптик , но, к сожалению, его объёмистый труд об отражениях “Катоптрика” не сохранился. Он - астроном , строитель первого “планетария” (астрономической сферы) и прибора для измерения видимого диаметра Солнца. Он – физик , создатель гидростатики и автор одноименного закона. Наконец, он - механи к, причем одновременно и механик-теоретик (создатель статики) и механик-практик - автор многочисленных механических приспособлений, в т.ч. боевых машин, успешно использовавшихся при обороне Сиракуз.

В гидростатике Архимед формулирует известный закон . При этом он исходит из одного предположения, задающего модель идеальной жидкости: “Предположим, что жидкость имеет такую природу, что из ее частиц, расположенных на одинаковом уровне и прилежащих друг к другу, менее сдавленные выталкиваются более сдавленными и что каждая из частиц сдавливается жидкостью, находящейся над ней по отвесу, в случае если только жидкость не заключена в каком-нибудь сосуде и не сдавливается чем-то другим". Это единственное предположение, исходя из которого, Архимед выводит всœе остальное. С гидростатическими исследованиями, связан и метод определœения удельного веса , разработанный Архимедом.

В теоретической механике Архимед.- основатель статики, одного из трех разделов механики. Именно он разработал учение о равновесии твердых тел : установил понятие центра тяжести , разработал методы его нахождения, дал первую теорию рычага, вообще создал единую систему, дающую возможность решать задачи на равновесие, которая оформилась в самостоятельную научную область.

В области практической механики Архимед изобрел “архимедов винт ” - винт для подъема воды, который затем широко использовался в Египте для подъема воды из Нила на высоту до 4-х метров; около сорока других механических изобретений.

Архимед по своему геометрическому подходу к решению физических проблем и ценностным установкам близок, скорее, к математической программе Платона, но по своему инженерному и экспериментальному, опытному характеру идет даже дальше Аристотеля к методам и воззрениям новой физики. Тем не менее, на своей могиле он просил установить памятник с изображением шара, вписанного в цилиндр и надписать установленное им соотношение их объёмов 2:3, считая это главной своей заслугой .

Астрономия. На первом этапе становления греческой астрономии данный процесс шел в двух направлениях:

I) выдвижение астрономических гипотез. В первом направлении развивали астрономию в основном философы: Анаксимандр, Анаксимен, Пифагор, Анаксагор, Филолай. По-видимому, пифагорейцам принадлежит идея о шарообразности Земли , очевидно, из идей симметрии и геометрической идеальности. Эта идея стала общепризнанной в античной астрономии. Еще Анаксимандр выдвинул идею о центральном положении Земли, свободно висящей в пространстве (правда ее форма ему виделась цилиндрической). Парадоксальная идея, но также принятая практически без доказательств.

2)развитие систематических и всœе более точных и регулярных наблюдений. занимался календарной астрономией: Клеостат с Тенедоса (конец 6-го в. до н.э.), Эпонид Хиосский (ок.450 ᴦ.до н.э.), Метон и Евктемон из Афин (ок. 430 ᴦ. до н.э.).

Выдвигались разного рода негеоцентрические системы . Из них первой следует признать пифагорейскую, согласно которой в центре мира находится огонь - Гестия . Земля совместно с подобной ей Противоземлей вращается вокруг Гестии. Гестия в находящуюся между Землей и Противоземлей щель посылает свет, отражением которого светит Солнце, планеты и звезды. Подвижные планеты, Луна и Солнце находятся на одной оси

Наиболее близкой к современным воззрениям следует признать гелиоцентрическую систему Аристарха Самосского (ок. 250 ᴦ. до н.э.). Аристарх Самосский как раз считал звезды неподвижными и удаленными практически бесконечно от Земли, а Солнце, находящимся в центре, вокруг которого движется Земля, вращаясь суточным обращением. “Сфера звезд...так велика, что круг, по которому обращается Земля, так относится к расстоянию до неподвижных звезд, как центр сферы к ее поверхности”. Исходя из этой системы, он рассчитал соотношение между диаметрами Земли, Солнца и Луны и диаметрами орбит Земли и Луны . Причем методы расчета были безупречны, но точность измерения весьма низка, и в связи с этим результаты далеки от действительных.

Система Аристарха Самосского не была принята современиками. Почему? Из нее вытекали два следствия, не гармонирующие с античным представлением о космосœе: практическая его бесконечность и разноприродность планет и звезд. Птолемей оценивает расстояние от Земли до Солнца в 1200 радиусов Земли, что в 10 000 раз меньше действительного. По- видимому большинство греческих ученых не могло согласиться с тем, что звезды находятся невообразимо далеко от Земли .

Античная география получила свое завершение в работах Птолемея и Страбона. Труды названных ученых выражают два разных взгляда на предмет, содержание и задачи науки.

Птолемей Клавдий (90-160 ᴦ. н.э.). Астроном, географ, математик. 13 книг ʼʼВеликое построение астрономииʼʼ - свод астрономических знаний древних, геоцентрическая модельмира, каталог звезд (1028), описание видимой формы Млечного пути. ʼʼРуководство по географииʼʼ - 8 книᴦ. Приведены данные по 8000 географическим объектам. Труды сохранили свое значение до 16 в.

