Оборудование для получения пероксидазы хрена. Способ получения пероксидазы хрена

Около 44,173.9 Да, представляет собой гликопротеид и имеет четыре остатка аминокислоты лизина для соединения с молекулой, которую требуется пометить.

Продукт активности пероксидазы хрена представляет собой цветное или люминесцентное соединение, подходящее для детекции и количественного анализа. HRP часто используют в составе конъюгатов для детекции определенных молекул. Например, в случае вестерн блоттинга используют конъюгаты HRP с антителами против заданных белков или молекул; в данном случае антитело обладает специфичностью к заданной мишени, а HRP образует детектируемый сигнал. . Пероксидазу хрена также используют в таких методиках, как ИФА и для иммуногистохимического анализа.

Пероксидаза хрена представляет собой идеальный фермент для многих методик, так как имеет относительно небольшой размер, относительно стабильна и более дешева, чем альтернативы - например, щелочная фосфатаза . HRP имеет бо льшее количество оборотов в единицу времени и потому обеспечивает развитие достаточно сильного сигнала за относительно небольшой период времени.

Пероксидаза хрена в свободной форме или в виде конъюгатов с другими молекулами требует наличие субстрата для визуализации. HRP окисляет субстрат в присутствии пероксида водорода , при этом образуются продукты, которые можно детектировать спектрофотометрически .

Коммерчески доступные субстраты пероксидазы хрена 3,3’,5,5’-Тетраметилбензидин (англ. TMB ) и 3,3"-Диаминобензидин (англ. DAB ) при окислении дают цветные продукты, а хемилюминесцентные вещества SuperSignal, ECL являются источниками детектируемого света при действии HRP.

Усиление хемилюминесценции (ECL)

Пероксидаза хрена катализирует окисление люминола в 3-аминофталат через серию интермедиатов . Данная реакция сопровождается свечением низкой интенсивности с длиной волны 428 нм. В присутствии некоторых веществ, возможно достичь усиления свечения до тысячи раз. Явление усиления свечения называют усилением хемилюминесценции (англ. enhanced chemiluminescence, ECL ). Наиболее эффективными усилителями являются производные фенолов, например, р-йодофенол. ECL позволяет детектировать около 0,5 пикограмма нуклеиновой кислоты при Саузерн блоттинге .

Примечания

Внешние ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Пероксидаза хрена" в других словарях:

    пероксидаза хрена - — Тематики биотехнологии EN horseradish peroxidase … Справочник технического переводчика

    - [[Изображение:|px|Тиреопероксидаза chemical structure]] thyroid peroxidase Обозначения Symbol(s) TPO Entrez … Википедия

    Вестерн блот анализ белков, разделенных при помощи градиентного электрофореза в полиакриламидном геле в присутствии SDS. Вестерн блоттинг (белковый иммуноблот, англ. Western blot) аналитический метод, используемый для определения… … Википедия

    Вестерн блоттинг (вестерн блот, белковый иммуноблот, англ. Western blot) аналитический метод, используемый для определения специфичных белков в образце. На первом этапе использует электрофорез белков в полиакриламидном геле для… … Википедия

    - (англ. Peroxiredoxins, Prxs, КФ 1.11.1.15) широкораспространённая семья антиоксидантных ферментов. У млекопитающих ферменты этой группы контролируют уровень цитокин индуцированных пероксидов, участвующих в передаче клеточных сигналов. … … Википедия

    Глутатионпероксидазы (ГП) семейство ферментов, защищающих организм от оксидативного повреждения. ГП катализируют распад липидных пероксидаз и перекиси водорода. Известно несколько генов, кодирующих разные формы глутатионпероксидаз, отличающиеся… … Википедия

Пероксидаза - один из наиболее распространенных ферментов, содержащийся в растениях, микробах, тканях животных. Этот фермент катализирует окисление широкого спектра органических соединений пероксидом водорода с образованием токсичных пероксидов, удаляющихся из живых организмов . Пероксидаза представляет собой гликопротеид, состоящий из полипептидной цепи, формирующей двухдоменную глобулу, и гемовой простетической группы с атомом железа, располагающейся между доменами .

Основной отличительной особенностью в структуре пероксидазы С хрена по сравнению с другими растительными пероксидазами является наличие участка длиной в 34 аминокислотных остатка между спиралями остатков фенилаланина (F) и глицина G (рис. 1). Эта область, которая является частью канала для доступа субстрата, не встречается у пероксидаз других классов, более того она имеет отличия даже в пределах своего класса. Для пероксидазы С хрена, характеризующейся большей F-G-вставкой (на 7 аминокислотных остатков), идентифицирован ключевой остаток, способный вступать в прямые взаимодействия с ароматическими донорными молекулами. Изофермент С пероксидазы хрена уникален тем, что имеет кольцо из трех периферийных остатков Phe142, Phe68 и Phe179, которое защищает подход к подвергающемуся воздействию краю гема. Эта ароматическая область важна для реализации способности пероксидазы связывать ароматические субстраты.

Рис. 1. Пространственная структура пероксидазы C хрена .

Особенностью процессов пероксидазного катализа является образование ряда спектрофотометрически различимых комплексов. Упрощенная схема пероксидазного цикла выглядит следующим образом:

Е + H 2 O 2 → E 1 ; k 1

E 1 + АH 2 → E 2 + АH; k 2

E 2 + АH 2 → Е + АH; k 3

где Е, Е 1 , Е 2 - соответственно исходная пероксидаза и ее окисленные формы; АН 2 , АН - соответственно исходный субстрат и его окисленная форма.

Продукт первой стадии - E 1 , образующийся при действии пероксида водорода на фермент, представляет собой окисленное производное пероксидазы, содержащее два окислительных эквивалента. В Е 1 железо имеет формальный заряд +4. Дополнительный окислительный эквивалент в молекуле Е 1 локализуется либо на порфириновом макроцикле пероксидазы, либо на одной из функциональных групп фермента.

Донорные субстраты могут восстанавливать соединение E 1 непосредственно в нативный фермент (двухэлектронное восстановление) или через образование промежуточного соединения E 2 (одноэлектронное восстановление).

В реакции пероксидазного окисления, помимо пероксида водорода, в качестве окислителя (первого субстрата) могут выступать органические субстраты – алкилгидропероксиды, пероксибензольные кислоты и др. По отношению ко второму субстрату пероксидаза проявляет меньшую специфичность, поэтому целый ряд электронодонорных соединений могут использоваться в качестве субстратов пероксидазы и являться основой детектирующих систем в методах аналитической биохимии и клинической медицины.

Способ предусматривает размельчение и гомогенизацию пророщенных корней хрена, экстракцию гомогенизата корней хрена 0,15±0,01 М раствором хлорида натрия. Отделяют балластные белки и осаждают пероксидазу солями сульфата аммония 45-48% насыщения и 85-90% насыщения соответственно. Гельфильтрацию раствора пероксидазы осуществляют на сефадексе G-100 с элюированием 0,15-0,2 М раствором хлорида натрия. Хроматографическую очистку проводят на карбоксиметилцеллюлозе. Осуществляют лиофильную сушку целевой пероксидазы. Проводят диализ против натрий-ацетатного буфера с рН 4,4-5,0 и диализ против калий-фосфатного буфера с рН 8,0±0,1. Осуществляют концентрирование с дополнительной очисткой на ДЭАЭ-целлюлозе с элюцией тем же буфером с последующим диализом против деионизованной воды. Способ позволяет получить пероксидазу с высокой удельной активностью и высоким выходом. Выход пероксидазы составляет 2,52-3,50 г/кг корней хрена, удельная активность - 640-700 Е.А./мг белка. 5 з.п. ф-лы, 2 ил., 1 табл.

