Что ждет первых колонистов на марсе. Изменение ДНК человека с помощью генной инженерии

Части материалов и предметов первой необходимости (прежде всего - кислород , вода , продукты питания) из местных ресурсов этот путь ведения исследований окажется в целом экономически эффективнее, чем отправка возвращаемых экспедиций или создание станций-поселений для работы вахтовым методом. Кроме того, в перспективе Марс может стать удобным полигоном для проведения масштабных научных и технических экспериментов, опасных для земной биосферы .

Что касается добычи полезных ископаемых, то, с одной стороны, Марс может оказаться достаточно богат минеральными ресурсами, причём из-за отсутствия свободного кислорода в атмосфере возможно наличие на нём богатых месторождений самородных металлов , с другой - на текущий момент стоимость доставки грузов и организации добычи в агрессивной среде (непригодная для дыхания разрежённая атмосфера и большое количество пыли) настолько велика, что никакое богатство месторождений не обеспечит окупаемости добычи.

Для решения демографических проблем потребуется, во-первых, переброска с Земли населения в масштабах, несопоставимых с возможностями современной техники (как минимум - миллионы человек), во-вторых - обеспечение полной автономии колонии и возможности более или менее комфортной жизни на поверхности планеты, для чего потребуется создание на ней пригодной для дыхания атмосферы , гидросферы , биосферы и решение проблем защиты от космического излучения . Сейчас всё это можно рассматривать лишь умозрительно, как перспективу на отдалённое будущее.

Пригодность для освоения

Сходство с Землёй

Различия

  • Сила тяжести на Марсе примерно в 2,63 раза меньше, чем на Земле (0,38 g). До сих пор неизвестно, достаточно ли этого, чтобы избежать проблем для здоровья, возникающих при невесомости .
  • Температура поверхности Марса гораздо ниже земной. Максимальная отметка составляет +30 °C (в полдень на экваторе), минимальная - −123 °C (зимой на полюсах). При этом температура приповерхностного слоя атмосферы - всегда ниже нуля.
  • В силу того, что Марс находится дальше от Солнца , количество достигающей его поверхности солнечной энергии примерно вдвое меньше, чем на Земле.
  • Орбита Марса имеет больший эксцентриситет , что увеличивает годовые колебания температуры и количества солнечной энергии.
  • Атмосферное давление на Марсе слишком мало, чтобы люди могли выжить без пневмокостюма . Жилые помещения на Марсе придётся оборудовать шлюзами , наподобие устанавливаемых на космических кораблях, которые могли бы поддерживать земное атмосферное давление .
  • Марсианская атмосфера состоит в основном из углекислого газа (95 %). Поэтому, несмотря на её малую плотность, парциальное давление CO 2 на поверхности Марса в 52 раза больше, чем на Земле, что, возможно, позволит поддерживать растительность .
  • У Марса есть два естественных спутника, Фобос и Деймос . Они гораздо меньше и ближе к планете, чем Луна к Земле. Эти спутники могут оказаться полезными [ ] при проверке средств колонизации астероидов .
  • Магнитное поле Марса слабее земного примерно в 800 раз. Вместе с разреженной (в 100-160 раз в сравнении с Землёй) атмосферой это существенно увеличивает количество достигающего его поверхности ионизирующего излучения . Магнитное поле Марса не способно защитить живые организмы от космической радиации, а атмосферу (при условии её искусственного восстановления) - от рассеивания солнечным ветром.
  • Обнаружение аппаратом Феникс , приземлившимся вблизи Северного полюса Марса в 2008 году, в грунте Марса перхлоратов ставит под сомнение возможность выращивания в марсианской почве земных растений без дополнительных экспериментов либо без искусственного грунта .
  • Радиационный фон на Марсе в 2,2 раза превышает радиационный фон на Международной космической станции и приближается к установленным пределам безопасности для космонавтов.
  • Вода, вследствие низкого давления, закипает на Марсе уже при температуре +10 °C . Другими словами, вода изо льда, почти минуя жидкую фазу, быстро превращается в пар.

Принципиальная достижимость

Время полёта с Земли до Марса (при нынешних технологиях) составляет 259 суток по полуэллипсу и 70 - по параболе . В принципе, доставка на Марс необходимого минимума снаряжения и припасов на начальный период существования небольшой колонии не выходит за пределы возможностей современной космической техники, с учётом перспективных разработок, срок реализации которых оценивается в одно-два десятилетия. На текущий момент принципиальной нерешённой проблемой остаётся защита от излучений во время перелёта; в случае её решения сам перелёт (в особенности, если он будет производиться «в одну сторону») вполне реален, хотя и требует вложения огромных финансовых средств и решения целого ряда научных и технических вопросов различного масштаба.

При этом необходимо заметить, что «стартовое окно» для полёта между планетами открывается один раз в 26 месяцев. С учётом времени перелёта даже в самых идеальных условиях (удачное расположение планет и наличие транспортной системы в состоянии готовности) ясно, что, в отличие от околоземных станций или лунной базы, марсианская колония в принципе не будет иметь возможности получить оперативную помощь с Земли или эвакуироваться на Землю в случае возникновения нештатной ситуации, с которой невозможно справиться своими силами. Вследствие вышеизложенного, просто для выживания на Марсе колония должна иметь гарантированный срок автономии не менее трёх земных лет . С учётом возможности возникновения в течение этого срока самых различных нештатных ситуаций, аварий оборудования, природных катаклизмов ясно, что для обеспечения выживаемости колония должна иметь значительный резерв оборудования, производственных мощностей во всех отраслях собственной промышленности и, что на первых порах самое главное - энергогенерирующих мощностей, так как и всё производство, и вся сфера жизнеобеспечения колонии будет остро зависеть от наличия электроэнергии в достаточных количествах.

Условия обитания

Без защитного снаряжения человек не сможет прожить на поверхности Марса и нескольких минут. Тем не менее, по сравнению с условиями на жарких Меркурии и Венере , холодных внешних планетах и лишённых атмосферы Луне и астероидах , условия на Марсе гораздо более пригодные для освоения. На Земле есть такие разведанные человеком места, в которых природные условия во многом похожи на марсианские. Атмосферное давление Земли на высоте 34 668 метров - рекордная по высоте точка, которой достиг воздушный шар с командой на борту (4 мая г. ) - приблизительно вдвое превышает максимальное давление на поверхности Марса.

