Определение прямой параллельной плоскости в пространстве. Определение натуральной величины отрезка прямой общего положения способом прямоугольного треугольника

1.Сформулируйте определение скрещивающихся прямых. Сформулируйте и докажите теорему, выражающую признак скрещивающихся прямых. 2/Докажите, что если две

прямые параллельны третьей прямой, то они параллельны. 3.Постройте сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через точки A, C и M, где M – середина ребра AlDl.

Какая из фигур не является основной фигурой в пространстве? 1) точка; 2) отрезок; 3) прямая; 4) плоскость.

2. Прямые a и b скрещивающиеся. Как расположена прямая b относительно плоскости α, если прямая а ϵ α?

1) пересекает; 2) параллельна; 3) лежит в плоскости; 4) скрещивается.

3. Определите, какое утверждение верно:

1) Перпендикуляр длиннее наклонной.

2) Если две наклонные не равны, то большая наклонная имеет меньшую проекцию.

3) Прямая перпендикулярна плоскости, если она перпендикулярна лежащим в этой плоскости двум сторонам треугольника.

4) Угол между параллельными прямой и плоскостью равен 90º.

4. Расстояние между двумя параллельными плоскостями равно 8 см. Отрезок прямой, длина которого 17 см, расположен между ними так, что его концы принадлежат плоскостям. Найдите проекцию этого отрезка на каждую из плоскостей.

1) 15 см; 2) 9 см; 3) 25 см) 4) 12 см.

5. К плоскости МКРТ проведен перпендикуляр ТЕ, равный 6 дм. Вычислить расстояние от точки Е до вершины ромба К, если МК = 8 дм, угол М ромба равен 60º.

1) 10 дм; 2) 14 дм; 3) 8 дм; 4) 12 дм.

6. Гипотенуза прямоугольного треугольника равна 12 см. Вне плоскости треугольника дана точка, удаленная от каждой вершины треугольника на расстоянии 10 см. Найдите расстояние от точки до плоскости треугольника.

1) 4 см; 2) 16 см; 3) 8 см; 4) 10 см.

7. Из некоторой точки проведены к данной плоскости перпендикуляр и наклонная, угол между которыми равен 60º. Найдите проекцию наклонной на данную плоскость, если перпендикуляр равен 5 см.

1) 5√3 см; 2) 10 см; 3) 5 см; 4) 10√3 см.

8. Найти боковую поверхность правильной треугольной пирамиды, если сторона основания равна 2 см, а все двугранные углы при основании равны 30º.

1) 2 см2; 2) 2√3 см2; 3) √3 см2; 4) 3√2 см2.

9. Найти площадь поверхности прямоугольного параллелепипеда по трем его измерениям, равным 3 см, 4 см, 5 см.

1) 94 см2; 2) 47 см2; 3) 20 см2; 4) 54 см2.

плоскости.

б) если одна из двух параллельных прямых пересекает данную плоскость, то другая прямая также пересекает эту плоскость.

в) если две прямые параллельны третьей прямой, то они пересекаются

г) если прямая и плоскость не имеют общих точек, то прямая лежит в плоскости

д) прямая и плоскость называются скрещивающимися, если они не имеют общих точек

плоскости;б) если одна из двух параллельных прямых пересекает данную плоскость, то другая прямая также пересекает эту плоскость;в) если две прямые параллельны третьей прямой, то они пересекаются;г)если прямая и плоскость не имеют общих точек, то прямая лежит в плоскостид) прямая и плоскость называются скрещивающимися, если они не имеют общих точек.
2. Прямая с, параллельная прямой а, пересекает плоскость β. Прямая b параллельна прямой а, тогда:



Некоторые следствия из аксиом


Теорема 1:


Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна .

Дано: М ₵ а

Доказать: 1) Существует α: а ∈ α , М ∈ b ∈ α

2) α - единственная


Доказательство:

1) На прямой, а выберем точки P и Q. Тогда имеем 3 точки – Р , Q, M , которые не лежат на одной прямой.

2) По аксиоме А1, через три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна, т.е. плоскость α, которая содержит прямую а и точку М , существует.

3) Теперь докажем, что α единственная. Предположим, что существует плоскость β, которая проходит и через точку М, и через прямую а, но тогда эта плоскость через точки Р, Q, M. А через три точки Р, Q, M , не лежащие на одной прямой, в силу 1 аксиомы, проходит только одна плоскость.