Рисунки к патенту РФ 2353652

Изобретение относится к области биотехнологии, а именно к производству ферментов из растительного сырья, и может быть использовано для лабораторного и промышленного производства фермента пероксидазы из корней хрена для иммунологии и иммунохимии в качестве главной составной части конъюгатов для иммуноферментных анализов.

Известны различные способы получения пероксидазы из корней хрена .

Известен способ получения пероксидазы из корней хрена, включающий гомогенизацию корней хрена, экстракцию фермента солевым раствором, осаждение фермента солями сульфата аммония, гельфильтрацию, спиртовое осаждение, электрофорез, переосаждение хлоридом аммония, фильтрацию через сефадекс G-50 и ДЭАЭ-целлюлозу и диализ .

Основными недостатками данного способа являются невысокая активность и чистота полученного продукта, а также сложность его получения и большое количество стадий технологического процесса.

Известен также способ получения пероксидазы из корней хрена, по которому корни хрена гомогенизируют, затем экстрагируют фермент водой и осаждают пероксидазу солями сульфата аммония с последующей гельфильтрацией [Пат. Венгрии 172872, C07G 7/022].

Недостатком данного способа является низкий выход и низкая чистота фермента.

Известен способ [А.С. Болгарии 46675, C12N 9/08, 15.02.90], по которому корни хрена проращивают в течение 2-3 суток, затем гомогенизируют и экстрагируют фермент водой в течение суток. Водный экстракт центрифугируют с последующим фракционированием белков солями сульфата аммония, затем сульфатаммонийный осадок фермента растворяют в дистиллированной воде и подвергают ультрафильтрации на фильтрах "Милипор" PTGC 000 05. К полученному фильтрату прибавляют 0,5 М фосфатный буфер (рН 8) в соотношении 100 частей буфера на 1 часть фильтрата и пропускают через колонку с ионообменником ДЭАЭ-Сефадекс А-50, затем последовательно ультрафильтруют на "Милипор" PTGC 000 05, РТНК 000 05, PTGC 000 05 и подвергают лиофильной сушке.

Недостатком данного метода является недостаточно высокий выход пероксидазы, высокая трудоемкость и длительность процесса.

Наиболее близким является способ [Пат. РФ 2130070, C12N 9/08, 10.05.1999], в котором промытые водой корни хрена зачищают на 1/3 массы в присутствии 0,25% раствора пищевой аскорбиновой кислоты, используемого в качестве экстрагирующего раствора. Пероксидазу из очисток экстрагируют в течение 1 ч 0,25% раствором аскорбиновой кислоты, затем экстракт фильтруют и центрифугируют. К надосадочной жидкости добавляют 5% сульфита натрия и выдерживают в течение 24 ч при комнатной температуре для "созревания" фермента. "Созревший" раствор фермента концентрируют на ультрафильтрационных волоконных аппаратах с фильтрами, имеющими диаметр пор менее 40 кДа. К сконцентрированному в 10 раз раствору добавляют сульфат аммония до конечного насыщения 85-90%, центрифугируют, осадок растворяют в десятикратном объеме бидистиллированной воды и наносят на колонку, заполненную сефадексом G-25, элюцию проводят бидистиллированной водой. Собирают фракции, содержащие пероксидазу с величиной R Z >0,1. К собранным фракциям добавляют сульфат аммония до насыщения 85-90%, центрифугируют, осадок растворяют в 3-кратном по объему количестве бидистиллированной воды и наносят на колонку для гельфильтрации, заполненную сефадексом G-50, элюцию проводят бидистиллированной водой. Собирают фракции, содержащие пероксидазу, с величиной R Z >0,5. Фракции смешивают, дотитровывают до рН 4,4 и подвергают очистке на карбоксиметилцеллюлозе, фермент элюируют в градиенте концентраций от 5 мМ до 0,15 М ацетатного буфера (рН 4,4) (V=S-500 мл, R-500 мл). Собирают фракции с величиной R Z >2,7 и с концентрацией фермента не менее 10 мг/мл. Фракции объединяют, дотитровывают до рН 5,0 и лиофильно высушивают.

Недостатками данного метода являются недостаточно высокая чистота и активность и небольшие выходы пероксидазы.

Изобретение решает задачу создания промышленного способа получения пероксидазы из корней хрена, позволяющего получать пероксидазу с высокой чистотой, с высокой удельной активностью и с высоким выходом.

Поставленная задача решается способом получения фермента пероксидазы из корней хрена, который включает размельчение и гомогенизацию пророщенных корней хрена, экстракцию гомогенизата корней хрена, отделение балластных белков и осаждение пероксидазы солями сульфата аммония, гельфильтрацию раствора пероксидазы на сефадексе, хроматографическую очистку на карбоксиметилцеллюлозе, лиофильную сушку целевой пероксидазы, при этом измельченные корни хрена экстрагируют 0,15±0,01 М раствором хлорида натрия с рН=4,4±0,2; гельфильтрацию раствора пероксидазы осуществляют на сефадексе G-100 с элюированием 0,15-0,2 М раствором хлорида натрия с рН 4,4-5,0, проводят диализ против натрий-ацетатного буфера с рН 4,4-5,0 и диализ против калий-фосфатного буфера с рН 8,0±0,1 и концентрирование с дополнительной очисткой на ДЭАЭ-целлюлозе с элюцией тем же буфером с последующим диализом против деионизованной воды.

Дважды используют осаждение белков солями сульфата аммония: для отделения балластных белков используют 45-48% насыщение, а для осаждения пероксидазы используют 85-90% насыщение,

Хроматографической очистке пероксидазы на карбоксиметилцеллюлозе предшествует диализ против натрий-ацетатного буфера с рН 4,4-5,0.

Лиофильной сушке предшествует диализ раствора пероксидазы против деионизованной воды.

На Фиг.1 приведена принципиальная схема выделения пероксидазы из корней хрена.

Корни хрена отмывают под проточной водой и проращивают в течение 140-160 ч при температуре +25±1°С. Пророщенные корни измельчают и экстрагируют 0,15 М раствором хлорида натрия в течение 12±2 ч при постоянном перемешивании, затем центрифугируют.

К супернатанту-1 (Фиг.1) при непрерывном перемешивании добавляют 16,7±0,05 кг (45-48% насыщения) сульфата аммония, образовавшийся осадок отделяют центрифугированием, а к образовавшемуся супернатанту-2 (Фиг.1) добавляют еще 11,8±0,05 кг (85% насыщения) сульфата аммония, осадок (Фиг.1) отделяют центрифугированием и растворяют дистиллированной водой до конечного объема 200±10 мл. После центрифугирования супернатант, содержащий пероксидазу, наносят на колонку, заполненную сефадексом G-100, и элюируют 0,15 М раствором хлорида натрия со скоростью 100 мл/ч, в ходе элюции отбирают фракции по 20 мл. В собранных фракциях измеряют R Z =D 408 /D 275 . Фракции, в которых R Z не менее 0,8, объединяют и диализуют против натрий-ацетатного буфера (рН 4,4±0,2) (буфер-1), затем обессоленный раствор пероксидазы наслаивают на колонку, заполненную карбоксиметилцеллюлозой и уравновешенную буфером-1, и элюируют линейным градиентом 5 мМ - 0,1 М ацетатного буфера (рН 4,4±0,2) (V=S-0,5 л, R-0,5 л). В белковых фракциях измеряют величину R Z . Фракции, в которых значение R Z не менее 2,5, объединяют и диализуют против калий-фосфатного буфера (рН 8,0±0,1) (буфер-2), отдиализованный раствор фермента наслаивают на колонку, заполненную ДЭАЭ-целлюлозой, и элюируют буфером-2. Фракции, в которых значение R Z не менее 3,0, объединяют и диализуют против деионизованной воды, затем переносят в стерильную термостойкую колбу, замораживают жидким азотом и лиофильно сушат до полного высыхания препарата.

