Расчет расхода химически очищенной воды. Химическая очистка воды

Воду мы используем везде: бассейны, ванна, отопления, приготовления пище… Ни для кого не секрет что вода со временем загрязняется, так что же делать? Тут на помощь нам придут элементы из таблицы Менделеева с помощью которых можно выполнить химическую очистку воды. В химической очистке воды могут быть использованы многие вещества. Ниже представлены популярные химические реагенты используемые для очистки воды.

Альгициды это химические соединения, которые при добавлении в воду убивают синие и зеленые водоросли. Примеры таких соединений:

  • сульфат меди,
  • соли железа,
  • соли амина и хлорид «бензалкония».

Альгициды очень эффективны в борьбе с водорослями, но они не очень полезны против «цветения» водорослей в окружающей среде.

Обратите внимание! Проблема альгицидов заключается в том, что убивают они все присутствующие водоросли, но не нейтрализуют их токсины, освобождаемые этими водорослями до их уничтожения.

Средства против вспенивания

Пена-это масса пузырьков, образующихся когда определенные типы газов рассеиваются в жидкости. Образование пены это сложная тема исследований в физической химии, но известно, что ее присутствие вызывает серьезные проблемы в ходе промышленных процессов и качества готовой продукции. Когда образование пены не под контролем, она может уменьшить способность работы оборудования.

Смесь средства против образования пены содержит масла, в сочетании с небольшим количеством кремнезема. Эти соединения разбивают пену благодаря двум свойствам кремнезема: несовместимость с водной системой и легкость распространения. Средства против вспенивания доступны либо в виде порошка либо в виде эмульсии чистого продукта.

Порошок

Порошкообразные средства против вспенивания-это группа продуктов на основе модифицированного полидиметилсилоксана. Эти продукты отличаются между собой основными характеристиками, но как группа очень хорошо препятствуют образованию пены в широком диапазоне применений и условий.

Средства против вспенивания являются химически инертными и не реагируют со средой. Не имеют запаха, вкуса, не являются летучими или токсичными и не вызывают коррозии материалов. Единственный недостаток измельченного продукта является то, что он не может быть использован в водном растворе.

Эмульсии

Эмульсии, т.е. средства против вспенивания -это полидиметилсилоксан в жидком виде. Они имеют те же свойства, что и в форме порошка. Единственная разница заключается в том, что они могут быть применены в водных растворах.

Коагулянты

Что касается коагулянтов, предпочтительными являются положительные ионы с высокой валентностью. Обычно ионы алюминия и железа используются в виде Al2(SO4)3- («aluin») и железа в виде FeCl3 или Fe2(SO4)3. Можно применить и относительно дешевую форму FeSO4, при условии что она будет смешана с перекисью водорода и Fe3+ при аэрации.

Коагуляция в значительной степени зависит от дозы коагулянтов, pH и концентрации коллоидов. Чтобы отрегулировать рН Ca (OH) 2 также используется в качестве флокулянта. Дозы обычно находятся в диапазоне между 10 и 90 мг Fe3+/ L.

Ингибиторы коррозии

Коррозия-это общий термин, определяющий переход металла в растворимую форму.
Коррозия может привести к разрушению важных элементов системы котла, осаждению продуктов коррозии в соответствующих поверхностях теплообменников, и общему снижению производительности систем.

Поэтому ингибиторы коррозии часто используются в водяных отопительных системах. Эти химические соединения реагируют с металлической поверхностью, давая ей определенный уровень защиты. Ингибиторы часто действуют путем адсорбции на металлической поверхности, защищая ее- формируя защитный слой на внутренней стороне трубопроводов.