Согласно Птолемею в центре мира находится неподвижная Земля, вокруг которой движутся планеты. Он заложил основы географии – 8 книᴦ. Различал географию и хорографию (страноведение). Предложил две новые проекции: простую коническую и псевдоконическую равнопромежуточную. ʼʼГеография – есть линœейное изображение всœей ныне известной нам части Земли со всœем тем, что на ней находитсяʼʼ. Труды Птолемея являются вершиной античной географии. При этом его интересовало только положение пунктов на Земле, но не сущность географических явлений.

“Генеральной линией” развития греческой космологии стала геоцентрическая система Платона - Аристотеля – Птолемея. Платон поручил своему ученику Евдоксу Книдскому (408 – З55 гᴦ.до.н.э.) разработать астрономическую модель Вселœенной в соответствие со своими космогоническими идеями, что последний и осуществил . В результате возникла система, в которой небесные светила располагались на правильных сферах (хрустальных).

Гераклит Понтийский (4 в. до н.э.) в разработке этой системы добавил идею о том, что Меркурий и Венера вращаются вокруг Солнца. Он посœещал лекции Аристотеля. Написал ʼʼДиалог о природеʼʼ, где развил представление о ʼʼнесопряженных молекулахʼʼ управляемых божеством, мировым разумом. Обсуждал астрономические теории: вращения Земли вокруг своей оси, вращение Меркурия и Венеры вокруг Солнца, Солнца – вокруг Земли. У него есть гениальная догадка о существовании других планетных систем.

Эратосфен . Величайший географ периода эллинизма, глава библиотеки в Александрии. Его ʼʼГеографияʼʼ содержала не только внешнее описание ойкумены, но и включала вопросы математики и физики. Он дал критический обзор истории географии от Гомера. Он критически относился к древнейшему греческому поэту. Он излагает теорию шарообразности Земли, рассматривает изменение ее поверхности, составляет карту ойкумены, ввел сетку меридианов и параллелœей, определил окружность земного шара по экватору порядка 39690 км. Он высказал предположение о преобладании водной поверхности над сушей, что Индию можно достичь западным морским путем. Попытался разделить сушу на сфрагиды - ϶ᴛᴏ первый опыт районирования. А. Гумбольдт видел в труде Эратосфена первую попытку дать целостную картину физического мироописания.

Страбон (род. 64-23 ᴦ. до н.э.).Хранитель ценнейшего научного наследия античности. Он ничего не открыл, ничего не изобрел, не придумал. Он не был самостоятельным мыслителœем, творческой натурой. Но он умел собирать факты и мнения, анализировать их и приводить в систему. Он подробно рассказал о современном ему мире. Себя именовал философом.

Страбон воспринял философию стоиков: проповедь всœемирной гармонии, стремиться к согласию и доброте, самосовершенствованию. Как истинный стоик, Страбон вел размеренную жизнь, не позволял страстям вырываться наружу, заводил друзей и избегал наживать врагов, был осторожен в словах и поступках.

Написал 43 книги ʼʼИсторические запискиʼʼ - исторический труд охватывает 100 лет истории Римского государства.

Страбон много путешествует. ʼʼЯ считаю, что наука география, которой я теперь решил заняться, так же как и всякая другая наука, входит в круг занятий философаʼʼ. 100 стр.
Размещено на реф.рф
первых двух книг ʼʼГеографии ʼʼ посвящены анализу и критике сочинœений предшественников. Всего 17 книг .

1. Природу и человека связывает с хозяйственной деятельностью.

2. Применил исторический метод для географического исследования.

3. Подчеркивает значение географического положения, природных условий,

4. выдвигает идею научного подхода к районированию.

5. Метод Страбона чисто описательный.

6. Он не стремился к объяснению причин и теоретическим построениям и даже гордился тем, что только добросовестно собирал и изложил факты. Объяснение природных явлений он предоставлял философии.

Архимед. - понятие и виды. Классификация и особенности категории "Архимед." 2017, 2018.

  • - Сила статического давления жидкости на криволинейные стенки. Закон Архимеда

    Вопросы по теме 1.4. 1. Как определяется равнодействующая сил давления на твердую поверхность и что понимается под символом рT? 2. Может ли равнодействующая сил давления действовать с внешней стороны твердой поверхности, где жидкости нет? 3. Что такое центр давления? 4.... .


  • - Плавание тел. Закон Архимеда.

    Гидростатический парадокс Основное уравнение гидростатики. Гидростатическое давление и его свойство. Жидкость, находящаяся в покое подвергается действию внешних сил двух категорий: массовых и поверхностных. В результате этого под действием... .


  • -

    Задача 1 Большой поршень гидравлической машины поднимает груз массой Задачи для самостоятельной работы Гидравлическая машина (пресс, подъемник) Основные части гидравлической машины _____________________________________________ _____________________________________________... .


  • - Закон Архимеда и плавание тел

    Пусть тело произвольной формы полностью погружено в жидкость (рис. 17). Выделим цилиндрическую часть этого тела с бесконечно малой площадью поперечного сечения. Рис. 17. Гидростатическая подъемная сила Сила давления, действующая на цилиндрическую часть тела: ,... .


  • - Машины Архимеда

    Учение о рычаге разработано было впервые древнегреческим математиком Архимедом, жившим в Сиракузах (Сицилия) за двести лет до нашей эры. Легенды, в которых, вероятно, кроется большая доля истины, повествуют о замечательных машинах, которые были придуманы им на основе... .