Существенными отличительными признаками предлагаемого способа получения биологически активных веществ являются:

Использование гельфильтрации на сефадексе G-100 для максимально полной очистки пероксидазы от низкомолекулярных примесей;

Диализ против натрий-ацетатного буфера (рН 4,4-5,0), позволяющий обессолить раствор пероксидазы и подготовить его к хроматографии на карбоксиметилцеллюлозе;

Диализ против калий-фосфатного буфера (рН 8,0±0,1), позволяющий перевести раствор пероксидазы в оптимальный буфер с оптимальным рН для нанесения на ДЭАЭ-целлюлозу;

Ионообменная хроматография пероксидазы на ДЭАЭ-целлюлозе как прием, обеспечивающий не только дополнительную очистку, но и концентрирование раствора фермента.

Таким образом, нами предлагается новый подход, позволяющий осуществлять переработку корней хрена с получением фермента пероксидазы высокой чистоты и удельной активности.

Отличие заявляемого способа от ближайшего аналога и прототипа состоит в следующем.

В заявляемом способе измельченные корни хрена экстрагируют 0,15±0,01 М раствором хлорида натрия с рН=4,4±0,2, тем самым достигается максимально полный переход фермента в раствор, и при этом фермент не теряет своей активности.

В аналоге изобретения [Пат. РФ 2130070, C12N 9/08, 10.05.1999] пероксидазу из очисток (без гомогенизации!) экстрагируют в течение 1 ч 0,25% раствором пищевой аскорбиновой кислоты, что может сказываться на выходе пероксидазы, поскольку очистки не гомогенизируются, а следовательно, фермент переходит в раствор далеко не полностью, при этом экстракция протекает в кислых условиях, что может привести к частичной инактивации фермента. В прототипе изобретения [А.С. Болгарии 46675, C12N 9/08, 15.02.90] фермент из гомогенизата корней хрена экстрагируют водой, что также приводит к низкому выходу пероксидазы из гомогенизата в раствор.

В отличие от аналога изобретения, где пероксидазу осаждают дважды 85-90% насыщением сульфатом аммония, и прототипа изобретения, где четыре раза проводят осаждение белков солями сульфата аммония, в заявляемом способе проводят отделение балластных белков 45-48% насыщением, а затем осаждают пероксидазу 85% насыщением.

В аналоге и прототипе изобретения концентрирование проводят методом ультрафильтрации, при этом в аналоге изобретения ультрафильтрация предшествует сульфатаммонийному осаждению пероксидазы, что приводит к большой вероятности соосаждения примесных белков, а соответственно, к более низкой чистоте конечного продукта. В заявляемом способе пероксидаза подвергается концентрированию на ионообменном сорбенте ДЭАЭ-целлюлоза на заключительной стадии технологического процесса, что приводит и к дополнительной очистке фермента.

В заявляемом способе гельфильтрацию проводят на сефадексе G-100 с элюированием 0,15±0,01 М раствором хлорида натрия (рН 4,4-5,0), что позволяет полностью избавиться от зеленоватого оттенка раствора пероксидазы, обусловленного наличием хлорофилла и родственных соединений, и веществ с меньшим, чем у пероксидазы, размером молекул. В аналоге изобретения гельфильтрацию проводят на сефадексе G-25, который по способности задерживать примесные частицы, учитывая размер молекулы пероксидазы (около 40 кДа), уступает сефадексу G-100.

Сущность изобретения иллюстрируется следующим примерами.

Пример 1. Получение грубого экстракта

50 кг корней хрена отмывают под проточной водой и проращивают в течение 140-160 ч при температуре +25±1°С. Пророщеные корни измельчают на лопастном гомогенизаторе и заливают 50 л 0,15-0,2 М раствором хлорида натрия (рН 4,4±0,2). Суспензию экстрагируют в течение 12±2 ч при постоянном перемешивании, затем центрифугируют.

К супернатанту-1 объемом 60 л для отделения балластных белков при непрерывном перемешивании добавляют сульфат аммония до 45-48% насыщения. (Под 100%-ным насыщением имеется в виду количество соли, при добавлении которого раствор становится насыщенным, а при дальнейшем добавлении соли раствор становится пересыщенным, и соль выпадает в осадок. Для растворов с сульфатом аммония 100% насыщением является добавление и полное растворение 70,7 г сульфата аммония в 100 мл дистиллированной воды.) Осадок-1 отделяют центрифугированием. Далее образовавшийся супернатант-2 объемом 55 л для осаждения пероксидазы насыщают сульфатом аммония до 85%, осадок-2 отделяют центрифугированием. Образовавшийся осадок-2 растворяют деионизованной водой до конечного объема 200±10 мл, нерастворившийся осадок-3 отделяют центрифугированием.

Гель-хроматография на сефадексе G-100.

Раствор пероксидазы наносят на колонку объемом 1 л, заполненную сефадексом G-100. Элюцию ведут 0,15-0,2 М раствором хлорида натрия (рН 4,4-5,0) со скоростью 100 мл/ч, в ходе элюции отбирают фракции по 20 мл. В собранных фракциях измеряют R Z =D 408 /D 275 . Фракции, в которых R Z не менее 0,8, объединяют.

В сборник помещают 5 л 5±0,1 мМ натрий-ацетатного буфера (рН 4,4-5,0) (буфер-1) и диализный мешок с объединенными фракциями пероксидазы. Диализ ведут при постоянном перемешивании в течение 24 ч, трижды меняя буфер в сборнике.

Обессоленный раствор фермента наслаивают на колонку объемом 1 л, заполненную карбоксиметилцеллюлозой и уравновешенную буфером-1. Элюцию ведут со скоростью 50 мл/ч в линейном градиенте 5 мМ-0,1 М ацетатного буфера (рН 4,4±0,2) (V=S-0,5 л, R-0,5 л). В белковых фракциях измеряют величину R Z . Фракции, в которых значение R Z не менее 2,5, объединяют.

В сборник помещают 5 л 20±0,1 мМ калий-фосфатного буфера (рН 8,0±0,1) (буфер-2) и диализный мешок с объединенными фракциями фермента. Диализ ведут аналогично.

Концентрирующая хроматография на ДЭАЭ-целлюлозе.

Раствор фермента с рН 8,0±0,1 наслаивают на колонку объемом 300 мл, заполненную ДЭАЭ-целлюлозой. Элюцию ведут буфером-2 со скоростью 50 мл/ч. Фракции, в которых значение R Z не менее 3,0, объединяют.

В сборник помещают 5 л деионизованной воды и диализный мешок с раствором пероксидазы. Диализ ведут аналогично.

Лиофильная сушка.

Раствор пероксидазы переносят в стерильную термостойкую колбу, замораживают жидким азотом и лиофильно сушат до полного высыхания препарата.

