Из чего состоит митохондрия клетки человека. Митохондрии — строение и функции

(от греч. mitos - нить, chondrion - зернышко, soma - тельце) представляют собой гранулярные или нитевидные органоиды ( рис. 1, а). Митохондрии можно наблюдать в живых клетках, так как они обладают достаточно высокой плотностью. В таких клетках митохондрии могут двигаться, перемещаться, сливаться друг с другом. Особенно хорошо митохондрии выявляются на препаратах, окрашенных различными способами. Размеры митохондрий непостоянны у разных видов, так же изменчива их форма. Все же у большинства клеток толщина этих структур относительно постоянна (около 0,5 мкм), но длина колеблется, достигая у нитчатых форм 7-60 мкм.

Митохондрии независимо от их величины и формы имеют универсальное строение, их ультраструктура однообразна. Митохондрии ограничены двумя мембранами ( рис. 1, б), у них четыре субкомпартмента: митохондриальный матрикс , внутренняя мембрана , мембранное пространство и внешняя мембрана , обращенная к цитозолю. Внешняя мембрана отделяет ее от остальной цитоплазмы. Толщина внешней мембраны около 7 нм, она не связана ни с какими другими мембранами цитоплазмы и замкнута сама на себя, так что представляет собой мембранный мешок. Наружную мембрану от внутренней отделяет межмембранное пространство шириной около 10-20 нм. Внутренняя мембрана (толщиной около 7 нм) ограничивает собственно внутреннее содержимое митохондрии, ее матрикс , или митоплазму . Характерной чертой внутренних мембран митохондрий является их способность образовывать многочисленные выпячивания (складки) внутрь митохондрий. Такие выпячивания ( кристы , рис. 27) чаще всего имеют вид плоских гребней. Митохондрии осуществляют синтез АТФ, происходящий в результате процессов окисления органических субстратов и фосфорилирования АДФ.

Митохондрии специализируются на синтезе АТФ путем транспорта электронов и окислительного фосфорилирования. (рис 21-1). Хотя они имеют свою собственную ДНК и аппарат белкового синтеза, большинство их белков кодируется клеточной ДНК и поступает из цитозоля. Более того, каждый поступивший в органеллу белок должен достичь определенного субкомпартмента, в котором он функционирует.

Митохондрии - это "энергетические станции" эукариотических клеток. В кристы встроены ферменты, участвующие в преобразовании энергии питательных веществ, поступающих в клетку извне, в энергию молекул АТФ. АТФ - "универсальная валюта", которой клетки расплачиваются за все свои энергетические расходы. Складчатость внутренней мембраны увеличивает поверхность, на которой размещаются ферменты, синтезирующие АТФ. Количество крист в митохондрии и количество самих митохондрий в клетке тем больше, чем больше энергетических трат осуществляет данная клетка. В летательных мышцах насекомых каждая клетка содержит несколько тысяч митохондрий. Меняется их количество и в процессе индивидуального развития (онтогенеза): в молодых эмбриональных клетках они более многочисленны, чем в клетках стареющих. Обычно митохондрии скапливаются вблизи тех участков цитоплазмы, где возникает потребность в АТФ, образующейся в митохондриях.

Расстояние между мембранами в кристе составляет около 10-20 нм. У простейших, одноклеточных водорослей в некоторых клетках растений и животных выросты внутренней мембраны имеют вид трубочек диаметром около 50 нм. Это так называемые трубчатые кристы.

Митохондриальный матрикс гомогенен и имеет более плотную консистенцию, чем окружающая митохондрию гиалоплазма. В матриксе выявляются тонкие нити ДНК и РНК, а также митохондриальные рибосомы, на которых синтезируются некоторые митохондриальные белки. С помощью электронного микроскопа на внутренней мембране и кристах со стороны матрикса можно увидеть грибовидные образования - АТФ-сомы. Это ферменты, образующие молекулы АТФ. Их может быть до 400 на 1 мкм.

Немногие белки, которые кодируются собственным геномом митохондрий, расположены в основном во внутренней мембране. Они обычно образуют субъединицы белковых комплексов, другие компоненты которых кодируются ядерными генами и поступают из цитозоля. Образование таких гибридных агрегатов требует сбалансирования синтеза этих двух типов субъединиц; каким образом координируется синтез белка на рибосомах разных типов, разделенных двумя мембранами, остается загадкой.

Обычно митохондрии располагаются в местах, где необходима энергия для любых жизненных процессов. Возник вопрос, каким образом транспортируется в клетке энергия - путем ли диффузии АТФ и нет ли в клетках структур, исполняющих роль электрических проводников, которые могли бы энергетически объединять отдаленные друг от друга участки клетки. Гипотеза заключается в том, что разность потенциалов в определенной области мембраны митохондрий передается вдоль нее и превращается в работу в другой области той же мембраны [ Скулачев В.П., 1989 ].