Существует пять различных видов ингибиторов коррозии. Это:

  1. Пассивные ингибиторы («passivators»). Они вызывают сдвиг потенциала коррозии. Примерами таких ингибиторов являются окисляющие анионы, такие как хромат, нитрит и нитрат, и ионы не поддерживающие горения, например, фосфата и молибдата. Эти ингибиторы являются наиболее эффективными в связи с чем наиболее распространены в использовании.
  2. Катодные ингибиторы . Некоторые из них, такие как соединения мышьяка и сурьмы, работают путем препятствования рекомбинации и высвобождения водорода. Другие ионы, такие как кальций, цинк или магний, могут быть осажденные как оксиды, образуя защитный слой на металлической поверхности.
  3. Органические Ингибиторы . Они влияют на всю поверхность коррозионно-агрессивных жидкостей металлов, когда они присутствуют в соответствующей концентрации. Органические ингибиторы защищают металлы путем создания пленки (слоя) и гидрофобной группы на ее поверхности.
  4. Ингибиторы вызывающие осадки . Это соединения, вызывающие образование продукта осаждения на металлической поверхности, таким образом создавая защитную пленку. Самые популярные ингибиторы из этой категории это силикаты и фосфаты.
  5. Летучие ингибиторы коррозии (VCI). Эти соединения проводят в закрытой среде коррозии улетучивания из источника. Примерами таких ингибиторов являются морфолин, гидразин и летучие твердые вещества, такие как соли дициклогексиламина, циклогексиламин и гексаметилен. При контакте с поверхностью металла, пар этих солей конденсируется и гидролизует с помощью влаги, чтобы освободить защитные ионы.

Дезинфицирующие средства

Дезинфицирующие средства убивают нежелательные микроорганизмы присутствующие в воде. Есть много различных типов дезинфицирующих средств:

  • Хлор (доза 2-10 мг / л);
  • Диоксид хлора;
  • Озон;
  • Гипохлорит.

Дезинфекция хлором диоксида

ClO2 используется в качестве первичного дезинфицирующего средства для поверхностных вод с проблемами запаха и вкуса. Этот хлор содержит биоцид в таких низких концентрациях, как 0,1 частей на миллион, и в широком диапазоне рН. ClO 2 проникает через клеточную стенку и вступает в реакцию с аминокислотами в цитоплазме клетки, чтобы убить микроорганизмы.

Диоксид хлора дезинфицирует в соответствии с тем же принципом как хлор. Тем не менее, в отличие от хлора, диоксид хлора не оказывает вредного воздействия на здоровье человека.

Гипохлорит

Гипохлорит используется таким же образом, как двуокись хлора и хлор. Гипо-хлорирование является способом дезинфекции, который в последнее время широко не используется, поскольку доказано что при дезинфекции, в воде появляется консистенция бромата.

Обеззараживание озоном

Озон является мощной окислительной средой, с удивительно короткой «жизнью». Он состоит из частиц с дополнительным атомом кислорода с образованием O3. Когда озон вступает в контакт с причиной запаха, бактериями или вирусами дополнительный О-атом разбивает их в процессе окисления. Дополнительная молекула кислорода настолько «изношевается», что в конечном результате остается только кислород.

Дезинфицирующие средства могут быть использованы во многих отраслях промышленности. Озон используется в фармацевтической промышленности для приготовления питьевой воды, при обработке воды для различных процессов в производстве сверхчистой воды, а также для дезинфекции поверхностей.
Диоксид хлора используется в первую очередь для подготовки питьевой воды и дезинфекции трубопроводов.

Флоккулянты

Способствуют формированию хлопьев в воде, которые содержат взвешенные твердые частицы полимера флоккулянтов (полиэлектролитов). Они способствуют образованию связей между молекулами. Эти полимеры имеют очень специфический эффект, в зависимости от их заряда, молекулярной массы и степени молекулярного ветвления.

Полимеры растворимы в воде, и их молекулярная масса составляет от 10,5 до 10,6 г / л. При этом могут быть несколько разные расходы одного флоккулянта. Катионные полимеры основанные на азоте, и анионные полимеры на основе карбоновых кислот и цвиттерионов несут как положительные так и отрицательные ионы.

Нейтрализующие агенты (контроль щелочности)

Для того чтобы нейтрализовать кислоту используется гидроксид натрия (NaOH), карбонат кальция или известь (Са (ОН) 2) для повышения рН. Для снижения рН используется разбавленная серная кислота (H 2 SO 4) или разбавленная соляная кислота (HCl). Доза нейтрализующих агентов зависит от рН воды в реакционном резервуаре. Нейтрализация реакции вызывает повышение температуры.