Пример 2 (сравнительный)

В данном примере выдержаны условия получения пероксидазы по прототипу, но для улучшения основных показателей пероксидазы изменены две существующие в прототипе стадии, а именно: для ультрафильтрационного концентрирования раствора пероксидазы используют два типа колонок с полыми волокнами, в отличие от прототипа, где используют один тип волокон, и дробное фракционирование белков солями сульфата аммония (как в заявляемом способе).

Получение грубого экстракта.

50 кг корней хрена отмывают под проточной водой и зачищают на 1/3 часть массы в присутствии 33,5 л 0,25% раствора пищевой аскорбиновой кислоты, в котором полученные очистки выдерживают в течение 1 ч для экстракции фермента пероксидазы. Далее экстракт центрифугируют на проточной центрифуге и выдерживают в течение 24 ч для "созревания" фермента.

Первичная очистка и концентрирование.

В полученный экстракт добавляют 1,7 кг (5% по весу) сульфита натрия и экстракт подвергают концентрированию и первичной очистке методом ультрафильтрации на установке с полыми полимерными волокнами УПВ-6, укомплектованной колонками с фильтрами, имеющими размеры пор 60 кДа и 5 кДа. Принципиальная схема установки представлена на Фиг.2, где показаны центробежный насос 1; предфильтр 2; колонка с волокнами, имеющими размер пор 60 кДа 3; колонка с волокнами, имеющими размер пор 5 кДа 4; фильтрат пероксидазы 5; концентрированный раствор пероксидазы 6; фильтрат, содержащий низкомолекулярные белки 7.

Фракционирование белков солями сульфата аммония.

К концентрату объемом 6 л для отделения балластных белков при непрерывном перемешивании добавляют сульфат аммония до 45-48% насыщения. Осадок отделяют центрифугированием. Далее образовавшийся супернатант объемом 5,7 л для осаждения пероксидазы насыщают сульфатом аммония до 85%, осадок отделяют центрифугированием, который растворяют бидистиллированной водой до конечного объема 200±10 мл, нерастворившийся осадок отделяют центрифугированием.

Гель-хроматография на сефадексе G-25 и G-50.

Дальнейшую очистку пероксидазы проводят на колонке для гельфильтрации, заполненной сефадексом G-25 и уравновешенной бидистиллированной водой. Раствор пероксидазы наносят на колонку, элюирование проводят бидистиллированной водой. Собирают фракции, в которых R Z не менее 0,2. К собранным фракциям добавляют сульфат аммония до 90% насыщения, перемешивают до полного растворения соли и центрифугируют. Осадок растворяют в 3-кратном по объему количестве бидистиллированной воды и наносят на колонку для гельфильтрации, заполненную сефадексом G-50 и уравновешенную бидистиллированной водой. Элюирование проводят бидистиллированной водой. Собирают фракции, в которых R Z не менее 0,6. С помощью 50% уксусной кислоты значение рН во фракциях с пероксидазой устанавливают на уровне 4,4.

Хроматография на карбоксиметилцеллюлозе.

Фракции пероксидазы наслаивают на колонку объемом 1 л, заполненную карбоксиметилцеллюлозой, предварительно уравновешенную 5 мМ ацетатным буфером с рН 4,4. Элюирование проводят линейным градиентом 5 мМ-0,15 М ацетатного буфера (рН 4,4±0,2) (V=S-0,5 л, R-0,5 л) в течение 1 часа. В белковых фракциях измеряют величину R Z . Фракции, в которых значение R Z не менее 2,7, объединяют, устанавливают рН 5,0 добавлением аммиака и лиофильно высушивают.

Сравнительные данные по примеру 1 и 2 приведены в таблице.

Таблица

Сравнительные данные основных параметров качества пероксидазы из корней хрена при использовании двух способов получения.

Наименование технологического параметра, единицы измерения. Пример 1 (заявляемый способ) Пример 2 (известный способ)
Выход по массе пероксидазы, г/кг корней хрена. 2,52-3,50 0,21-0,85
Удельная активность препарата, Е.А./мг белка* 640-700 560-610
Чистота по спектрофотометру R Z =D 408 /D 275 3,00-3,20 2,70-3,00
* - Удельная активность вычислялась с использованием данных, приведенных в работе СТП 103.34-83. Правила вычисления и обработки результатов количественного анализа. НИКТИ БАВ, 1983.

Таким образом, как видно из примеров и таблицы, заявляемый способ получения пероксидазы из корней хрена (пример 1) позволяет получать пероксидазу с высокими выходами, с чистотой и активностью, достаточной для использования данного фермента в качестве составной части конъюгатов для иммуноферментных анализов. А в условиях прототипа (пример 2) даже при усовершенствовании двух стадий, улучшающих показатели, выход, удельная активность и чистота целевой пероксидазы ниже аналогичных показателей заявляемого способа.

Данный способ может быть использован в промышленном получении пероксидазы из корней хрена.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения фермента пероксидазы из корней хрена, включающий размельчение и гомогенизацию пророщенных корней хрена, экстракцию гомогенизата корней хрена, отделение балластных белков и осаждение пероксидазы солями сульфата аммония, гельфильтрацию раствора пероксидазы на сефадексе, хроматографическую очистку на карбоксиметилцеллюлозе, лиофильную сушку целевой пероксидазы, отличающийся тем, что измельченные корни хрена экстрагируют 0,15±0,01 М раствором хлорида натрия; гельфильтрацию раствора пероксидазы осуществляют на сефадексе G-100, проводят диализ против натрий-ацетатного буфера с рН 4,4-5,0 и диализ против калий-фосфатного буфера с рН 8,0±0,1, и концентрирование с дополнительной очисткой на ДЭАЭ-целлюлозе с элюцией тем же буфером с последующим диализом против деионизованной воды.

2. Способ по п.1, отличающийся тем, что измельченные корни хрена экстрагируют 0,15±0,01 М раствором хлорида натрия с рН 4,4±0,2.

3. Способ по п.1, отличающийся тем, что дважды используют осаждение белков солями сульфата аммония: для отделения балластных белков используют 45-48% насыщение, а для осаждения пероксидазы используют 85-90% насыщение.

4. Способ по п.1, отличающийся тем, что гельфильтрацию проводят на сефадексе G-100 с элюированием 0,15-0,2 М раствором хлорида натрия с рН 4,4-5,0.

5. Способ по п.1, отличающийся тем, что хроматографической очистке пероксидазы на карбоксиметилцеллюлозе предшествует диализ против натрий-ацетатного буфера с рН 4,4-5,0.

6. Способ по п.1, отличающийся тем, что лиофильной сушке предшествует диализ раствора пероксидазы против деионизованной воды.

Изобретение относится к области биохимии и может быть использовано для лабораторного и промышленного производства пероксидазы высокого качества из корней хрена для диагностических целей. Измельченную биомассу корней хрена выдерживают в 0.1 М буферном растворе фосфата натрия рН 7.0, предварительно продутом азотом, в присутствии 5 мкМ раствора гемина и 5 мМ хлористого кальция. Экстракт отделяют декантацией с последующей фильтрацией и концентрированием ультрафильтрацией через ультрафильтры с размером пор менее 30 кДа. Экстракт фермента насыщают сульфатом аммония до 35% от насыщения и наносят на колонку с фенилсефарозой, после интенсивного промывания буфера с сульфатом активные фракции снимают градиентом сульфата аммония (35%-0%) и увеличением рН до 8.0. Фермент очищают гель-фильтрацией на Toyopearl HW55F, подвергают диализу и высушивают лиофилизацией. Использование геминсодержащих буферов на стадии экстракции и гель-фильтрации позволяет получать высокоактивный фермент с высоким выходом за счет 100% насыщения фермента гемином. Это позволяет ускорить процесс производства фермента и существенно улучшить его каталитические характеристики и стабильность. 6 з.п. ф-лы, 1 табл.