Результаты последних исследований показывают, что на Марсе имеются значительные и при этом непосредственно доступные залежи водяного льда, почва, в принципе, пригодна для выращивания растений, а в атмосфере присутствует в достаточно большом количестве диоксид углерода . Всё это в совокупности позволяет рассчитывать (при наличии достаточного количества энергии) на возможность производства растительной пищи, а также добычи воды и кислорода из местных ресурсов, что значительно снижает потребность в технологиях замкнутого цикла жизнеобеспечения , который был бы необходим на Луне, астероидах или на удалённой от Земли космической станции .

Основные сложности

Главные опасности, подстерегающие космонавтов во время полета к Марсу и пребывания на планете, следующие:

Возможные физиологические проблемы при нахождении на Марсе у экипажа будут следующие:

Способы терраформирования Марса

Основные задачи

Способы

  • Управляемое обрушение на поверхность Марса кометы , одного крупного или множества малых ледяных астероидов из Главного пояса или одного из спутников Юпитера , с целью разогреть атмосферу и пополнить её водой и газами .
  • Вывод на орбиту спутника Марса массивного тела, астероида из Главного пояса (например, Цереры) с целью активации эффекта планетарного «динамо», и усиления собственного магнитного поля Марса .
  • Изменение магнитного поля с помощью прокладки вокруг планеты кольца из проводника или сверхпроводника с подключением к мощному источнику энергии.
  • Взрыв на полярных шапках нескольких ядерных бомб. Недостаток метода - радиоактивное заражение выделенной воды .
  • Помещение на орбиту Марса искусственных спутников, способных собирать и фокусировать солнечный свет на поверхность планеты для её разогрева .
  • Колонизация поверхности архебактериями (см. археи) и другими экстремофилами , в том числе генно-модифицированными, для выделения необходимых количеств парниковых газов или получения необходимых веществ в больших объёмах из уже имеющихся на планете . В апреле г. Германский центр авиации и космонавтики сделал доклад о том, что в лабораторных условиях симуляции атмосферы Марса (Mars Simulation Laboratory) некоторые виды лишайников и цианобактерии после 34 дней пребывания приспособились и показали возможность фотосинтеза .

Способы воздействия, связанные с выводом на орбиту или падением астероида, требуют основательных расчётов, направленных на изучение подобного воздействия на планету, её орбиту, скорость вращения и многое другое.

Серьёзной проблемой на пути колонизации Марса является отсутствие магнитного поля, защищающего от солнечной радиации. Для полноценной жизни на Марсе без магнитного поля не обойтись.

Необходимо отметить, что практически все вышеперечисленные действия по терраформированию Марса на текущий момент являются не более чем «мысленными экспериментами», так как в большинстве своём не опираются на какие-либо существующие в реальности и хотя бы минимально проверенные технологии, а по приблизительным энергозатратам многократно превышают возможности современного человечества. Например, для создания давления, достаточного хотя бы для выращивания в открытом грунте, без герметизации, наиболее неприхотливых растений, требуется увеличить имеющуюся массу марсианской атмосферы в 5-10 раз, то есть доставить на Марс либо испарить с его поверхности массу порядка 10 17 - 10 18 кг. Нетрудно посчитать, что, например, для испарения такого количества воды потребуется приблизительно 2,25 10 12 ТДж, что более чем в 4500 раз превышает всё современное ежегодное энергопотребление на Земле (см. ).

Радиация

Пилотируемый полёт на Марс

Создание космического корабля для полёта к Марсу - сложная задача. Одной из главных проблем является защита космонавтов от потоков частиц солнечной радиации . Предлагается несколько путей решения этой задачи, например, создание особых защитных материалов для корпуса или даже разработка магнитного щита, подобного по механизму действия планетарному .

Mars One

«Mars One» - частный проект по сбору средств, руководимый Басом Лансдорпом , предполагающий полет на Марс с последующим основанием колонии на его поверхности и трансляцией всего происходящего по телевидению.

Inspiration Mars

«Inspiration Mars Foundation» - американская некоммерческая организация (фонд), основанная Деннисом Тито , планирующая отправить в январе 2018 года пилотируемую экспедицию для облёта Марса .

Столетний космический корабль

«Столетний космический корабль» (англ. Hundred-Year Starship ) - проект, общей целью которого является подготовка в течение века к экспедиции в одну из соседних планетарных систем. Одним из элементов подготовки является реализация проекта безвозвратного направления людей на Марс с целью колонизации планеты. Проект разрабатывает с 2010 года Исследовательский центр имени Эймса - одна из основных научных лабораторий НАСА . Основная идея проекта состоит в том, чтобы отправлять людей на Марс для того, чтобы они основали там колонию и продолжали жить в этой колонии, не возвращаясь на Землю. Отказ от возвращения приведёт к значительному сокращению стоимости полета, появится возможность взять больше груза и экипаж. Дальнейшие полёты будут доставлять новых колонистов и пополнять их запасы. Возможность обратного перелёта появится лишь тогда, когда колония своими силами сможет организовать на месте производство достаточного количества необходимых для этого предметов и материалов из местных ресурсов (прежде всего, речь идёт о топливе и запасах кислорода, воды и пищи).

Связь с Землей

Для общения с потенциальными колониями может использоваться радиосвязь, которая имеет задержку 3-4 мин в каждом направлении во время максимального сближения планет (которое повторяется каждые 780 дней) и около 20 мин при максимальном удалении планет; см. Конфигурация (астрономия) . Задержка сигналов от Марса к Земле и наоборот обусловлена скоростью света. Однако использование электромагнитных волн (в том числе световых) не даёт возможности поддерживать связь с Землей напрямую (без спутника ретрансляции), когда планеты находятся в противоположных точках орбит относительно Солнца.

Возможные места основания колоний

Наилучшие места для колонии тяготеют к экватору и низменностям. В первую очередь это:

  • впадина Эллада - имеет глубину 8 км, и на её дне давление наивысшее на планете, благодаря чему в этой местности наименьший уровень фона от космических лучей на Марсе [ ] .
  • Долина Маринера - не столь глубока, как впадина Эллада, но в ней наибольшие минимальные температуры на планете, что расширяет выбор конструкционных материалов [ ] .

В случае терраформирования первый открытый водоём появится в долине Маринера.