Окислители

Химические окислительные процессы требуют использования (химических) окислителей, чтобы снизить уровень ХПК / БПК, а также для удаления органических и неорганических компонентов окисления.
Есть много окисляющих соединений. Примеры включают в себя:

  • Пероксид водорода;
  • Озон;
  • Сочетание озона и перекиси;
  • Кислород.

Химическая водоочистка сегодня получила широкое распространение. Вещества, которыми насыщена вода, которые пригодны для химической очистки воды , очень обширны. Поэтому обширны способы применения водоочистки с ультрафильтрацией. Полной водоочистки можно добиться с помощью сочетания нескольких реагентов при любой загрязненности. Как правило, химические способы очистки сточных вод применяются больше в промышленности, нежели в быту. Ее цель - удаление тонкодисперсных взвешенных частиц, органики, растворенных газов и минеральных веществ.

Обычно применение достаточно деликатного метода - химической водоочистки - в доме, на даче или в коттедже позволяет учесть все мелкие детали и именно это делает данный способ водоочистки самым эффективным. Выбор реагента зависит от состава воды, которая подлежит очистке. Предварительно стоит сделать анализ воды.

Сам процесс химической очистки осуществляется с помощью фильтров и представляет собой достаточно сложную процедуру, которая зависит от многих факторов. Реагентами для химической водоочистки применяются различные окислители, такие, например, как хлор, озон, перманганат калия, а также подщелачивающие вещества (сюда, к примеру, можно отнести гидроксид натрия, сода, известь и подкисляющие вещества типа серной кислоты и соляной).

Окисление как химическая водоочистка . Подобный способ очистки применим тогда, когда вода наполнена вредными веществами, и если их невозможно извлечь никаким иным способом. Такими веществами являются цианистые соединения, которые чаще всего встречаются в сточных промышленных водах (обычно именно они загрязнены разнообразными отходами производства).

Окислители, применяемые при химической очистке воды, которые способны справиться с цианистыми соединениями, это гипохлорит натрия и хлор. Его применяют чаще всего из-за достаточно невысокой стоимости. При процедуре химической очистки воды нужен постоянный контроль уровня кислотности воды, потому что реакция может происходить только при определенном уровне pH. Очищенная вода должна обладать уровнем pH водоема, в который ее возвратят после процедуры очистки.

Химическая водоочистка важна так же, как озонирование и электрохимическое окисление. , как электрохимическое окисление на аноде, позволяет извлечь кислоты, металлы и другие вещества, находящиеся в отработанных растворах. Одним из самых безопасных способов водоочистки является именно озонирование, потому что оно используется чаще всего для повторного применения сточных вод. Озонирование обладает высокой скоростью реакции, которая обеспечивает разложение озона на кислород. Плюсами являются также полное отсутствие следов реакции и возможность получения озона на месте, где проводится реакция.

Сохраняет её кислотно-щелочной баланс в норме, не увеличивая содержание солей, как это бывает от остальных химических реагентов. Озон - это производная кислорода, именно этим и объясняется быстрота реакции: в процессе озонирования быстрота отдачи атома кислорода другим веществам очень велика. Озон - это, пожалуй, самый эффективный окислитель металлов среди реагентов, применяемых при водоочистке.

Нейтрализация с применением подщелачивающих или подкисляющих веществ - это еще один способ водоочистки. Как правило, такой метод химической очистки используется при очистке промышленных сточных вод, pH которых нарушен. Этот метод с успехом применяют для удаления тяжелых металлов из воды.

Метод нейтрализации - это взаимодействие щелочей, кислот, которые стабилизируют уровень pH (а он по стандартам не должен превышать коэффициента 8.5, а также не должен и опускаться ниже 6.5). Вода подлежит химической очистке перед выпуском в городскую канализацию или в водоем, если кислотно-щелочной баланс не соответствует этим нормам. Процесс обычно происходит в специальных нейтрализаторах контактного или проточного типа, объединенных отстойником. После химической очистки вода подлежит осветлению.

Химическая водоочистка сточных вод - это самый совершенный метод химической очистки, потому что происходит полное очищение воды без возникновения нежелательных побочных эффектов. Этот метод пока еще мало распространен, что обуславливается его высокой стоимостью.