Изобретение относится к области биохимии и может быть использовано для лабораторного и промышленного производства пероксидазы высокого качества из корней хрена, предназначенной для диагностических целей.

Известен (Paul K.G. The Enzymes. New Jork, Acad. Press, 1963) способ получения пероксидазы, включающий гомогенизацию корней хрена, экстракцию фермента водой или солевым раствором и фракционирование экстракта, причем фракционирование осуществляют последовательной обработкой экстракта сульфатом аммония, гель-фильтрацией, спиртовым осаждением, электрофорезом, переосаждением хлоридом аммония, фильтрацией через Сефадекс G 50 и ДЕАЕ-целлюлозу и диализом.

Основными недостатками данного способа являются невысокая чистота и активность полученного препарата, а также сложность и продолжительность процесса его получения. Кроме того, данный способ не предполагает безотходного производства.

Известен также (HU, патент №172872) способ получения пероксидазы, включающий гомогенизацию корней хрена, экстракцию фермента водой, фракционирование экстракта сульфатом аммония и его гельфильтрацию.

Недостаток данного способа состоит в недостаточно высоком выходе фермента.

Известен (BG, патент 46675) способ получения фермента из отходов производства, включающий гомогенизацию, экстракцию фермента водой, осаждение экстракта сульфатом аммония, очистку и концентрирование фермента ультрафильтрацией и гель-фильтрацией и последующую лиофилизацию.

Известен также (RU, патент №2130070) способ получения пероксидазы, включающий гомогенизацию растительной ткани хрена, экстракцию фермента, отделение экстракта с проведением осаждения фермента сульфатом аммония, очистку фермента концентрированием ультрафильтрацией и гельфильтрацией, последующую лиофилизацию целевого продукта, причем в качестве растительной ткани хрена используют отходы от зачистки корней при производстве пищевой продукции, перед ультрафильтрацией в экстракт вносят сульфит натрия в эффективном количестве, осаждают фермент сульфатом аммония из ультрафильтрата, а после гель-фильтрации фермент дополнительно очищают ионообменной хроматографией.

Известный способ выбран в качестве ближайшего аналога разработанного изобретения.

Недостатками указанных способов является длительность процесса очистки с потерей активности, что приводит к ухудшению качества, а именно удельной активности, конечного продукта.

Техническая задача, на решение которой направлено разработанное техническое решение, состоит в разработке способа получения пероксидазы, обеспечивающего максимальный выход активного препарата и его высокую удельную активность.

Технический результат, получаемый при реализации разработанного способа, состоит в уменьшении расхода корней хрена и повышении выхода пероксидазы с высокой степенью чистоты и активности, а также в ускорении способа.

Для достижения указанного технического результата предложено использовать способ получения пероксидазы, включающий гомогенизацию растительной ткани корня хрена, экстракцию фермента, отделение экстракта, очистку фермента гидрофобной хроматографией, концентрированием ультрафильтрацией и гель-фильтрацией, последующую лиофилизацию целевого продукта, причем в экстракт вносят гемин и хлорид кальция, экстракт насыщают азотом путем продувки, а фермент очищают гидрофобной хроматографией.

В некоторых вариантах реализации способа экстракцию фермента производят в 0,1 М буферном растворе фосфата натрия или калия в течение 1 ч при продолжающейся продувке азотом.

Предпочтительно гемин вносят в экстракт до концентрации 5 мкМ, а хлорид кальция вносят в экстракт до концентрации 5 мМ.

В некоторых вариантах реализации гидрофобную хроматографию проводят при добавлении сульфата аммония в количестве 35% от насыщения.

Преимущественно гидрофобную хроматографию проводят на фенилсефарозе с последующим отбором фракций с величиной параметра RZ>1,5, а гельфильтрацию осуществляют на Toyopearl HW55F с последующим отбором фракций с величиной параметра RZ>2,7.

Разработанный способ включает следующую совокупность признаков, обеспечивающих получение технического результата во всех случаях, на которые испрашивается правовая охрана:

1) гомогенизация растительной ткани;

2) в качестве растительной ткани могут использовать как корни хрена, так и отходы, полученные при зачистке корней хрена при изготовлении пищевой продукции;

3) экстракция фермента;

4) концентрирование экстракта ультрафильтрацией;

5) очистка фермента гидрофобной хроматографией;

6) дополнительная очистка гель-фильтрацией;

7) лиофилизация фермента.

Достижение технического результата при использовании предлагаемого способа объясняется следующим образом.

Экспериментально было установлено, что образование полифенольных пигментов при разрушении биомассы является следствием протекания оксидазной реакции, которая приводит к частичной инактивации пероксидазы. Продувка буфера для экстракции азотом в течение 2 часов обеспечивает снижение концентрации кислорода до 25-30 мкМ и ингибирует образование полифенолов в 10-12 раз. Включение в состав гемина и хлорида кальция приводит к 100% насыщению активного центра гемином и дополнительной стабилизации фермента. Авторами изобретения предложено впервые использовать указанные добавки для изготовления пероксидазы, что позволило снизить расход корней хрена и повысить выход пероксидазы на единицу массы корней при высокой степени ее чистоты и активности.

Ускорение процесса получения пероксидазы достигается за счет введения стадии гидрофобной хроматографии, которая позволяет избавиться от дорогостоящего и трудоемкого осаждения сульфатом аммония. При этом достигается экономия сульфата аммония.

По сравнению с ближайшим аналогом отличительными признаками изобретения являются:

1) использование добавок гемина, хлорида кальция и предварительная продувка экстрагирующего буфера азотом при экстракции фермента;

2) очистка и одновременное концентрирование фермента гидрофобной хроматографией;

3) дополнительная очистка гель-фильтрацией в присутствии добавок гемина и кальция.

В дальнейшем способ будет иллюстрирован примером реализации.

3 кг промытых водой корней хрена измельчают в гомогенизаторе и заливают 3 л 0.1 М буферного раствора фосфата натрия, рН 7.0, в присутствии 5 мкМ раствора гемина и 5 мМ хлористого кальция, причем буферный раствор предварительно продут азотом. Экстрагирование ведут в течение часа. Экстракт отделяют декантацией, выдерживают сутки при 4°С и фильтруют через бумажный фильтр, а затем через ультрафильтры с диаметром пор 0.23 микрона для полного удаления остатков частиц биомассы перед стадией концентрирования. Концентрирование ведут ультрафильтрацией на проточной концентрационной ячейке с фильтром, удерживающим 30 кДа в течение 6 часов. Конечный объем составляет 0.5 л. Далее к раствору фермента добавляют 200 г сульфата аммония (35% от насыщения), выдерживают 3 часа при 4°С, отделяют выпавший осадок центрифугированием при 9000g, а супернатант наносят на колонку с фенилсефарозой, промывают 1 л буферного раствора, содержащего сульфат аммония, и снимают фермент градиентом сульфата аммония (35-0%) с одновременным повышением рН до 8.0. Собирают фракции с величиной параметра RZ>1,5; объем фракции составляет 100 мл.