Как представлялось, подходящими кандидатами на эту же роль могли быть мембраны самих митохондрий. Кроме того, исследователей интересовали взаимодействие в клетке множественных митохондрий друг с другом, работа всего ансамбля митохондрий, всего хондриома - совокупности всех митохондрий.

Митохондрии характерны за малым исключением для всех эукариотических клеток как аутотрофных (фотосинтезирующие растения), так и гетеротрофных (животные, грибы) организмов. Их основная функция связана с окислением органических соединений и использованием освобождающейся при распаде этих соединений энергии в синтезе молекул АТФ. Поэтому митохондрии часто называют энергетическими станциями клетки.

Строение и функции ядра растительной клетки.

Ядро – обязательная часть эукариотической клетки. Это место хранения и воспроизведения наследственной информации. Ядро также служит центром управления обменом веществ и почти всех процессов, происходящих в клетке. Чаще всего в клетках имеется лишь одно ядро, редко - два или несколько. Форма его чаще все­го шаровидная или эллипсоидаль­ная. В молодых, особенно меристематических, клетках оно занимает центральное положение, но позднее обычно смещается к оболочке, от­тесняемое растущей вакуолью. Снаружи ядро покрыто двойной мембраной – ядерной оболочкой, пронизанной порами (поры ядра - динамичные образования, они могут открываться и закрываться; таким путем может осуществляться регуляция обмена между ядром и цитоплазмой) на краях которых наружная мембрана переходит во внутреннюю. Наружная ядерная мембрана соединяется с мембранными каналами ЭПС. На ней располагаются рибосомы. Внутренняя мембрана может давать впячивания.

Внутреннее содержимое ядра – кариоплазма с погруженными в нее хроматином и ядрышками, и рибосомами. Кариоплазма (нуклеоплазма) представляет собой желеобразный раствор, который заполняет пространство между структурами ядра (хроматином и ядрышками). Она содержит ионы, нуклеотиды, ферменты.

Хроматин – это деспирализованная форма существования хромосом. В деспирализованном состоянии хроматин находится в ядре неделящейся клетке. Хроматин и хромосомы взаимно переходят друг в друга. По химической организации как хроматин, так и хромосомы не отличаются. Химическую основу составляет дезоксирибонуклеопротеин – комплекс ДНК с белками. С помощью белков происходит многоуровневая упаковка молекул ДНК, при этом хроматин приобретает компактную форму.

Ядрышко, обычно шаровидной формы (одно или несколько), не окружено мембраной, содержит фибриллярные белковые нити и РНК. Ядрышки – не постоянные образования, они исчезают в начале деления клетки и восстанавливаются после его окончания. Ядрышки имеются только в неделящихся клетках. В ядрышках происходит формирование рибосом, синтез ядерных белков. Сами же ядрышки образуются на участках вторичных перетяжек хромосом (ядрышковых организаторах).

Ядро – обязательная часть эукариотической клетки. Диаметр ядра колеблется от 5 до 20 мкм. Главная функция ядра – хранение генетического материала в форме ДНК и передача ее дочерним клеткам при клеточном делении. Кроме того, ядро управляет белковыми синтезами, контролирует все процессы жизнедеятельности клетки. (в растительной клетке ядро описал Р.Броун в 1831г., в животной – Т.Шванн в 1838г.).

Химический состав ядра представлен, главным образом, нуклеиновыми кислотами и белками.

Строение и функции митохондрий.

Митохондрии или хондриосомы - «силовые» станции клетки, в них локализована большая часть реакций дыхания (аэробная фаза). В митохондриях происходит аккумуляция энергии дыхания в аденозинтрифосфате (АТФ). Энергия, запасаемая в АТФ, служит основным источником для физиологической деятельности клетки. Митохондрии обычно имеют удлиненную палочковидную форму длиной 4-7 мкм и диаметром 0,5-2 мкм. Число митохондрий в клетке может быть различным от 500 до 1000 и зависит от роли данного органа в процессах энергетического обмена.

Химический состав митохондрий несколько колеблется. В основном это белково-липидные органеллы. Содержание белка в них составляет 60-65%, причем структурные и ферментативные белки содержатся примерно в равной пропорции, а также около 30% липидов. Очень важно, что митохондрии содержат нуклеиновые кислоты: РНК - 1 % и ДНК -0,5%. В митохондриях имеется не только ДНК, но и вся система синтеза белка, в том числе рибосомы.

Митохондрии окружены двойной мембраной. Толщина мембран составляет 6-10 нм. Мембраны митохондрий на 70% состоят из белка. Фосфолипиды мембран представлены фосфатидтилхолином, фосфатидилэтаноламином, а также специфическими фосфолипидами, например, кардиолипином. Мембраны митохондрий не пропускают Н+ и служат барьером для их транспорта.