Колония (Прогноз)

Хотя до сих пор проектирование марсианских колоний не зашло дальше эскизов, из соображений близости к экватору и высокого атмосферного давления их обычно планируют основывать в разных местах долины Маринера. Каких бы высот в будущем ни достиг космический транспорт, законы сохранения механики определяют высокую цену доставки грузов между Землёй и Марсом, и ограничивают периоды полётов, привязывая их к планетарным противостояниям.

Высокая цена доставки и 26-месячные межполётные периоды определяют требования:

  • Гарантированное трёхлетнее самообеспечение колонии (дополнительные 10 месяцев на полёт и изготовление заказа). Это возможно только при условии накопления конструкций и материалов на территории будущей колонии до первоначального прилёта людей.
  • Производство в колонии основных конструкционных и расходных материалов из местных ресурсов.

Это означает необходимость создания цементного, кирпичного, ЖБИ , воздушного и водного производств, а также разворачивания чёрной металлургии, металлообработки и оранжерей. Экономия продуктов питания потребует вегетарианства [ ] . Вероятное отсутствие коксующихся материалов на Марсе потребует прямого восстановления оксидов железа электролизным водородом - и, соответственно, производства водорода. Марсианские пылевые бури могут на месяцы сделать непригодной для использования солнечную энергетику, что при отсутствии природного топлива и окислителей делает единственно надёжной, на данный момент, только ядерную энергетику . Крупномасштабное производство водорода и впятеро большее содержание дейтерия во льдах Марса по сравнению с земными приведёт к дешевизне тяжёлой воды, что при добыче урана на Марсе сделает самыми эффективными и рентабельными тяжеловодные ядерные реакторы .

  • Высокая научная или экономическая продуктивность колонии. Похожесть Марса на Землю определяет большую ценность Марса для геологии, и при наличии жизни - для биологии. Экономическая выгодность колонии возможна исключительно при обнаружении крупных богатых месторождений золота, платиноидов или драгоценных камней.
  • Первая экспедиция должна ещё разведать удобные пещеры, пригодные к герметизации и накачке воздуха для массового заселения городов строителями. Обживание Марса начнется из-под его поверхности.
  • Другим вероятным эффектом от создания грот-колоний на Марсе может стать консолидация землян, подъём глобального осознания на Земле; планетарная синхронизация.
  • Физический образ человека перерождения поселенца - «подсушенное» от тройной потери веса тело, облегчение скелета и мышечной массы. Перемена походки, манер передвижения. Существует также опасность набора избыточного веса. Есть вероятность смены режима питания в сторону уменьшения потребления еды.
  • Питание колонистов может сместиться к молочно-кислому, продуктам от коров с местных гидропонных конвейерных пастбищ, устроенных в шахтах.

Критика

Помимо основных аргументов критики идеи колонизации космоса человеком (см. Колонизация космоса), имеются и возражения, специфичные для Марса:

  • Колонизация Марса не является эффективным способом решения каких-либо стоящих перед человечеством проблем, которые можно рассматривать как цели этой колонизации. На Марсе пока не обнаружено ничего настолько ценного, что оправдало бы риск для людей и расходы на организацию добычи и транспортировку, а для колонизации на Земле всё ещё остаются огромные незаселённые территории, условия на которых гораздо благоприятнее, чем на Марсе, и освоение которых обойдётся намного дешевле, в том числе Сибирь , огромные пространства приэкваториальных пустынь и даже целый материк - Антарктида . Что же касается самого исследования Марса, то его экономичнее вести с использованием роботов .
  • В качестве одного из основных аргументов против колонизации Марса приводится довод о его чрезвычайно малом ресурсе ключевых элементов, необходимых для жизни (в первую очередь это водород , азот , углерод). Впрочем, в свете последних исследований, обнаруживших на Марсе, в частности, огромные запасы водяного льда, по крайней мере, по водороду и кислороду вопрос снимается.
  • Условия на поверхности Марса требуют разработки для жизни на нём инновационных проектов систем жизнеобеспечения. Но поскольку на земной поверхности не встречаются условия, достаточно близкие к марсианским, то проверить их экспериментально не представляется возможным. Это, в некотором отношении, ставит под сомнение практическую ценность большинства из них .
  • Также не изучено долгосрочное влияние марсианской силы тяжести на людей (все опыты проводились либо в среде с земным притяжением, либо в невесомости). Степень влияния гравитации на здоровье людей при её изменении от невесомости до 1g не изучена. На земной орбите предполагается провести эксперимент («Mars Gravity Biosatellite») на мышах с целью исследования влияния марсианской (0,38g) силы притяжения на жизненный цикл млекопитающих .
  • Вторая космическая скорость Марса - 5 км/с - довольно высока, хоть и в два раза меньше земной, что при нынешнем уровне космической техники делает невозможным достижение уровня безубыточности колонии за счёт экспорта материалов. Однако, плотность атмосферы , форма (радиус горы около 270 км) и высота (21,2 км от основания) горы Олимп позволяют использовать разного рода электромагнитные ускорители масс (электромагнитную катапульту или маглев , или пушку Гаусса и т. д.) для вывода грузов в космос. Атмосферное давление на вершине Олимпа составляет лишь 2 % от давления, характерного для среднего уровня марсианской поверхности. Учитывая, что на поверхности Марса давление составляет менее 0,01 атмосферы , разреженность среды на вершине Олимпа почти не отличается от космического вакуума.
  • Вызывает опасение также и психологический фактор. Длительность перелета на Марс и дальнейшая жизнь людей в замкнутом пространстве на нём могут стать серьёзными препятствиями на пути освоения планеты.
  • У некоторых вызывает беспокойство факт возможного «загрязнения» планеты земными формами жизни. Вопрос о существовании (в настоящее время или в прошлом) жизни на Марсе до сих пор не решён .
  • До сих пор отсутствует технология получения технического кремния без использования древесного угля, как и технология производства полупроводникового кремния без технического. Это означает огромные трудности с производством солнечных батарей на Марсе. Не существует другой технологии получения технического кремния, так как технология с использованием древесного угля самая дешёвая в плане дешевизны этого материала и затрат энергии. На Марсе же можно использовать металлотермическое восстановление кремния из его диоксида магнием до силицида магния , с последующим разложением силицида соляной или уксусной кислотой с получением газообразного моносилана SiH4 , который можно очистить от примесей разными способами, а затем разложить на водород и чистый кремний.
  • Недавние исследования на мышах показали, что длительное пребывание в условиях невесомости (космоса) вызывает дегенеративные изменения печени, а также симптомы сахарного диабета. У людей после возвращения с орбиты наблюдались аналогичные симптомы, но причины этого явления были неизвестны. Но Марс обладает гравитацией, ускорение свободного падения на его экваторе равно 3,711 м/с², что составляет 0,378 земного. Путешествие на Марс же можно либо ускорить до 69 дней , либо провести часть его или всё под действием искусственной силы тяжести , используя центрифуги или вращающиеся отсеки .

В искусстве

  • Советская песня «На марсе будут яблони цвести» (музыка В. Мурадели , слова Е. Долматовский) .
  • «Место жительства - Марс» (англ. Living on Mars ) - научно-популярный фильм, снятый National Geographic в 2009 г.
  • Песня группы Otto Dix - Утопия так же имеет упоминание («… И яблони будут цвести на Марсе, как на Земле…»)
  • Песня исполнителя Noize MC - «На Марсе классно».
  • В фантастическом фильме 1990-го года «Вспомнить всё » действие сюжета происходит на Марсе.
  • Песня исполнителя David Bowie - «Life on Mars», а также Зигги Стардаст (англ. Ziggy Stardust ) - вымышленный персонаж, созданный Дэвидом Боуи и являющийся центральной фигурой его концептуального глэм-рок-альбома «The Rise and Fall of Ziggy Stardust and the Spiders From Mars » .
  • Рей Бредбери - «Марсианские хроники ».
  • Айзек Азимов - Серия «Лакки Старр». Книга 1 - «Дэвид Старр, космический рейнджер».
  • Фильм «Миссия на Марс » рассказывает о спасательной миссии на планету Марс после катастрофы, постигшей первую экспедицию на красную планету.
  • На колонизированном Марсе происходит действие OVA Armitage III.
  • Процессу колонизации и (во втором случае) терраформирования Марса посвящены настольные ролевые игры «Mars Colony» и «Марс: Новый воздух» .
  • Терраформирование и колонизация Марса составляет основной фон событий «Марсианской трилогии» Кима Стэнли Робинсона .
  • Серия книг Эдгара Берроуза о фантастическом мире Марса .
  • В британском телесериале Доктор Кто в серии Воды Марса на поверхности Марса была освоенная первая колония в кратере Гусева «Bowie Base One ».
  • Научно-фантастический рассказ Гарри Гаррисона «Тренировочный полет» рассказывает о первой пилотируемой экспедиции на Марс. Особое внимание уделено психологическому состоянию человека, пребывающего в замкнутой дискомфортной среде.
  • Роман писателя Энди Уира «Марсианин » повествует о полуторагодичной борьбе за жизнь астронавта оставленного в одиночестве на Марсе. В 2015 году вышла экранизация этого произведения.
  • «Джон Картер » (англ. John Carter) - фантастический приключенческий боевик режиссёра Эндрю Стэнтона, поставленный по книге Эдгара Райса Берроуза «Принцесса Марса».
  • «Марсианин » - фильм режиссёра Ридли Скотта , выпущен кинокомпанией 20th Century Fox .
  • «Познать неизведанное » - американский художественный фильм 2016 года об одиночном космическом полёте на Марс.
  • «Прикладное терраформирование» - фантастический роман Эдуарда Катласа о колонизации Марса.

Колонизация других миров – непременный атрибут любого фантастического романа космической тематики. Это вполне объяснимо, ведь исключительно альтруистическая тяга к познанию неведомого никогда не оправдает затрат, которых потребуют космические путешествия. Рано или поздно встает вопрос о практическом применении результатов всех исследований. И вот пришло время, когда наука уже может противопоставить теориям фантастов реальные проекты колонизации другой планеты.

Илон Маск, его космическая экспансия и колонизация Марса - The Night Air

Предпосылки для колонизации Марса

Марс – наиболее оптимальный выбор для по ряду причин:

  • Относительная . При существующих скоростях кораблей полет займет менее года.
  • Сходные с нашей планетой условия : практически такая же продолжительность суток, осевой наклон, благодаря которому сменяются времена года, площадь суши, почти равная земной. Даже грунт Марса во многом напоминает почву на Земле, что дает надежду на адаптацию к его условиям земной флоры.
  • Наличие атмосферы . Невзирая на ее разреженность, она все же служит некоторой защитой от солнечной радиации.
  • Подтверждено существование на Марсе воды , что облегчает возможность жизнеобеспечения потенциальной колонии.

Однако существуют и подводные камни. Во-первых, это характерные для красной планеты резкие перепады температур, да и в целом этот мир значительно холоднее Земли. Не следует забывать и о разнице в силе тяжести, что при постоянном пребывании там людей может стать причиной проблем со здоровьем, а в дальнейшем в сочетании с повышенным уровнем радиации – привести к различным мутациям. Низкое атмосферное давление и сам состав атмосферы – тоже усложняющие процесс заселения Марса факторы.

Колонизаторы красной планеты

Колонизация космоса, когда начнется колонизация Марса?

Терраформирование – что для этого потребуется?

В силу вышеперечисленных причин для организации колонии на Марсе понадобится так называемого терраформирования, то есть приближения его условий к более подходящим для землян.

Прежде всего, это касается атмосферы, с трансформацией которой климат на планете изменится в более теплую сторону и появятся водоемы. С наибольшей вероятностью пригодными для обитания будут территории, прилегающие к экватору. Однако то, что так оптимистично выглядит в теории, не обещает быть простым в осуществлении на практике. Дело в том, что некоторые проекты, сулящие в кратчайшие сроки превратить Марс чуть ли не в пляжный рай, являются утопией и грозят нарушить природный баланс до степени глобальной катастрофы.

Гораздо более реалистичным является замысел постепенно, в течение многих десятков лет, формировать новую атмосферу, поэтапно поставляя на Марс замороженный азот, который будет добываться в Солнечной системе.

Также рассматривается возможность направлять на поверхность планеты кометный материал, состоящий, в основном, из воды, которая будет высвобождаться в атмосферу в виде пара. Выдвигаются идеи и как откорректировать орбиту и наклон оси Марса, чтобы обеспечить более стабильные климатические условия.

Но такие масштабные работы пока что – лишь теории, тогда как разработанный голландской компанией «Mars One» проект колонизации рассчитан на вполне обозримое будущее, и в соответствии с ним уже в 2023 году первые колонисты должны отправиться на красную планету.

Первые люди на Марсе - ч1 PlanetBase

Какого рода сложности ожидают потенциальных колонистов?