Фермент дополнительно очищают гель-фильтрацией на 2 л колонке с Toyopearl HW55F, уравновешенной 0.1 М К-фосфатным буфером, рН 7.8, в присутствии 5 мкМ гемина и 5 мМ хлорида кальция. Собирают фракции основного пика (хвостовые фракции могут быть использованы для получения препаратов кислой изоформы пероксидазы хрена) с величиной параметра RZ>2,7; объем фракций составляет 150 мл. Фракции подвергают диализу против 2 л 5 мМ раствора того же буфера, сменяя буферный раствор 4 раза, и лиофильно высушивают. Высушенная пероксидаза имеет вид аморфной массы ярко-коричневого цвета, легко растворяется в водных буферных растворах. Выход фермента составляет 500 мг. Степень чистоты полученного фермента контролируют спектрофотометрически по показателю RZ (отношению величин поглощения на длинах волн 403 и 278 нм), величина которого должна быть не менее 2,7. Ферментативную активность пероксидазы определяют по индикаторной реакции с АБТС. Препарат считают кондиционным, если в 1 мг содержится не менее 1000 единиц активности. Массовую долю влаги определяют по ГОСТ 24061-89.

Таким образом, изложенные сведения свидетельствуют, что реализации разработанного способа позволяет обеспечить достижение технического результата - снижение расхода корней хрена и повышение выхода пероксидазы высокой степени чистоты и активности, а также ускорение способа.

Таким образом, изложенные сведения свидетельствуют, что реализация разработанного способа позволяет обеспечить достижение технического результата - снижение расхода корней хрена и повышение выхода пероксидазы высокой степени чистоты и активности, а также ускорение способа.

1. Способ получения пероксидазы, включающий гомогенизацию растительной ткани корней хрена, экстракцию фермента, отделение экстракта с последующим концентрированием ультрафильтрацией и гельфильтрацией и лиофилизацией целевого продукта, отличающийся тем, что между стадиями ультрафильтрации и гельфильтрации фермент очищают гидрофобной хроматографией, причем экстрагирующий буфер предварительно насыщают азотом путем продувки и вносят гемин и хлорид кальция.

2. Способ по п.1, отличающийся тем, что экстракцию фермента производят в 0,1 М буферном растворе фосфата натрия или калия в течение 1 ч при продолжающейся продувке азотом.

3. Способ по п.1, отличающийся тем, что гемин вносят в экстракт до концентрации 5 мкМ.

4. Способ по п.1, отличающийся тем, что хлорид кальция вносят в экстракт до концентрации 5 мМ.

5. Способ по п.1, отличающийся тем, что гидрофобную хроматографию проводят при добавлении сульфата аммония 35% от насыщения.

6. Способ по п.1, отличающийся тем, что гидрофобную хроматографию проводят на фенилсефарозе с последующим отбором фракций с величиной параметра RZ>1,5.

7. Способ по п.1, отличающийся тем, что гельфильтрацию осуществляют на Toyopearl HW55F с последующим отбором фракций с величиной параметра RZ>2,7.

Похожие патенты:

Изобретение относится к биотехнологии и микробиологии, а именно к микробиологическому получению ферментных препаратов - лакказ, и может быть использовано при модификации лигниносодержащих материалов и получении из них промышленно ценных соединений, отбеливании бумажной массы и текстильных материалов, очистке сточных вод и почвы от целого ряда ксенобиотиков, полимеризации фенолов и ряда других ароматических соединений, получении косметических препаратов для отбеливания кожи и окрашивания волос.

Изобретение относится к области производства гетерогенных катализаторов процессов жидкофазного окисления органических соединений - фенолов, поверхностно-активных веществ - перекисью водорода и может быть применено для каталитической очистки сточных вод от фенольных соединений.

Изобретение относится к биохимии, а именно к способам гидролитического расщепления нативного комплекса фермент пероксидаза+фенолы (хиноны), которые могут найти применение при изучении различных метаболических процессов, связанных с действием пероксидазы процессы лигнификации тканей, защитные реакции организмов, иммунологические исследования, при которых используется пероксидаза.

Изобретение относится к области биохимии. Используют липосомы в качестве матрицы для активированного фермента - пероксидазы хрена. К 5 мг окисленной перйодатным методом пероксидазы хрена добавляют 1 мл суспензии липосом в 0,01 М растворе карбонатно-бикарбонатного буфера при рН 9,5. Подвергают ультразвуковой обработке в течение 1 мин. Инкубируют 1 ч. Иммобилизуют с иммуноглобулинами в концентрации 5 мг в течение 2 ч при температуре 22±4°С. Стабилизируют 5 мг боргидрида натрия с последующей гель-хроматографической очисткой. Изобретение позволяет получить липосомально-иммунопероксидазный конъюгат для индикации возбудителей инфекционных заболеваний в иммуноферментном анализе и увеличить срок годности препарата до 6 лет. 1 табл., 3 пр.

Изобретение относится к новому способу получения флуоресцирующих катехоламинов, выбранных из допамина и адреналина, и их метаболитов, выбранных из гомованилиновой и ванилилминдальной кислот, методом дериватизации. Соединения могут быть использованы в качестве высокочувствительных и селективных маркеров для определения различный заболеваний. Способ дериватизации включает окисление исходных соединений и их взаимодействие с образующими конденсированные структуры аминами в среде CAPS-буферного раствора или глицин - КОН 0.1 мМ пероксидом водорода в присутствии в качестве катализатора пероксидазы хрена. Предпочтительно процесс проводят в 0,1 М буферном растворе при концентрации пероксидазы хрена 0,01-1 мкМ; концентрации пероксида водорода - 100 мкМ, концентрации амина - 0,1-33 мМ; концентрации катехоламинов и метаболитов - 0,03-1 мкМ. Способ является простым и технологичным, т.к. не требует повышенной температуры и осуществляется в водном растворе. 1 з.п.ф-лы, 2 ил., 3 пр.

Изобретение относится к биотехнологии и представляет собой применение оксидоредуктазы перекиси водорода для получения фармацевтической композиции для улучшения качества спермы или лечения мужского бесплодия, где оксидоредуктаза перекиси водорода представляет собой белок PRDX2. Изобретение относится также к композиции для улучшения качества спермы или лечения мужского бесплодия, содержащей белок PRDX2 и фармацевтически приемлемый носитель. Изобретение позволяет эффективно улучшить качество спермы или эффетивно лечить мужское бесплодие пациента, страдающего от астеноспермии. 3 н. и 11 з.п. ф-лы, 7 ил., 4 табл., 10 пр.

Изобретение относится к химической промышленности, а именно к области производства гетерогенных катализаторов процессов жидкофазного окисления органических соединений (в том числе, производных фенолов) и может быть применено на предприятиях различных отраслей промышленности для проведения реакций окисления, а также для каталитической очистки сточных вод от токсичных органических контаминантов. Гетерогенный катализатор жидкофазного окисления органических соединений содержит носитель, глутаровый диальдегид в качестве сшивающего агента и экстракт корня хрена (Armoracia Rusticana) в качестве активного компонента. Согласно изобретению в качестве носителя используют диоксид титана, модифицированный последовательно 0,095÷0,105 н. раствором соляной кислоты, 0,195÷0,205%-ным раствором хитозана в 0,0045÷0,0055 М растворе соляной кислоты и 4,95÷5,05%-ным раствором аминопропилтриэтоксисилана в 95,5÷96,5%-ном этаноле при следующем соотношении компонентов, % масс.: диоксид титана - 45÷55; хитозан - 7,5÷12,5; аминопропилтриэтоксисилан - 17,5÷22,5; сшивающий агент (глутаровый диальдегид) - 7,5÷12,5; активный компонент (экстракт корня хрена) - 7,5÷12,5. Технический результат - повышение активности, селективности и операционной стабильности гетерогенного катализатора в реакции жидкофазного окисления органических соединений перекисью водорода. 6 ил., 19 пр.

Изобретение относится к области биохимии и может быть использовано для лабораторного и промышленного производства пероксидазы высокого качества из корней хрена для диагностических целей

Изобретение относится к биотехнологии. Способ получения пероксидазы хрена включает гомогенизацию корней хрена, экстракцию фермента, концентрирование ультрафильтрацией и осаждение белков сульфатом аммония. Осадок белков диализуют против воды и 0,01-0,03 М раствора TEA-HCl буфера, с последующей очисткой пероксидазы от балластных белков на колонке с ДЭАЭ-целлюлозой в том же буфере. Затем продолжают очистку в 0,01-0,03 М растворе МОРS-NаОН буфера на колонке с КМ-целлюлозой при значениях pH и pK буферов 7,1-7,4 и 7,5-7,6 соответственно. Очищенный целевой продукт диализуют против воды и 0,01-0,03 М NaCl, а затем лиофилизируют. Способ обеспечивает упрощение получения высокоочищенной пероксидазы хрена и повышение ее выхода. 2 з.п. ф-лы.

Изобретение относится к биохимии и биотехнологии, а именно к получению высокоочищенной пероксидазы хрена адсорбционной хроматографией.

Высокоочищенная пероксидаза хрена (критерий очистки А 403 /А 275 3,1 - RZ от Reinheitszahl - показатель чистоты) - один из наиболее востребованных ферментов для биохимии и биотехнологии. В частности, она широко используется в методах иммуноферментного анализа, например, для определения ВИЧ-инфекции, гепатитов и других социально значимых заболеваний человека.

Известен способ получения пероксидазы, включающий гомогенизацию корней хрена, экстракцию фермента водой или солевым раствором, фракционирование экстракта сульфатом аммония, очистку гель-фильтрацией, спиртовым осаждением, переосаждением хлоридом аммония, фильтрацией через сефадекс G-50, ионообменной хроматографией и диализом .

Недостатками этого способа являются сложность и продолжительность получения, сравнительно низкая чистота полученного препарата (RZ~2,7), трудность получения большого количества фермента.

Известен также способ получения пероксидазы, включающий гомогенизацию корней хрена, экстракцию фермента, фракционирование экстракта сульфатом аммония, гель-фильтрацию .

Недостаток этого способа заключается в низком выходе фермента, низкой его чистоте.

Задачей данного изобретения является повышение выхода высокоочищенного фермента при упрощении способа производства.

Поставленная задача решается тем, что предложен способ получения пероксидазы хрена, включающий гомогенизацию корней хрена, экстракцию фермента, концентрирование ультрафильтрацией, осаждение белков сульфатом аммония, диализ осадка белков против 0,01-0,03 М раствора TEA (триэтаноламин)-HCl буфера, последовательную очистку пероксидазы от балластных белков на колонке с ДЭАЭ-целлюлозой в том же буфере, а затем в 0,01-0,03 М растворе MOPS(N-морфолинопропансульфоновая кислота)-NaOH буфера на колонке с КМ-целлюлозой, при значениях pH и pK буферов, близких к изоточке целевого продукта, и концентрации, обеспечивающей движение пероксидазы вниз по колонке, по принципу адсорбции-десорбции, со скоростью, меньшей, чем у части балластных белков, имеющих одноименный заряд с зарядом на колонке, тогда как другая их часть остается на старте вследствие ионного обмена; раствор очищенного целевого продукта диализуют против воды и 0,01-0,03 М NaCl с последующей лиофилизацией, причем фермент после гомогенизации корней экстрагируют водой, сульфат аммония вносят в концентрации 70-75% от насыщения, а значения pH и pK буферов составляют 7,1-7,4 и 7,5-7,6 соответственно.

Отличием данного способа является одновременное использование одного и того же носителя для адсорбционной хроматографии целевого продукта и для очистки от балластных белков, при значениях pH, близких к изоточке целевого продукта, а также использование буферов небольшой концентрации со значениями pK, близкими к изоточке фермента, причем компоненты буферов имеют объемистые электронодонорные или электроноакцепторные группы, конкурирующие за адсорбент с группами макромолекулы пероксидазы. Пероксидазу хрена получают из сока корней хрена, собранных в самом начале цветения, в это время содержание фермента в корнях в 3-4 раза выше, по сравнению с прототипом.

Техническим результатом решения задачи является получение пероксидазы с RZ 3,35 и активностью 1000 ед/мг фермента (субстрат 4-аминоантипирин) за одну стадию. Выход фермента 3,2 г из 100 кг корней, что в 6 раз выше по сравнению с прототипом. Предложенный способ позволяет уменьшить число стадий и за счет этого снизить время на получение целевого продукта и увеличить в 1,5-2 раза его выход.

Известно, что адсорбция белков на каком-либо сорбенте связана с различными нековалентными взаимодействиями макромолекулярных групп с поверхностью этого сорбента. Однако их суммарная энергия мала по сравнению, например, со связыванием белок-ингибитор при аффинной хроматографии или ионными взаимодействиями на ионообменнике. Таким образом, адсорбционное взаимодействие маскируется другими, более сильными взаимодействиями поверхность белка-поверхность носителя. Поэтому, если предполагается очистить данный белок адсорбционной хроматографией, необходимо создать такие условия, чтобы балластные белки либо связывались на колонке, либо двигались по ней быстрее целевого белка, т.е. чтобы только данный белок мог медленно двигаться по принципу адсорбции-десорбции. Такие условия создаются, если использовать в качестве носителя для адсорбционной хроматографии целлюлозу, а для очистки от балластных белков использовать ДЭАЭ- и КМ-группы. Для того чтобы добиться одновременного движения целевого фермента по принципу адсорбционной хроматографии, а части балластных белков - вследствие отталкивания заряженного белка от одноименно заряженных групп, необходимо совместить эти группы и целлюлозный носитель, т.е. использовать ДЭАЭ- и КМ-целлюлозы. Если проводить хроматографию при значениях pH, близких к изоточке целевого фермента, часть балластных белков задерживается на старте вследствие ионного обмена, а часть быстро движется вниз из-за взаимодействия с одноименными зарядами ионообменника. Незаряженный или слабо заряженный фермент будет медленно двигаться, по сравнению с балластными белками, вниз и на ДЭАЭ- и на КМ-целлюлозах в случае конкуренции между группами фермента и компонентами буфера за сорбент.

Буфер имеет:

1) небольшую концентрацию, поскольку при ее повышении конкуренция компонентов буфера может быть столь сильной, что целевой продукт будет двигаться со скоростью, сравнимой со скоростью движения балластных белков, и очистки не произойдет;

2) поскольку буфер должен обеспечить устойчивое значение pH при небольшой концентрации, он должен иметь pK, близкое к изоточке целевого продукта;

3) компоненты буфера должны иметь объемистые группы для эффективной конкуренции с поверхностными группами целевого продукта. Балластные белки будут заряжены при этом значении pH и, в зависимости от заряда, либо остаются на старте («ионный обмен»), либо движутся значительно быстрее целевого продукта (взаимодействие одноименных зарядов). Незаряженный или слабо заряженный целевой продукт будет отделяться и от белков, остающихся на старте, и от быстро движущихся белков. Лишь белки, имеющие изоточки, близкие к изоточке пероксидазы, могли бы связываться адсорбционно и тем самым уменьшать степень очистки, но, как показывает опыт, такие белки в соке из корней хрена отсутствуют или находятся в минорном количестве.