Между мембранами находится заполненное жидкостью перимитохондриальное пространство. Внутреннее пространство митохондрий заполняет матрикс в виде студнеобразной полужидкой массы. В матриксе сосредоточены ферменты цикла Кребса. Внутренняя мембрана дает выросты - кристы в виде пластин и трубочек, они разделяют внутреннее пространство митохондрий на отдельные отсеки. Во внутренней мембране локализована дыхательная цепь (цепь переноса электронов).

Митохондрия – это двумембранный органоид эукариотической клетки, основная функция которого синтез АТФ – источника энергии для жизнедеятельности клетки.

Количество митохондрий в клетках не постоянно, в среднем от нескольких единиц до нескольких тысяч. Там, где процессы синтеза идут интенсивно, их больше. Также варьирует размер митохондрий и их форма (округлые, вытянутые, спиральные, чашевидные и др.). Чаще имеют округлую вытянутую форму, диаметром до 1 микрометра и длиной до 10 мкм. Могут перемещаться в клетке с током цитоплазмы или оставаться в одном положении. Перемещаются к местам, где больше всего требуется выработка энергии.

Следует иметь в виду, что в клетках АТФ синтезируется не только в митохондриях, но и в цитоплазме в процессе гликолиза . Однако эффективность этих реакций невысока. Особенность функции митохондрий в том, что в них протекают реакции не только бескислородного окисления, но и кислородный этап энергетического обмена.

Другими словами, функция митохондрий – активное участие в клеточном дыхании, к которому относят множество реакций окисления органических веществ, переноса протонов водорода и электронов, идущих с выделением энергии, которая аккумулируется в АТФ.

Ферменты митохондрий

Ферменты транслоказы внутренней мембраны митохондрий осуществляют активный транспорт АДФ и АТФ.

В структуре крист выделяют элементарные частицы, состоящие из головки, ножки и основания. На головках, состоящих из фермента АТФазы , происходит синтез АТФ. АТФаза обеспечивает сопряжение фосфорилирования АДФ с реакциями дыхательной цепи.

Компоненты дыхательной цепи находятся в основании элементарных частиц в толще мембраны.

В матриксе находится большая часть ферментов цикла Кребса и окисления жирных кислот.

В результате активности электротранспортной дыхательной цепи ионы водорода поступают в нее из матрикса, а высвобождаются на наружной стороне внутренней мембраны. Это осуществляют определенные мембранные ферменты. Разница в концентрации ионов водорода по разные стороны мембраны приводит к возникновению градиента pH.

Энергию для поддержания градиента поставляет перенос электронов по дыхательной цепи. Иначе ионы водорода диффундировали бы обратно.

Энергия градиента pH используется для синтеза АТФ из АДФ:

АДФ + Ф = АТФ + H 2 O (реакция обратима)

Образующаяся вода ферментативно удаляется. Это, наряду с другими факторами, облегчает протекание реакции слева направо.

В клетках любых живых организмов есть особые органеллы, которые двигаются, функционируют, сливаются между собой и размножаются. Называются они митохондриями или хондриосомами. Подобные структуры содержатся как в клетках простейших организмов, так и в клетках растений и животных. Долгое время при изучении изучались и функции митохондрии, потому что она представляла особый интерес.

Действительно, на клеточном уровне митохондрии выполняют конкретную и весьма важную функцию - образуют энергию в виде аденозинтрифосфата. Это ключевой нуклеотид в обмене организмов и преобразовании его в энергию. АТФ выступает в роли универсального источника энергии, необходимой для протекания любых биохимических процессов в организме. В этом главные функции митохондрии - поддерживать жизнедеятельность на клеточном уровне за счёт формирования АТФ.

Процессы, происходящие в клетках, долгое время представляли особый интерес учёных, потому что это помогало лучше понять структуру и возможности организма. Процесс познания всегда занимает долгое время. Так Карл Ломанн в 1929 году открыл аденозинтрифосфат, а Фриц Липман в 1941 году разобрался в том, что он является основным поставщиком энергии в клетки.

Строение митохондрий

Внешний вид представляет такой же интерес, как и функции митохондрии. Размеры и формы этих органелл непостоянны и могут быть разными в зависимости от видов живых существ. Если описывать средние значения, то гранулярная и нитевидная митохондрия, состоящая из двух мембран, имеет размеры порядка 0,5 микромиллиметра в толщину, а длина может достигать 60 микромиллиметров.

Как уже было сказано выше, учёные долгое время пытались разобраться в вопросе, каково строение и функции митохондрий. Основные сложности были с недостаточно развитостью оборудования, потому что изучать микромир другими способами практически невозможно.