Cтраница 1


Химически очищенная вода для подпитки тепловой сети поступает в вакуумный деаэратор (р - 0 02 - 0 05 МПа), в котором греющим рабочим телом служит горячая сетевая вода.  

Химически очищенная вода для подпитки тепловой сети поступает в вакуумный деаэратор (р 0 02 - 0 05 МПа), в котором греющим рабочим телом служит горячая сетевая вода.  

Химически очищенная вода подается в деаэратор для восполнения потерь конденсата в линиях. Для удовлетворения собственных нужд котельной используют также воду непрерывной продувки. Вода из линии непрерывной продувки поступает в расширитель непрерывной продукви РНП, где вследствие падения давления она закипает. Образовавшийся пар поступает в паровую линию собственных нужд, а вода с повышенным солесодержа-нием отдает тепло сырой воде в ПСВ1 и удаляется в канализацию.  

Химически очищенная вода из химводоочистки подается в главный корпус ТЭЦ по двум трубопроводам; каждый трубопровод рассчитывается на 100 % подачи химически очищенной воды. Трубопроводы между главным корпусом и химводоочисткой прокладываются либо в канале, либо по наземной эстакаде. Кроме воды, из главного корпуса в помещение химводоочистки прокладывается трубопровод сжатого воздуха, потребность в котором имеется на всех современных водоочистительных установках. Арматура на трубопроводах, связывающих емкости и аппараты, устанавливаемые на открытом воздухе, размещается внутри помещения химводоочистки. Водоочистительная аппаратура промышленных котельных обычно располагается в здании котельной ка отметке 0 0 (см. гл. Должна предусматриваться возможность расширения химводоочистки.  


Химически очищенная вода для УСТК подается из водоочистки теплосиловых установок металлургического завода.  

Химически очищенную воду (дистиллат) с выходной жесткостью 0 4 мг-экв / л, что соответствует требованиям, предъявляемым к воде, подаваемой в форсунки увлажнения, можно получить при двухступенчатой фильтрации в натрий-катионовых фильтрах. С) устройство для увлажнения воздуха выключается, и агрегаты охлаждаются с помощью АВО, число которых зависит от нв.  

Добавочная химически очищенная вода подается по отдельной линии в деаэраторы через регуляторы уровня воды в баках деаэрированной воды.  

Смесь химически очищенной воды и конденсата, поступающих в котел, принято называть питательной водой.  

Смесь химически очищенной воды и конденсата за питательным насосом принято называть питательной водой. С охлаждающей водой уносится около 65 % подведенного к турбине тепла свежего пара и около 90 % тепла отработавшего в турбине пара, которое бесполезно теряется.  

Трубопроводы химически очищенной воды прокладываются в грунте бескаяалыф ниже глубины промерзания. Хроме того, трубопроводы могут быть уложены надземно (на стойках, астакадах) - изолированные, а при периодическом расходе и с пароспутниками.  

Солесодержание химически очищенной воды находится в зависимости от солесодержания исходной воды и принятой схемы водоподготовки. Правильная организация водного режима котлов среднего давления при наличии трехступенчатого испарения позволяет в большинстве случаев обеспечить требуемое качество химически очищенной воды без применения стадии обессолива-ния.  

Щелочность химически очищенной воды является контролируемым показателем. При использовании химически очищенной воды для питания котлов высокого давления снижение ее щелочности до минимума существенно облегчает организацию водного режима котлов с фосфатной щелочностью.  

Запас химически очищенной воды в баке достаточен для полуторачасовой работы установки.  

С химически очищенной водой приносится 50 % окислов железа за счет коррозии оборудования хим-водоочистки. Оборудование химводоочистки, работающее при относительно низких температурах, подвергается коррозии под воздействием растворенного кислорода, углекислоты и агрессивных растворов, применяемых в процессе регенерации фильтров.  

Очищать воду от вредных примесей необходимо в обязательном порядке. В противном случае вода вместо своей целебной восстанавливающей организм силы проявит исключительно негативные характеристики. Так, неочищенная или некачественно очищенная вода может стать смертельным ядом для человеческого организма. Тем более необходимо очищать сточные воды перед их сбросом в водоемы. Для освобождения жидкости от различных вредных включений используются различные методы и способы, в зависимости от физического состояния примесей. Но, если же, вредные вещества в воде находятся в большей степени в растворенном состоянии, то применяется химическая очистка воды.

Важно: химический метод очистки жидкости широко применим при очистке сточных вод, как промежуточный этап перед её биологической или механической обработке.

Абсолютно все химические способы очистки воды работают по одному и тому же принципу - добавление в грязную воду химических элементов (реагентов) с целью преобразования растворенных веществ во взвешенное состояние. Только после этого их можно будет качественно удалить из имеющегося объема жидкости.

Важно: химочистка воды способна освободить воду на 95% от всех примесей во взвешенном состоянии и на 25% от примесей растворенных.

Для выполнения очистки воды химическим способом применяются три распространенных типа реагентов:

  • Окислители. В качестве реагентов здесь используют озон, перманганат калия (марганец) и хлор.
  • Щелочные реагенты в виде извести, соды или гидроксида натрия.
  • Кислотные реагенты - соляная и серная кислоты.

При этом концентрация взвесей в грязной воде может находиться в диапазоне от 1 мг/литр до 30 гр/литр.

Важно: химические методы очистки воды применяются в основном на промышленных предприятиях. Работать с реагентами в домашних условиях крайне опасно.

Способы очистки воды химическими методами

Нейтрализация

Этот метод очистки направлен на полную нейтрализацию всех патогенных микроорганизмов и других включений, а также на выведение уровня pH воды на нормативные показатели в пределах 6,5-8,5.

Процесс нейтрализации при очистке сточных вод может выполняться несколькими способами. Так, самые часто применимые - такие:

  • Процесс смешивания между собой кислых и щелочных сред в виде жидкости;
  • Добавление химических реагентов в стоки;
  • Фильтрация сточных вод с кислотным содержимым при использовании нейтралиузющих реагентов;
  • Нейтрализация любых газов в сточной воде при помощи щелочных реагентов;
  • Добавление в стоки с кислотным содержимым аммиачного раствора. Здесь же для нейтрализации кислот в воде можно применять цемент; гидроксид кальция и доломит.

Окисление грязной воды

Метод окисления применяется для стоков в том случае, если при отстаивании и механической чистке воды примеси не удаляются. В качестве реагентов используются:

  • Бихромат калия.
  • Озон. Этот реагент хоть и является качественным и отлично очищает воду, все де используется крайне редко ввиду высокой стоимости процесса очистки. Но при этом стоит знать, что озонирование позволяет очистить воду от ПАВ, любых нефтепродуктов, от красителей и мышьяка, от канцерогенных включений и от фенолов с цианидами.

Важно: помимо высокой стоимости процесса озон также не используется при очистке сточных вод по причине его взрывоопасности при условии наличия его в большом объеме.

  • Хлор в состоянии газа или в сжиженном состоянии (при этом вода впоследствии должна дополнительно дехлорироваться, поскольку доказано, что хлор вступает в реакцию с компонентами воды и образует таким образом вредную хлорволокнистую кислоту или соляную кислоту).
  • Хлорат кальция или диоксид хлора.
  • Кислород воздуха, пиролюзит и др.

После процесса окисления все микроорганизмы и патогенные бактерии полностью погибают под воздействием добавленных в стоки реагентов.

Процесс восстановления как метод очистки воды

Этот метод работает по принципу восстановления всех включений до своего первоначального физического состояния с целью последующего их удаления из воды с помощью одного их физико-химических методов:

  • Флотации;
  • Отстаивания;
  • Фильтрования.

В основном такой метод применяется для очистки жидкости от частиц мышьяка, ртути и хрома. В качестве реагентов здесь применяют:

  • Сульфат железа;
  • Диоксид серы;
  • Активированный уголь, водород и пр.

Физико-химическая обработка воды

Такие методы обработки и очистки грязной воды являются неотъемлемой частью борьбы с вредными включениями при очистке стоков. Самыми основными из них являются:

  • Коагуляция примесей. Такой метод очистки сточных вод чаще всего используется на текстильной промышленности, химической, целлюлозной и легкой промышленности. Принцип воздействия реагентов на грязную воду заключается в том, чтобы преобразовать все включения в форму хлопьев. Затем такой взвешенный осадок удаляется при отстаивании или фильтровании. При использовании метода коагуляции эффективность очистки стоков равна 90-95%.