Проблемы можно условно подразделить на 3 группы:

1. Технические;

Первые поколения колонистов особенно сильно будут зависеть от надежности работы всех систем и установок, ведь неисправность оборудования в условиях чужого, мало приспособленного для жизни мира – это не просто неприятность, а серьезная угроза для жизни. Существующий проект базируется на установке солнечных батарей как основного источника энергии, но должны быть и дополнительные ее источники, ведь в зимний период батареи будут практически бесполезны, да и КПД у них не слишком высок.

2. Биологические;

Жизнь на Марсе будет возможна лишь на станции, которая должна обеспечивать колонистов воздухом, теплом, пищей. И функционировать этим системам придется многие годы. Если выращивать растения в условиях построенной базы вполне реально, то разнообразить рацион другими продуктами удастся только за счет поставок с Земли, но они будут отнюдь не частыми, учитывая расстояние и стоимость подготовки полета. А самообеспечение колонии – дело далекого будущего.

Кроме того, многие болезни и травмы, с которыми современная медицина давно научилась справляться, при отсутствии больниц, оборудования и специалистов снова станут серьезной проблемой. К тому же, неизвестно, какие виды вирусов и бактерий могут обнаружиться на Марсе, насколько серьезно повлияет меньшая сила тяжести на здоровье землян… Вопросов здесь гораздо больше, чем ответов.

3. Психологические.

Пожалуй, эти сложности самые непредсказуемые. Никакие эксперименты и тесты не подготовят человека к такому испытанию. Полная изоляция от привычного мира, замкнутое и весьма ограниченное пространство, один и тот же круг людей изо дня в день на протяжении многих лет – срывы в таких условиях будут неизбежны. Все отработанные подходы к набору экипажа здесь неактуальны, команда должна будет формироваться таким образом, чтобы в дальнейшем в ее рамках колонисты смогли создать семьи. А это дополнительный риск: когда люди вынуждены постоянно пересекаться друг с другом, вопросы любви, ревности, личных антипатий и прочих аспектов взаимоотношений приобретают особую остроту.

Многих ученых наверняка привлечет возможность побывать на Марсе, но ключевое слово здесь «побывать». А не остаться там до конца жизни. Не исключено, что среди добровольцев немало найдется людей легкомысленных, не понимающих, на что они идут, а также авантюристов.

Проект ЭкзоМарс / фильм про космос

Билет в один конец – «Mars One» ищет добровольцев

  • Невзирая на скептицизм многих ученых, авторы голландского проекта считают его вполне осуществимым и уже объявили набор добровольцев, которым предстоит после 8 лет подготовки получить билет в один конец. Как сама процедура отбора, так и предстоящие тренировки будут проходить в режиме реалити-шоу, что должно стать одним из основных источников финансирования проекта.
  • В 2016 году уже должен стартовать корабль с первой партией необходимых будущим колонистам грузов. В дальнейшем туда отправятся еще несколько кораблей, которым предстоит стать базой для колонистов.
  • Сложно сказать, насколько перспективен данный конкретный проект, но в любом случае освоение и колонизация Марса силами частной компании вряд ли возможны. Для организации полноценной колонии с налаженной инфраструктурой, а не просто островка марсианских Робинзонов, потребуется долгая работа и объединенные усилия специалистов всего мира, и тогда, возможно, спустя несколько веков красная планета станет вторым домом для человечества.

Марс с учётом его орбиты, поверхности и наличия водяного льда на полюсах является одним из самых привлекательных для людей космическим объектом. На Земле с каждым днём растёт озабоченность по поводу будущего человечества, а поэтому колонизация Марса становится всё более насущной проблемой. Нельзя также сбрасывать со счетов экономические интересы, которые ещё больше разжигают внимание к далёкому космическому собрату.

Земля и Марс имеют относительное сходство . Марсианский день или сол очень близок к земному. Солнечный день на четвёртой планете равен 24 часам 30 минутам 35,244 секундам. Площадь составляет 28,4% от площади Земли и лишь немного меньше земной суши. Радиус составляет половину земного, а масса только одну десятую.

Осевой наклон равен 25,19 градусов, а у Земли он 23,44 градуса. В результате этого на красной планете сезоны года похожи на земные. Но длятся они почти в 2 раза дольше, так как марсианский год составляет около 1,88 земных лет. И самое главное, на Марсе имеется вода, спрятанная под коркой замёрзшего углекислого газа.

А теперь давайте рассмотрим различия Марса и Земли . Здесь сразу надо сказать, что даже экстремофильные организмы, выживающие на Земле во враждебных условиях, не могут выдержать экстремальную среду, которая присутствует на поверхности Марса.

Его поверхностная гравитация составляет 38% от земной. Тут следует заметить, что микрогравитация вызывает проблемы со здоровьем у людей. Они теряют мышечную массу и наблюдается деминерализация костей. Возможен ли такой негативный эффект на поверхности красной планеты? Это неизвестно, так как научные исследования, связанные с поверхностной гравитацией Марса, пока не проводились на Земле.

На четвёртой планете гораздо холоднее, чем на Земле. Средняя температура составляет минус 50 градусов по Цельсию, а на Земле она равна плюс 15 градусам по Цельсию. Количество солнечной энергии, достигающей Марса, гораздо меньше земной, так как он на 52% отстоит дальше от Солнца, чем Земля. Солнечная постоянная равна 43,3% от земной.

В то же время марсианская атмосфера более тонкая, а поэтому более высокая доля солнечной энергии достигает поверхности. Но тут не надо забывать про круглогодичные пылевые бури. Они способны блокировать солнечный свет на несколько недель. Отсутствие магнитосферы делает поверхность незащищённой от солнечного ветра.

Марсианское атмосферное давление ниже предела Армстронга. Атмосфера на 95% состоит из углекислого газа. Ещё есть азот (3%), аргон (1,6%) и следы других газов, включая кислород (0,4%). В марсианском воздухе парциальное давление углекислого газа равно 0,71 кПа по сравнению с 0,031 кПа за Земле.

Отравление углекислым газом (гиперкапния) у людей начинается при 0,1 кПа. Даже для растений 0,15 кПа является токсичным. А означает это только одно – воздух на Марсе токсичен для растений, животных и человека. И в добавление следует сказать, что тонкая атмосфера не способна отфильтровывать ультрафиолетовый солнечный свет.