4) Значит, эта плоскость совпадает с плоскостью α . Следовательно 1) На прямой, а выберем точки P и Q . Тогда имеем 3 точки – Р, Q, M, которые не лежат на одной прямой. Следовательно α – единственная.

Теорема доказана.

1)На прямой b возьмем точку N, которая не совпадает с точкой М, то есть N ∈ b, N≠M

2)Тогда имеем точку N, которая не принадлежит прямой a. По предыдущей теореме, через прямую и не лежащую на ней точку проходит плоскость. Назовем ее плоскостью α. Значит, такая плоскость, которая проходит через прямую a и точку N, существует.

3)Докажем единственность этой плоскости. Предположим противное. Пусть существует плоскость β, такая, которая проходит и через прямую а, и через прямую b. Но тогда она также проходит и через прямую а и точку N. Но по предыдущей теореме эта плоскость единственна, т.е. плоскость β совпадает с плоскостью α.

4)Значит, мы доказали существование единственной плоскости, проходящей через две пересекающиеся прямые.

Теорема доказана.

Теорема о параллельности прямых

Теорема:


Через любую точку пространства, не лежащей на данной прямой, проходит прямая, параллельная данной прямой.

Дано: прямая а, M ₵ а

Доказать: Существует единственная прямая b ∥ а, М ∈ b


Доказательство:
1) Через прямую а и точку М, не лежащей на ней, можно провести единственную плоскость (1 следствие). В плоскости α можно провести прямую b, параллельную а, проходящую через М.
2) Докажем, что она единственная. Предположим, что существует другая прямая с, проходящая через точку М и параллельная прямой а. Пусть параллельные прямые а и с лежат в плоскости β. Тогда β проходит через М и прямую а. Но через прямую а и точку М проходит плоскость α.
3) Значит, α и β совпадают. Из аксиомы параллельных прямых следует, что прямые b и с совпадают, так как в плоскости существует единственная прямая, проходящая через данную точку и параллельно заданной прямой.
Теорема доказана.

Прямая и плоскость называются параллельными, если они не имеют общих точек. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой

1.Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.

2.Если одна из двух параллельных прямых параллельна данной плоскости, а другая прямая имеет с плоскостью общую точку, то эта прямая лежит в данной плоскости. плоскости, то она параллельна самой плоскости.

Случаи взаимного расположения прямой и плоскости: а) прямая лежит в плоскости;

б) прямая и плоскость имеют только одну общую точку;в) прямая и плоскость не имеют ни одной общей точки.

2.Определение натуральной величины отрезка прямой общего положения способом прямоугольного треугольника.

Натуральная величина (н.в.) отрезка АВ прямой общего положения является гипотенузой прямоугольного треугольника АВК. В этом треугольнике катет АК параллелен плоскости проекций π1 и равен горизонтальной проекции отрезка A"B". Катет BK равен разности расстояний точек A и B от плоскости π1.

В общем случае для определения натуральной величины отрезка прямой необходимо построить гипотенузу прямоугольного треугольника, одним катетом которого является горизонтальная (фронтальная) проекция отрезка, другим катетом - отрезок, равный по величине алгебраической разности координат Z (Y) крайних точек отрезка.

Из прямоугольного треугольника находят угол α - угол наклона прямой к горизонтальной плоскости проекций.

Для определения угла наклона прямой к фронтальной плоскости проекций необходимо выполнить аналогичные построения на фронтальной проекции отрезка.

3.Главные линии плоскости (горизонталь, фронталь).

Горизонталь плоскости Р – прямая, которая лежит в этой плоскости и параллельна горизонтальной плоскости. Горизонталь как прямая, параллельная горизонтальной плоскости, имеет фронтальную проекцию ѓ, параллельную оси х.

Фронталь плоскости Р – прямая, которая лежит в этой плоскости и параллельна фронтальной плоскости.

Фронталь является прямой, параллельной фронтальной плоскости, и ее горизонтальная проекцияф параллельна оси х.

4.Взаимное положение прямых в пространстве. Определение видимости по конкурирующим точкам. Две прямые в пространстве могут иметь различное расположение: А)пересекаться (лежать в одной плоскости). Частный случай пересечения – под прямым углом;Б)могут быть параллельными (лежать в одной плоскости);В)совпадать – частный случай параллельности;Г)скрещиваться (лежать в разных плоскостях и не пересекаться).

Точки, у которых проекции на П1 совпадают, называют конкурирующими по отношению к плоскости П1, а точки, у которых проекции на П2 совпадают, называют конкурирующими по отношению к плоскости П2.