Важно: также для грязной воды может использоваться и метод электрокоагуляции, когда в воду помещают токопроводники и пропускают ток через водную массу.

Адсорбция воды

Этот способ позволяет адсорбентам поглотить все вредные включения непосредственно в воде. В основном метод адсорбции для очистки сточных вод применим против пестицидов, гербицидов, красителей, ПАВ и фенолов в воде. Также при помощи адсорбции удаляются все ароматические примеси.

Различают два основных и часто используемых вида адсорбции:

  • Дегенеративный. В этом случае все вредные включения убиваются вместе с введенным в воду адсорбентом.
  • Регенеративный. Здесь вредные примеси можно в дальнейшем извлечь из введенного в воду адсорбента и утилизировать отдельно.

Адсорбирующими реагентами являются:

  • Силикагель и торф;
  • Зола, активная глина и пр.

Стоит отметить, что эффективность приведенного метода составляет 90-95%, но полностью зависит от следующих факторов:

  • Концентрация имеющихся вредных примесей в очищаемой воде;
  • Тип используемого реагента-адсорбента;
  • Общая площадь стоков, обрабатываемых методом адсорбции;
  • Общая глубина очищаемого объема воды.

Метод флотации

В этом случае для очистки сточных вод используют метод, в котором при помощи воздействия на них воздуха под высоким давлением удается удалить все взвеси. То есть воздух нагнетается в воду либо через турбины на дне водного резервуара, либо через трубы сверху. Нагнетенный в воду воздух вспенивает жидкость. При этом воздух вступает в реакцию с молекулами примесей и поднимает все взвеси в пенный слой. Далее все примеси с поверхности воды удаляются при помощи специальных установок.

Важно: метод флотации особенно востребован в том случае, если в воде имеются нефтепродукты, масла и любые волокнистые включения.

Ионный обмен в воде

Здесь в воду вводят ионы ионита, что приводит к взаимодействию последних с молекулами примесей. При возникновении реакции молекулы вредных веществ отделяются от воды, что позволяет качественно их удалить. Как правило, метод ионного обмена применяют для очистки воды от ртути и мышьяка, хрома и цинка, свинца и меди.

Экстракция загрязнителей воды

Данный способ применим при очистке воды в том случае, если примеси, растворенные в воде, имеют техническую или химическую ценность и могут быть использованы впоследствии. Метод основывается на выведении из состава грязной воды фенолов и жирных кислот. Как правило, для очистки воды таким способом в стоки вводят специальный экстрагент, который полностью концентрирует примеси в воде. Затем экстрагент с примесями удаляют из воды и отделяют один от другого. Стоит знать, что экстрагент можно использовать повторно.

Важно: все приведенные выше способы очистки воды при помощи реагентов являются потенциально опасными для рядового обывателя и не могут применяться в домашнем водоснабжении. Поэтому экспериментировать с эти не рекомендуется.

Химические способы очистки стоков – это нейтрализация, окисление и восстановление загрязнений в водах. К способу окислению относят электрохимическую обработку стоков, которая применяется для обеспечения оборотного водоснабжения путем извлечения растворенных примесей.

Иногда рассматриваемый процесс осуществляется перед направлением стоков на биоочистку. В таком случае повышается эффективность химической очистки. Чаще вышеперечисленные способы применяется для доочистки сточных вод перед их сбрасыванием в водоемы либо на рельеф.

Как нейтрализовать стоки

Нейтрализация стоков способствует нормализации водородного показателя. Такой химический состав воды неопасен для человека и природы. Её можно использовать повторно для различных нужд.

Процесс нейтрализации основан на применение реагентов, которые используются с учетом концентрации и составных элементов кислой среды. Специалисты выделяют 3 вида стоков с кислотами:

  • преобладание слабых кислот;
  • наличие сильных кислот;
  • преобладание серной и сернистой кислоты.

Нейтрализация вод с серной кислотой зависит от используемого реагента. Процесс протекает по разным уровням. Если использовать известковое молоко, тогда в остаток выпадет гипс. Он будет оседать на стенках труб.