На основании всего вышесказанного напрашивается вполне обоснованный вывод: колонизация Марса представляет собой довольно сложную задачу . Марсианская среда враждебна для людей, а разница в гравитации пагубно скажется на здоровье. Она приведёт к ослаблению костей и мышц, возникновению остеопороза и сердечно-сосудистым проблемам.

Обязательно следует учитывать и психологический фактор. Люди, работающие на Марсе, будут находиться в десятках миллионов километров от Земли. Если миссия будет продолжаться 2,5 года, то члены экипажа начнут испытывать чувства изоляции, тоски, депрессии. У них возникнет ощущение, что они брошены в космосе, ведь Земля в марсианском небе будет выглядеть как крошечная голубовато-зелёная точка.

Поэтому огромное значение при колонизации Марса будет иметь правильный выбор людей. Все они в обязательном порядке должны будут пройти специальную психологическую подготовку. А при возвращении на Землю им будут необходимы психосоциальные сессии, чтобы опять влиться в человеческое общество.

А теперь поговорим о самом главном – о связи с Землёй . Надо сказать, что Марс уже имеет спутники связи. Они со временем износятся, а поэтому потребуются другие орбитальные устройства, пока не будут разработаны новые продвинутые технологии.

Задержка односторонней связи при ближайшем приближении планет составляет около 8 минут. А когда планеты находятся на большом удалении друг от друга, возрастает до 40 минут. Также прямая связь блокируется на 2 недели, когда Солнце оказывается между Землёй и Марсом. Но в реальности полная потеря связи может достигать целого месяца.

Единственным выходом в данной ситуации может служить целый каскад спутников связи. Но они будут привлекать к себе космическую пыль и астероиды, что негативно скажется на их работе. Идеальным вариантом станут спутники, оборудованные ионными двигателями. Они смогут двигаться с небольшой скоростью по своим орбитам и обеспечивать непрерывную связь Марса с Землёй.

Какие места на Марсе являются самыми подходящими для колонии ? Для этих целей подходит экваториальный регион. Там много естественных пещер возле вулканов. Эти убежища надёжно защитят колонистов от радиации и микрометеоритов. Также есть версия, что в экваториальном регионе имеется в наличии геотермальная энергия.

Второй вариант – это размещение колонии в лавовых трубках. По аналогии с Землёй они должны иметь длинные проходы, которые обеспечат полную защиту от излучения. Большим плюсом также является то, что их легко герметизировать, используя местные материалы, особенно на небольших участках.

Помимо всего сказанного колонизация Марса подразумевает терраформирование . Данный термин означает изменение поверхности и климата красной планеты таким образом, чтобы она стала пригодной для проживания людей. Разговор идёт, естественно, об искусственном изменении окружающей среды.

У Марса нет магнитосферы, которая смягчает воздействие солнечной радиации и удерживает атмосферу. Поэтому для восстановления атмосферы и появления жидкой воды необходимы магнитные полюса или искусственная магнитосфера. Японские учёные выдвинули идею создания искусственной магнитосферы путём построения охлаждаемых широтных сверхпроводящих колец с достаточной величиной постоянного тока. Есть и другая теория, предполагающая развёртывание магнитного дипольного щита в точке Лагранжа Марса L1.

Моделирование показывает, что при наличии магнитосферы на красной планете за несколько десятков лет появится атмосфера, а её давление будет равно половине земного. Как результат, замороженный на полюсах углекислый газ начнёт сублимироваться, то есть переходить из твёрдого состояния в газообразное и согреет экватор. Ледяные шапки начнут таять и появятся океаны. Этому также будет способствовать вулканическая дегазация.

При достаточно высоком атмосферном давлении человеку на поверхности Марса уже не нужен будет специальный защитный напорный костюм. Ему потребуется только маска, обеспечивающая 100% кислород. Также исчезнет потребность в защите от солнечного ветра, радиации и сильного холода. Ситуация будет как на Земле, только человек будет ходить в маске с кислородным баллоном.

Таким образом, колонизация Марса в рамках терраформирования предусматривает создание магнитосферы, атмосферы и повышение температуры. Главная роль здесь отводится углекислому газу, благодаря которому усилится парниковый эффект, а формирование атмосферы и потепление будут дополнять друг друга.

Всё это здорово, но как быть с кислородом ? Не хотелось бы всё время ходить в маске по марсианской поверхности. Основная масса кислорода присутствует в виде двуокиси углерода. Кислород также имеется в оксидах металлов и в почве в виде нитратов на поверхности красной планеты. Анализ образцов грунта показал наличие перхлората. Его используют для высвобождения кислорода в химических кислородных генераторах. Воду с помощью электролиза можно разделить на кислород и водород, если есть электричество и жидкая вода.

С помощью водорослей и другой зелени можно добавить небольшое количество кислорода в атмосферу. Но этого будет недостаточно, чтобы люди получили возможность свободно дышать, а колонизация Марса превратилась в комфортное занятие.

Есть вариант создания биодомов, в которых будут размножаться кислородосодержащие цианобактерии и фотосинтезирующие водоросли для производства молекулярного кислорода. Такие биодома нужно будет разместить на Марсе ещё до его колонизации, чтобы прибывшие на планету люди сразу оказались в кислородной среде. Но данная технология предназначена лишь для изолированных помещений, а вот глобальной планетарной технологии пока нет.

В заключении следует сказать, что, несмотря на кажущиеся трудности и фантастичность многих проектов, колония на Марсе обязательно станет реальностью. Случится это в самом ближайшем будущем, так как технический прогресс идёт вперёд семимильными шагами, а освоение космоса является приоритетной задачей. Человек непременно обустроится на четвёртой планете, а затем наступи черёд других далёких планет и спутников .

Владислав Иванов

Сейчас тема жизни на других планетах как никогда очень популярна. Многие ученые на полном серьезе обсуждают необходимости переселения всего (или части) человечества на ближайшие планеты. Дело в том, что ресурсы нашей планеты медленно, но неумолимо, подходят к концу. Популяция людей растет экспоненциально. И нам скоро станет очень тесно, очень бедно и очень голодно. Человечество должно развиваться и самое главное, чтобы развитие не останавливалось, мы должны покорять все новые и новые неизведанные места. Осваивать их, делать пригодными для жизни. Мы рождены любопытными и наше любопытство постоянно тянет нас вперед.