Точки К и L конкурирующие по отношению к плоскости П1, так как на плоскости П1 точки К и L проецируются в одну точку: К1 = L1.

Точка К выше точки L, т.к. К2 выше точки L2, потому К1 на П1 видима.

Определение параллельных прямых и их свойства в пространстве такие же, как и на плоскости (см. п. 11).

Вместе с тем в пространстве возможен еще один случай расположения прямых - скрещивающиеся прямые. Прямые, которые не пересекаются и не лежат в одной плоскости, называются скрещивающимися.

На рисунке 121 изображен макет жилой комнаты. Вы видите, что прямые, которым принадлежат отрезки АВ и ВС и являются скрещивающимися.

Углом между скрещивающимися прямыми называется угол между пересекающимися параллельными им прямыми. Этот угол не зависит от того, какие взяты пересекающиеся прямые.

Градусная мера угла между параллельными прямыми считается равной нулю.

Общим перпендикуляром двух скрещивающихся прямых называется отрезок с концами на этих прямых, являющийся перпендикуляром к каждой из них. Можно доказать, что две скрещивающиеся прямые имеют общий перпендикуляр, и притом только один. Он является общим перпендикуляром параллельных плоскостей, проходящих через эти прямые.

Расстоянием между скрещивающимися прямыми называется длина их общего перпендикуляра. Оно равно расстоянию между параллельными плоскостями, проходящими через эти прямые.

Таким образом, для нахождения расстояния между скрещивающимися прямыми а и b (рис. 122) нужно провести через каждую из этих прямых параллельные плоскости а и . Расстояние между этими плоскостями и будет расстоянием между скрещивающимися прямыми а и b. На рисунке 122 этим расстоянием является, например, расстояние АВ.

Пример. Прямые а и b параллельны, а прямые с и d скрещиваются. Может ли каждая из прямых а и пересекать обе прямые

Решение. Прямые а и b лежат в одной плоскости, и поэтому любая прямая, пересекающая каждую из них, лежит в той же плоскости. Следовательно, если бы каждая из прямых а, b пересекала обе прямые с и d, то прямые лежали бы в одной плоскости с прямыми а и b, а этого быть не может, так как прямые скрещиваются.

42. Параллельность прямой и плоскости.

Прямая и плоскость называются параллельными, если они не пересекаются, т. е. не имеют общих точек. Если прямая а параллельна плоскости а, то пишут: .

На рисунке 123 изображена прямая а, параллельная плоскости а.

Если прямая, не принадлежащая плоскости, параллельна какой-нибудь прямой в этой плоскости, то она параллельна и самой плоскости (признак параллельности прямой и плоскости).

Эта теорема позволяет в конкретной ситуации доказать, что прямая и плоскость являются параллельными. На рисунке 124 изображена прямая b, параллельная прямой а, лежащей в плоскости а, т. е. по прямая b параллельна плоскости а, т. е.

Пример. Через вершину прямого угла С прямоугольного треугольника ABC параллельно гипотенузе на расстоянии 10 см от нее проведена плоскость. Проекции катетов на эту плоскость равны 30 и 50 см. Найти проекцию гипотенузы на ту же плоскость.

Решение. Из прямоугольных треугольников BBVC и (рис. 125) находим:

Из треугольника ABC находим:

Проекция гипотенузы АВ на плоскость а равна . Так как АВ параллельна плоскости а, то Итак, .

43. Параллельные плоскости.

Две плоскости называются параллельными. если они не пересекаются.

Две плоскости параллельны» если одна на них параллельна двум пересекающимся прямым, лежащим в другой плоскости (признак параллельности двух плоскостей).

На рисунке 126 плоскость а параллельна пересекающимся прямым а и b, лежащим в плоскости , тогда по эти плоскости параллельны.

Через точку вне данной плоскости можно провести плоскость, параллельную данной, и притом только одну.

Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны.

На рисунке 127 изображены две параллельные плоскости , а плоскость у их пересекает по прямым а и b. Тогда по теореме 2.7 можно утверждать, что прямые а и b параллельны.

Отрезки параллельных прямых, заключенные между двумя параллельными плоскостями, равны.

По Т.2.8 отрезки АВ и изображенные на рисунке 128, равны, так как

Пусть данные плоскости пересекаются. Проведем плоскость, перпендикулярную прямой их пересечения. Она пересекает данные плоскости по двум прямым. Угол между этими прямыми называется углом между данными плоскостями (рис. 129). Определяемый так угол между плоскостями не зависит от выбора секущей плоскости.