Чтобы нейтрализовать щелочные воды, применяют кислоты или кислые газы. С помощью последней технологии осуществляется одновременная нейтрализация стоков и очистка от вредных компонентов газов. Чтобы рассчитать количество необходимого кислого газа, определяется уровень массотдачи. Подобная технология считается ресурсосберегающей, так как она ликвидирует сброс стоков, сокращая потребление свежей воды, экономя тепловую энергию на её подогрев.

При разработке технологической схемы по нейтрализации сточных вод учитывается:

  • возможная одновременная нейтрализации поступающих со стоками щелочей и кислот;
  • наличие щелочного резерва;
  • природная нейтрализация водоемов.

Для реализации рассматриваемого процесса используется специальное оборудование. Нейтрализация осуществляется в накопителе, отстойнике либо осветителе. Выбор оборудования зависит от климатических условий, длительности хранения стоков.

Для реализации нейтрализации в стоки добавляют разные химикаты, которые вступаю в реакцию с кислотами или щелочами образуют взвесь. Она выпадает в осадок. Её объем определяется по следующим показателям:

  • количество металлов, ионов кислот в исходной воде;
  • количество и вод применяемого реагента;
  • используемый уровень осветления.

Нейтрализация реагентами применяется, если в стоках нарушен баланс между кислотой и щелочью. В таких случаях исключается возможность реализации рассматриваемого процесса путем смешивания вод. Чтобы решить проблему, в стоки добавляют недостающие химикаты. Чаще такая технология применяется при наличии кислых вод.

Их нейтрализация основана на применении отходов от различных производств (шлам, который образуется после химической очистке на ТЭЦ). При наличии серной кислоты используются шлаки сталеплавильного производства.

Эффективность такой технологии основана на наличии в них большого количества соединений оксида магния и кальция. При этом учитываются следующие данные:

  • количество кальциевых солей, присущих в воде и способных хорошо растворяться;
  • количество кальциевых солей, плохо растворимых водой.

Известь вводится в стоки в виде молока либо сухого порошка. Самым экономичным вариантом считается применения извести-пушонки. Если необходимо обработать до 200 куб.м. воды, тогда применяют соду.

Очистка вод за счет окисления

Данная методика применяется в следующих случаях:

  • для обезвреживания производных стоков от токсинов;
  • когда отсутствует необходимость в извлечении соединений из стоков;
  • невыгодно либо нецелесообразно использовать другие методы.

Для реализации рассматриваемой методики применяют разные окислители, включая диоксид хлора, хлор разной консистенции, гипохлорит натрия, бихромат калия, озон и прочие соединения. Они попадают в воду, связываясь с химическими токсинами. В результате реакции появляются токсичные примеси, для удаления которых применяются иные технологии.

Сильнодействующим окислителем считается хлор. Он агрессивен, поэтому не пользуется большим спросом для реализации разных современных технологий в области очистки стоков. Его часто заменяют озоном, реже – перманганатом калия либо перекисью водорода.

Рассматриваемая технология заключается в очистки вод путем окисления их загрязнений. После такой химической реакции формируются вещества меньшей токсичности, которые легко удаляются из жидкости. Активность используемого окислителя – это величина окислительного потенциала. Первым и самым эффективным окислителем является фтор. Он обладает высокой агрессивностью, поэтому его не используют на практике. У других веществ значение этого показателя не превышает 2,1.

Чтобы очистить жидкость от сероводорода, фенола, гидросульфида, применяется хлор. Если в стоках присутствует аммиак или его производные, хлор, вступая с ними в реакцию, образует дикло- и монохлорамины.

Окислительная технология может основываться на применении кислорода. Такая реакции происходит в жидкой фазе, если наблюдается высокое давление и температура. Если аналогичная ситуация наблюдается в случае применения сульфидов, тогда глубина их окисления увеличивается.

Чтобы очистить жидкость от железа, используется кислород. Для разрушения сульфидных соединений применяют диоксид углерода с отходящим дымовым газом.