Естественно, если говорить о жизни на других планетах, то пока не может быть и речи о перемещении в места, которые находятся за пределами нашей солнечной системы. Ближайшая планета, которая по условиям похожа на Землю, находится в нескольких десятках световых лет. А это значит, что нам потребуется около тысячи лет, чтобы добраться до нее. С текущим уровнем технологий. Поэтому сейчас наиболее реалистичным вариантом выглядит перемещение на планеты, которые находятся относительно близко от нас. Венера? Слишком жарко, убийственная атмосфера. Спутники Сатурна? Далеко и холодно. Самой предпочтительной планетой для дальнейшей колонизации сейчас является Марс. Она близко, там более-менее щадящая атмосфера и погодные условия. Давайте рассмотрим этот вариант подробнее, возможно он не такой уж и нереалистичный, как кажется на первый взгляд.

Стивен Петранек, научный журналист, который регулярно выступает на TED, опубликовал книгу How We’ll Live on Mars (2014). В ней он подробно рассказывает о том, что уже в очень скором времени (ориентировочно в 2027 году) человечество высадится на Марсе и начнёт его активно колонизировать. Публикуем ключевые идеи из книги.

Две важные детали, которые говорят нам о том, что путешествие на Марс реально

Еще в 1948 году немецкий ученый Вернхер фон Браун опубликовал научный труд Das Marsprojekt — Проект «Марс» — в котором подробно описал, как разработать и построить 10 космических кораблей, которые могли бы доставить в целости и сохранности первых переселенцев на Марс.

На тот момент идеи Фон Брауна не оценили даже его близкие коллеги, и его с треском уволили с работы. Но в 1960х его идеи наконец получили широкое признание, в том числе и среди разработчиков шаттла «Аполлон», который доставил астронавтов на Луну. Новая книга научного журналиста Стивена Петранека дает нам конкретные данные и рекомендации, как воплотить дерзкую идею Фон Брауна по переселению на Марс в жизнь.

Петранек считает, что 4 астронавта вполне могут справиться с 243-дневным перелетом на Марс и высадиться на этой планете в 2027 году. А к 2050 году уже будут созданы полноценные колонии, считает журналист. Давайте обсудим опасности и преграды, которые будут подстерегать нас на этом пути.

Мы не могли не заметить, что в книге слова «прогнозируемый» и «проект» используются бесчисленное множество раз. Но что скажут скептики, если эти данные действительно окажутся правдой?

Есть две важные детали, которые нужно упомянуть:

    До недавнего времени НАСА даже обсуждать не хотели возможные перелеты на Марс. Но спустя некоторое время они нанимают специальную команду, которая трудится над созданием межпланетного шаттла «Орион». Вам не кажется это странным?

    Илон Маск говорит, что единственной миссией, ради которой существует его компания Space X — это практическая возможность осуществления межпланетных перелетов. И в первую очередь — на Марс.

Еще 10 лет назад все смеялись на Илоном, когда он утверждал, что сделает первый полноценный электромобиль. А еще 50 лет назад об этом нельзя было прочитать даже в фантастических романах. Но Тесла смогла произвести настоящую революцию в автомобильной индустрии.

Space X осуществили уже 18 успешных полетов. И мы думаем, что Илон настроен действительно серьезно, если утверждает, что его миссией является успешная доставка первых колонизаторов на Марс.

Каковы наиболее серьезные проблемы по созданию самостоятельной колонии на Марсе? И как они будут решаться?

Еда, вода, одежда и даже отсутствие кислорода — не являются такими уж серьезными препятствиями для организации колонии. Уже сейчас у нас есть инструменты, которые могут помочь нам в создании питьевой воды и кислорода в нужном количестве. Космический шаттл также может поддерживать жизнь астронавтов в космосе очень долгий период времени. А ведь еще 10 лет назад многие ученые считали, что никто не продержится и года в условиях невесомости. А сегодня американские и русские астронавты уже более года работают рука об руку на МКС и это не кажется таким уж странным и невозможным.

Самая главная проблема, которую пока не решили ученые — это борьба с солнечной радиацией. Магнитные поля Земли и ее атмосфера нейтрализуют большую часть опасных солнечных частиц. Но это невозможно на Марсе, т.к. у него чрезвычайно тонкий атмосферный слой. И планета буквально кишит убийственной солнечной радиацией. Вы можете защититься от солнечной радиации с помощью воды и специального металла, но космическое излучение — это проблема посложнее. Но у нас есть спасение — бесчисленное множество пещер и лавовых трубок, которыми напичкан экватор планеты. А еще реголит — минерал, из которого состоит почва планеты. С помощью него можно производить строительный материал, который будет эффективно защищать от радиации. Ученые считают, что уже на глубине 3 метров опасность радиации будет крайне низкой. И они также серьезно задумываются над возможностью терраформирования — изменение климатических условий планеты таким образом, чтобы они были пригодны для жизни земных растений и животных.

Какие инструменты помогут нам в терраформировании Марса?


Самый простой способ — установить зеркала по периметру длиной 250 километров на Северном и Южном полюсах планеты. Зеркала будут отражать солнечные лучи и направлять их в места скопления замерзшего углекислого газа. Это будет способствовать созданию парникового эффекта, утолщению атмосферы планеты, и уже в скором времени на Марсе станет гораздо теплее и комфортнее. Сейчас же температурные условия даже на экваторе планеты не такие комфортные: 21С днем и до -73С ночью. Если мы сможем нагреть планету, мы получим и пресную воду, которая там есть. Вода позволит выращивать растения, которые, в свою очередь, будут производить кислород и сделают атмосферу более пригодной для жизни.

А что если последствия терраформирования будут не такими радужными, как описывается в теории? Что если ученые допустили ошибку в своих расчетах?

Нет никаких сомнений в том, что некоторые расчеты могут не подтвердиться на практике. Один из таких сценариев — что углекислый газ на Марсе окажется слишком специфичным для наших растений, с различными примесями, что не позволит им нормально расти и развиваться. Но мы часто недооцениваем ту скорость, с которой мы получаем новые знания. Сумма знаний, которые мы получили после Второй Мировой Войны больше всех теорий, которые были разработаны до нее. Скорость получения информации удваивается каждые два года. И уже через 50 лет эксперименты по терраформированию планеты будут намного более продуманными, чем сейчас. Сейчас у нас нет ответа, но нам остается лишь немного подождать.