Очистка целевого продукта:

1) белки из сока корней хрена после их гомогенизации экстрагируют водой, доводят ультрафильтрацией до начального объема сока, осаждают сульфатом аммония, диализуют против воды, а затем против 0,01-0,03 М ТЕА-HCl буфера, pH 7,1-7,4 и наносят последовательно на колонки с ДЭАЭ-целлюлозой в Cl - -форме и КМ-целлюлозой в Na + -форме, уравновешенные соответственно 0,01-0,03 М ТЕА-HCl и 0,01-0,03 М MOPS-NaOH буферами, pH 7,1-7,4 (pK буферов 7,5 и 7,6; изоточка пероксидазы 7,2);

2) за медленным движением коричневого кольца фермента следят визуально;

3) после выхода фермента из колонки с КМ-целлюлозой его диализуют последовательно против воды и 0,01-0,03 М NaCl, разбавляют до 2-5 мг/мл раствором 0,01-0,03 М NaCl и лиофилизируют;

4) измеряют значения RZ продукта и его активность по 4-аминоантипирину.

Для измерения пероксидазной активности в кювету вносят 1,5 мл фенол-аминоантипиринового раствора (810 мг фенола растворяют в 40 мл воды, добавляют 25 мг 4-аминоантипирина и разбавляют водой до 50 мл), 1,4 мл раствора пероксида водорода (1 мл 30% H 2 O 2 разбавляют водой до 100 мл; далее 1 мл этого раствора разбавляют 0,2 М калий-фосфатным буфером, pH 7,0 до 50 мл), 0,1 мл раствора фермента. Измерение оптической плотности проводят при 510 нм и температуре 25°С. Определяют скорость из линейной части кривой:

ед/мг=( А 510 /мин)/6,58×мг фермента/мл.

Концентрация фермента равна: мг фермента/мл=А 403 ×0,44.

Следующие примеры иллюстрируют эти положения.

Пример 1. 100 кг корней хрена двухлетнего возраста, собранных в начале цветения, промывают водой, гомогенизируют, экстрагируют фермент водой, концентрируют ультрафильтрацией до начального объема сока, осаждают белок сульфатом аммония (70% насыщения). Осадок растворяют в минимальном количестве воды и диализуют против нее, а затем против 0,01 М ТЕА-HCl буфера, pH 7,1. Концентрацию белка доводят до 80 мг/мл концентрированием ультрафильтрацией (определение белка по Бредфорд или Лоури) и наносят на колонку (10×20 см) с ДЭАЭ-целлюлозой, уравновешенную 0,01 М ТЕА-HCl буфером, pH 7,1 и pK 7,5. После прохождения самотеком коричневого кольца его наносят на колонку того же объема с КМ-целлюлозой, уравновешенную 0,01 М MOPS-NaOH буфером, pH 7,1 и pK 7,5. После выхода фермента из колонки с КМ-целлюлозой его диализуют последовательно против воды и 0,01 М NaCl, разбавляют до 2-5 мг/мл раствором 0,01 М NaCl и лиофилизируют.

Пример 2. 100 кг корней хрена двухлетнего возраста, собранных в начале цветения, промывают водой, гомогенизируют, экстрагируют фермент водой, концентрируют ультрафильтрацией до начального объема сока, осаждают белок сульфатом аммония (75% насыщения). Осадок растворяют в минимальном количестве воды и диализуют против нее, а затем против 0,03 М ТЕА-HCl буфера, pH 7,4. Концентрацию белка доводят до 80 мг/мл концентрированием ультрафильтрацией и наносят на колонку (10×20 см) с ДЭАЭ-целлюлозой, уравновешенную 0,03 М ТЕА-HCl буфером, pH 7,4, pK 7,6. Далее хроматографируют целевой продукт, как в примере 1, на КМ-целлюлозе, но в 0,03 М MOPS-NaOH буфере, pH 7,4, pK 7,6. После выхода фермента из колонки с КМ-целлюлозой его диализуют последовательно против воды и 0,03 М NaCl, разбавляют до 2-5 мг/мл раствором 0,03 М NaCl и лиофилизируют.

Выход: 3,2 г пероксидазы с RZ 3,35 и активностью 1000 ед/мг фермента по 4-аминоантипирину.

Пример 3. 15 г лиофилизированного порошка пероксидазы с RZ 0,3 суспендируют в 0,01 М TEA-HCl буфере, pH 7,1 центрифугируют (20 мин, 3000 г) и 300 мл супернатанта наносят на колонку (10×20 см) с ДЭАЭ-целлюлозой, уравновешенную тем же буфером. После прохождения самотеком коричневого кольца его наносят на колонку того же объема с КМ-целлюлозой, уравновешенную 0,01 М MOPS-NaOH буфером, pH 7,1, pK 7,5. После выхода фермента из колонки с КМ-целлюлозой его диализуют последовательно против воды и 0,01 М NaCl, разбавляют до 2-5 мг/мл раствором 0,01 М NaCl и лиофилизируют.

Пример 4. 15 г лиофилизированного порошка пероксидазы с RZ 0,3 суспендируют в 0,03 М TEA-HCl буфере, pH 7,4, центрифугируют (20 мин, 3000 г) и 300 мл супернатанта наносят на колонку (10×20 см) с ДЭАЭ-целлюлозой, уравновешенную тем же буфером. После прохождения самотеком коричневого кольца его наносят на колонку того же объема с КМ-целлюлозой, уравновешенную 0,03 М MOPS-NaOH буфером, pH 7,4, pK 7,6. После выхода фермента из колонки с КМ-целлюлозой его диализуют последовательно против воды и 0,03 М NaCl, разбавляют до 2-5 мг/мл раствором 0,03 М NaCl и лиофилизируют.

Выход составляет 1,5 г целевого продукта с RZ 3,35 и активностью 1000 ед/мг фермента по 4-аминоантипирину.

Таким образом, предлагаемый способ в сравнении с прототипом позволяет получить целевой продукт с RZ 3,35 и активностью 1000 ед/мг фермента по 4-аминоантипирину. Выход фермента составляет 3,2 г на на 100 кг корней, что превышает выход по прототипу ~ в 6 раз. Кроме того, полученный целевой продукт обладает большей чистотой по сравнению с прототипом (RZ соответственно 3,35 и 2,7). Упрощение способа выражается в сокращении биохимических стадий с четырех до одной. Этот способ позволяет также выделять высокоочищенную пероксидазу из лиофильно высушенного низкоочищенного фермента.

Источники литературы

1. Paul К.G. The Enzymes. New York, Acad. Press, 1963.

2. Патент РФ № 2130070.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения пероксидазы хрена, включающий гомогенизацию корней хрена, экстракцию фермента, концентрирование ультрафильтрацией, осаждение белков сульфатом аммония, диализ осадка, отличающийся тем, что осадок белков диализуют против воды и 0,01-0,03 М раствора TEA-HCl буфера с последующей очисткой пероксидазы от балластных белков на колонке с ДЭАЭ-целлюлозой в том же буфере, а затем в 0,01-0,03 М растворе MOPS-NaOH буфера на колонке с КМ-целлюлозой, при значениях pH и pK буферов, близких к изоточке целевого продукта 7,1-7,4 и 7,5-7,6 соответственно, очищенный целевой продукт диализуют против воды и 0,01-0,03 М NaCl, а затем лиофилизируют.

2. Способ по п.1, отличающийся тем, что фермент после гомогенизации корней экстрагируют водой.

3. Способ по п.1, отличающийся тем, что сульфат аммония вносят в концентрации 70-75% насыщения.