Очистка вод озоном

Технология очистки стоков, основанная на применении озона, направлена на разрушение многих примесей и органических веществ. Одновременно с окислением жидкость обесцвечивается, обеззараживается. Из неё устраняются запахи и привкус. Озон – окислитель, которые воздействует на органические и неорганические вещества, входящие в состав стоков в растворенном виде.

Озон легко устраняет фенол, нефтепродукты, сероводород, цианид. Одновременно он воздействует на разные микробы. В процессе озонирования на локальной очистительной станции применяют 2 технологии:

  • катализ;
  • озонолиз.

При этом озон воздействует по одному из следующих принципов:

  1. Применение 1 атома кислорода.
  2. Озон присоединяется к веществу, способствуя образованию озонида.
  3. Усиленное воздействие кислорода воздуха.

Электрохимическая технология очистки стоков основана на их электролизе. Химическое превращение веществ зависит от вида и материала используемых электродов. В основе методики находится катодное восстановление, анодное окисление стоков.

Данная методика считается энергозатратной. Технология работает медленно, поэтому её используют для очистки малых объемов вод либо при наличии в жидкости концентрированных загрязнений. В качестве анода применяется графит, рутений, магний.

Опасным явлением в процессе электрохимической технологии окисления считается смещение газов, которые выделяются в процессе очистки. Это может спровоцировать взрыв. Чтобы это предотвратить, между электродами устанавливают диафрагмы их асбеста, керамики и стекла.

Чтобы очистить стоки, применяют большое количество окислительных частиц и высокоэнергетическое излучение. Если методика применяется на локальной очистительной станции, тогда в качестве источника излучения используется радиоактивный цезий либо кобальт.

Если из сточных вод нужно удалить мышьяк, хром, используется технология восстановления. Ртутное неорганическое соединение превращается с металлическое соединение при помощи реагентов. Затем проводится флотация, фильтрация и отстаивание.

Чтобы связать мышьяк, применяется диоксид серы. Полученные соединения удаляются из стоков методом осаждения. Хром с 6-тью валентами восстанавливается до трехвалентного уровня. Для этого применяются разные реагенты. Затем гидроксид осаживается в отстойнике.

Используемое оборудование

Рассматриваемый процесс протекает в норме, если для его осуществления применяется не вышедшая из строя фильтрующая установка. Она представлена в виде многокомпонентного устройства с антисептиком, биологическим фильтром. Для обеззараживания стоков используется антисептик с химическим реагентом. Они избирательно воздействуют на загрязняющее вещество.

Очистительные установки способны профильтровать в сутки разный объем воды. Этот показатель зависит от мощности используемого оборудования. К её плюсам относят:

  • длительная эксплуатация;
  • простое обслуживание;
  • доступность к разным узлам оборудования.

Для фильтрации стоков применяют очистительные агрегаты следующих типов:

  • с фильтрующей перегородкой;
  • с несвязным фильтрующим слоем.

К первой группе относят уловители полезных элементов, которые содержатся в стоках. Аналогичное оборудование применяется для очистки осадкой низкой влажности. Ко второй группе относят зернистые фильтры, которые очищают большое количество стоков.

Системные установки, в которых есть неподвижная фильтрующая перегородка, укомплектована ленточным, листовым, барабанным или дисковым фильтром. Установки с несвязным слоем укомплектованы безнапорными либо напорными фильтрами.

В качестве отстойников в оборудовании применяют следующие устройства:

  • гидроциклоны – очищают стоки от химических предприятий;
  • скрубберы и термические агрегаты – очищают от сульфатов и радиоактивных веществ;
  • гидравлические – нейтрализуют кислоты;
  • адсорберы и десорберы – связывают или выводят органические и летучие неорганические вещества, включая газы.

Вышеописанные установки монтируют на разных производствах и в быту. Тип установки выбирается с учетом состава воды, типа производства. Чаще используется оборудование, очищающее стоки от механических частиц и нефтепродуктов. Химические технологии очистки стоков основаны на добавлении разных химических реагентов в загрязненные воды. Используемые вещества, вступая в реакцию с загрязнителями, способствуют их выпадению в осадок в виде нерастворимых частиц. Затем они удаляются из стоков путем фильтрации. Химическая очистительная методика способствует удалению из воды до 95% нерастворимых и до 25% растворимых веществ.