Изменение ДНК человека с помощью генной инженерии

Чтобы преобразовать атмосферу Марса в подобие земной, нам потребуется более 1000 лет. Но мы можем использовать принципы генной инженерии, чтобы контролировать свои гены. Т.е., если мы уже практически изобрели генный препарат, который предотвращает рак молочной железы у женщин посредством внедрения специального вируса в ДНК, то мы можем поработать над ДНК так, чтобы в будущем мы были менее восприимчивы к углекислому газу. Например сейчас, если в воздухе будет хотя бы более 5% углекислого газа, то человек может умереть. Генная инженерия может настроить ДНК таким образом, чтобы концентрация в 40% не была смертельной.

Какой будет жизнь на Марсе через 50 лет после освоения колонии?

Питание первых переселенцев будет на 80% состоять из продуктов глубокой заморозки, которые они взяли с собой с Земли. В будущем они смогут выращивать грибы, овощи и фрукты в теплицах и есть их, что, на самом деле, больше связано с психологией человека, нежели с прямой необходимостью. Человек приспособлен для того, чтобы есть «жесткую» пищу, ему нужно, чтобы она выглядела как натуральная еда, а не бесформенное пюре. Солнце на Марсе не такое интенсивное, как на Земле. И погода на экваторе планеты напоминает солнечную зиму в Чикаго. На Марсе 12 часов светит солнце и 12 часов — ночь. Но времена года длятся в два раза дольше, год состоит из 24 месяцев. Люди на Марсе почти все время будут проводить под землей или в защищенных от солнечной радиации строениях. И это не так страшно на самом деле. Многие из нас уже проводят большую часть своей жизни в помещениях. Больше половины мира живет в городах, а города — это нагромождение домов и различных строений. Посмотрите, например, сверху на центральный парк Нью-Йорка. Люди проводят большую часть своей жизни в офисах, спят в своих домах, едят в ресторанах, ходят друг к другу в гости. На Марсе все будет практически так же привычно для нас. Переселенцы будут передвигаться по планете на специальных автомобилях, защищающих их от радиации, с автономной подачей кислорода. Скафандры будут намного легче, чем сейчас. У нас уже есть технология облегченных космических костюмов. Ученые также разработали легкие приборы автономной подачи воздуха и облегченные шлемы.

Многие ученые сравнивают колонизацию Марса с великой миграцией европейцев в Америку. Что между ними общего?

В 1620 году всего 102 человека пересекли Атлантику и прибыли на американский континент на знаменитом корабле Мейфлауэр. Уже через 20 лет численность переселенцев составляла 30 000 человек. За это время количество кораблей, которые прибывали в американские порты возросло с 2 кораблей в месяц до 700. Размеры колонии на Марсе будут увеличиваться так же быстро.

Что насчет «темных» аспектов этой аналогии: как, например, переселенцы прибегали к каннибализму во время холодных зим в Джорджтауне, высокой смертности и насилию?

Люди погибали в Джорджтауне и Плимуте, потому что им не хватало еды, не было системы здравоохранения и заботы об окружающей среде. Мы предусмотрим все это в нашем перелете на Марс. У нас даже будет рентгеновский аппарат и другая профессиональная медицинская техника. Но на самом деле сейчас даже сложно представить, с какими трудностями нам там придется столкнуться. История начала миграции — это одна из самых тяжелейших эпох в истории человечества.

Сколько людей будут жить на Марсе после освоения колонии через 10, 20, 50 лет?

Илон Маск, пожалуй, единственный человек на Земле, кто может дать нам наиболее адекватную оценку численности населения колонии. В 2025 или 2027 он отправит 2 шаттла с первыми переселенцами на Марс. В одном корабле будет от 4 до 10 астронавтов. К 2030 году шаттл прибудет на красную планету. Уже в ближайшее время начнется разработка больших многоразовых космических кораблей, способных вместить от 80 до 100 человек. И, по самым консервативным подсчетам, если у нас будет 50 кораблей с 80 астронавтами на каждом, то к 2032 году на Марсе будут жить уже 4000 человек. Корабли будут совершать перелеты каждые два года. И Илон хочет построить к 2050 году до 1000 таких шаттлов. Т.е. в 2050 за одно путешествие на Марс будет прилетать уже 80 000 колонистов. К 2060 году численность колонистов достигнет одного миллиона.

Стоимость билета в один конец на Марс будет составлять около полумиллиона долларов. Возможно ли, что данная цена будет падать?


Маск очень конкретно проработал свою политику ценообразования. Он анонсировал, что в период с 2031 по 2032 годы стоимость билета составит 400 000 долларов (сейчас известно, что стоимость билета на Марс была уже снижена до 200 000 долларов). Потенциальный колонист: человек, которому за сорок, которому надоела своя работа и кто хочет кардинально изменить свою жизнь. Например, чтобы достать такие деньги, он может продать свой дом. На Марсе будет чем заняться, а размеры оплаты рабочей силы будут существенно выше, чем на Земле. Множество компаний уже согласились развернуть предприятия, предназначенные для обслуживания колонистов, на красной планете. Мы также предполагаем, что на Земле будет пользоваться большим спросом документальные фильмы о Марсе, а также реалити-шоу. Правда, есть одна опасность, о которой мы уже знаем — это рабство от компаний, которые продадут колонисту билет в обмен на 20 лет бесплатной работы на нее.

Нет ли опасности в том, что такие амбициозные планы по колонизации Земли являются всего лишь предлогом для того, чтобы уничтожить планету в бесконечных войнах?

Несколько лет назад Пан Ги Мун, председатель ООН, сказал, что мы должны улучшать экологическое состояние планеты, потому что у нас нет никакого плана Б, нам некуда бежать, если что-то случиться. Сейчас Марс — это наш План Б. Он дает нам надежды, нравится это кому-нибудь или нет. Я считаю, что будет большой трагедией, если люди, зная о Плане Б, начнут менее бережливо относиться к планете, на которой живут. Но гораздо большей проблемой будет, если человечество исчезнет вовсе. Вы можете проснуться однажды утром и узнать, что гигантский 20 километровый астероид летит прямо на Землю и скоро столкнется с ней. В таком случае мы абсолютно ничего не сможем сделать, всё человечество погибнет. У нас нет таких ракет, которые могли бы сбить астероид такого диаметра. И есть только один сценарий, чтобы предотвратить все потенциальные угрозы по уничтожению человеческого вида: мы должны стать межпланетной расой. Я очень волнуюсь, когда люди говорят, что мы можем отправиться на Марс, если уничтожим Землю, но еще более волнительно для меня, если все человечество исчезнет с лица Земли.