В митохондрий содержится больше, чем в клетках растений, потому что для животных преобразование энергии с эволюционной точки зрения более важно. Впрочем, объяснять подобные процессы достаточно сложно, но в клетках растений подобные функции берут на себя в основном хлоропласты.

В клетках митохондрии могут располагаться в самых разных местах, где есть потребность в АТФ. Можно сказать, что у митохондрий достаточно универсальное строение, поэтому они могут появляться в разных местах.

Функции митохондрии

Основная функция митохондрий - синтез молекул АТФ. Это своего рода энергетическая станция клетки, которая за счёт окисления различных высвобождает энергию за счёт их распада.

Главным источником энергии, т.е. соединением, используемым для распада, является Её в свою очередь организм получает из белков, углеводов и жиров. Есть два пути образования энергии, причём митохондрии используют оба. Первый из них связан с окислением пирувата в матриксе. Второй связан уже с кристами органелл и непосредственно завершает процесс энергообразования.

В целом данный механизм достаточно сложен и происходит в несколько этапов. Выстраиваются длинные единственная цель которых - энергообеспечение других клеточных процессов. Поддержание организма на клеточном уровне позволяет сохранить его жизнедеятельность в целом. Именно поэтому учёные долгое время пытались разгадать, как именно происходят данные процессы. Со временем многие вопросы были решены, особенно в этом помогло изучение ДНК и структуры остальных небольших клеток микромира. Без этого вряд ли можно было бы представить развитие данной науки в целом, а также изучение организма человека и высокоразвитых животных.

Митохондрии являются «электростанциями» эукариот, производящие энергию для деятельности клеток. Эти генерируют энергию путем ее преобразования в формы, которые могут быть использованы клеткой. Находящиеся в , митохондрии служат "базой" для клеточного дыхания. - процесс, генерирующий энергию для деятельности клетки. Митохондрии также участвуют в других клеточных процессах, таких как , рост и .

Отличительные характеристики

Митохондрии имеют характерную продолговатую или овальную форму и покрыты двойной мембраной. Они встречаются как в , так и в . Количество митохондрий внутри клетки изменяется в зависимости от типа и функции клетки. Некоторые клетки, такие как зрелые эритроциты, вообще не содержат митохондрий. Отсутствие митохондрий и других органелл оставляет место для миллионов молекул гемоглобина, необходимых для транспортировки кислорода по всему телу. С другой стороны, клетки мышц могут содержать тысячи митохондрий, генерирующих энергию, необходимую для мышечной активности. Митохондрии также обильны в жировых клетках и клетках печени.

Митохондриальная ДНК

Митохондрии имеют собственную ДНК (мтДНК), и могут синтезировать свои собственные белки. мтДНК кодирует белки, участвующие в переносе электронов и окислительном фосфорилировании, которые происходят при клеточном дыхании. При окислительном фосфорилировании в матрице митохондрий генерируется энергия в виде АТФ. Протеины, синтезированные из мтДНК, также кодируются для продуцирования молекул РНК, передающих РНК и рибосомную РНК.

Митохондриальная ДНК отличается от ДНК, обнаруженной в , тем, что она не обладает механизмами восстановления ДНК, которые помогают предотвратить мутации в ядерной ДНК. В результате мтДНК имеет гораздо более высокую скорость мутаций, чем ядерная ДНК. Воздействие реактивного кислорода, образующегося при окислительном фосфорилировании, также повреждает мтДНК.

Строение митохондрий

Митохондрии окружены двойной . Каждая из этих мембран представляет собой фосфолипидный бислой со встроенными белками. Внешняя мембрана гладкая, а внутренняя мембрана имеет много складок. Эти складки называются кристами. Они повышают «производительность» клеточного дыхания за счет увеличения доступной площади поверхности.

Двойные мембраны делят митохондрию на две различные части: межмембранное пространство и матрицу митохондрий. Межмембранное пространство представляет собой узкую часть между двумя мембранами, в то время как митохондриальная матрица является частью, заключенной внутри мембран.

Митохондриальная матрица содержит мтДНК, рибосомы и ферменты. Некоторые из этапов клеточного дыхания, включая цикл лимонной кислоты и окислительное фосфорилирование, происходят в матрице из-за высокой концентрации ферментов.

Митохондрии полуавтономны, так как лишь частично зависят от клетки, чтобы реплицировать и расти. У них есть свои ДНК, рибосомы, белки и контроль над их синтезированием. Подобно бактериям, митохондрии имеют циркулярную ДНК и реплицируются репродуктивным процессом, называемым бинарным делением. До репликации митохондрии сливаются вместе в процессе, называемом слияние. Это необходимо для поддержания стабильности, так как без него митохондрии будут уменьшаться по мере их деления. Уменьшенные митохондрии не способны продуцировать достаточное количество энергии, необходимой для нормального функционирования клетки.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .