Распределение пуассона. Дискретные распределения в MS EXCEL Закон пуассона теория

Краткая теория

Пусть производится независимых испытаний, в каждом из которых вероятность появления события равна . Для определения вероятности появлений события в этих испытаниях используют формулу Бернулли . Если же велико, то пользуются или . Однако эта формула непригодна, если мала. В этих случаях ( велико, мало) прибегают к асимптотической формуле Пуассона .

Поставим перед собой задачу найти вероятность того, что при очень большом числе испытаний, в каждом из которых вероятность события очень мала, событие наступит ровно раз. Сделаем важное допущение: произведение сохраняет постоянное значение, а именно . Это означает, что среднее число появления события в различных сериях испытаний, т.е. при различных значениях , остается неизменным.

Пример решения задачи

Задача 1

На базе получено 10000 электроламп. Вероятность того, что в пути лампа разобьется, равна 0,0003. Найдите вероятность того, что среди полученных ламп будет пять ламп разбито.

Решение

Условие применимости формулы Пуассона:

Если вероятность появления события в отдельном испытании достаточно близка к нулю, то даже при больших значениях количества испытаний вероятность, вычисляемая по локальной теореме Лапласа, оказывается недостаточно точной. В таких случаях используют формулу, выведенную Пуассоном.

Пусть событие – 5 ламп будет разбито

Воспользуемся формулой Пуассона:

В нашем случае:

Ответ

Задача 2

На предприятии 1000 единиц оборудования определенного вида. Вероятность отказа единицы оборудования в течение часа составляет 0,001. Составить закон распределения числа отказов оборудования в течение часа. Найти числовые характеристики.

Решение

Случайная величина – число отказов оборудования, может принимать значения

Воспользуемся законом Пуассона:

Найдем эти вероятности:

.

Математическое ожидание и дисперсия случайной величины, распределенной по закону Пуассона равна параметру этого распределения:

На цену сильно влияет срочность решения (от суток до нескольких часов). Онлайн-помощь на экзамене/зачете осуществляется по предварительной записи.

Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Как сразу стали поступать запросы: «Где Пуассон? Где задачи на формулу Пуассона?» и т.п . И поэтому я начну с частного применения распределения Пуассона – ввиду большой востребованности материала.

Задача до боли эйфории знакома:

И следующие две задачи принципиально отличаются от предыдущих:

Пример 4

Случайная величина подчинена закону Пуассона с математическим ожиданием . Найти вероятность того, что данная случайная величина примет значение, меньшее, чем ее математическое ожидание.

Отличие состоит в том, что здесь речь идёт ИМЕННО о распределении Пуассона.

Решение : случайная величина принимает значения с вероятностями:

По условию, , и тут всё просто: событие состоит в трёх несовместных исходах :

Вероятность того, что случайная величина примет значение, меньшее, чем ее математическое ожидание.

Ответ :

Аналогичная задача на понимание:

Пример 5

Случайная величина подчинена закону Пуассона с математическим ожиданием . Найти вероятность того, что данная случайная величина примет положительное значение.

Решение и ответ в конце урока.

Помимо приближения биномиального распределения (Примеры 1-3), распределение Пуассона нашло широкое применение в теории массового обслуживания для вероятностной характеристики простейшего потока событий. Постараюсь быть лаконичным:

Пусть в некоторую систему поступают заявки (телефонные звонки, приходящие клиенты и т.д.). Поток заявок называют простейшим , если он удовлетворяет условиям стационарности , отсутствия последствий и ординарности . Стационарность подразумевает то, что интенсивность заявок постоянна и не зависит от времени суток, дня недели или других временнЫх рамок. Иными словами, не бывает «часа пик» и не бывает «мёртвых часов». Отсутствие последствий означает, что вероятность появления новых заявок не зависит от «предыстории», т.е. нет такого, что «одна бабка рассказала» и другие «набежали» (или наоборот, разбежались). И, наконец, свойство ординарности характеризуется тем, что за достаточно малый промежуток времени практически невозможно появление двух или бОльшего количества заявок. «Две старушки в дверь?» – нет уж, увольте, рубить удобнее по порядку.

Итак, пусть в некоторую систему поступает простейший поток заявок со средней интенсивностью заявок в некоторую единицу времени (минуту, час, день или в любую другую) . Тогда вероятность того, что за данный промежуток времени , в систему поступит ровно заявок, равна:

Пример 6

Звонки в диспетчерскую такси представляет собой простейший пуассоновский поток со средней интенсивностью 30 вызовов в час. Найти вероятность того, что: а) за 1 мин. поступит 2-3 вызова, б) в течение пяти минут будет хотя бы один звонок.

Решение : используем формулу Пуассона:

а) Учитывая стационарность потока, вычислим среднее количество вызовов за 1 минуту:
вызова – в среднем за одну минуту.

По теореме сложения вероятностей несовместных событий:
– вероятность того, что за 1 минуту в диспетчерскую поступит 2-3 вызова.

б) Вычислим среднее количество вызов за пять минут:

Во многих задачах практики приходится иметь дело со случайными величинами, распределенными по своеобразному закону, который называется законом Пуассона.

Рассмотрим прерывную случайную величину X , которая может принимать только целые неотрицательные значения:

причем последовательность этих значений теоретически не ограничена. Говорят, что случайная величина X распределена по закону Пуассона, если вероятность того, что она примет определенное значение т, выражается формулой

где а - некоторая положительная величина, называемая параметром закона Пуассона.

Ряд распределения случайной величины X, распределенной по закону Пуассона, имеет вид:

Убедимся прежде всего, что последовательность вероятностей, задаваемая формулой (5.9.1), может представлять собой ряд распределения, т.е. сумма всех вероятностей Р т равна единице. Имеем:

Но

На рисунке 5.9.1 показаны многоугольники распределения случайной величины X, распределенной по закону Пуассона, соответствующие различным значениям параметра а. В таблице 8 приложения приведены значения Р т для различных а.

Определим основные характеристики - математическое ожидание и дисперсию - случайной величины X , распределенной по закону Пуассона. По определению математического ожидания

Рис. 5.9.1.

Первый член суммы (соответствующий т = 0) равен нулю, следовательно, суммирование можно начинать с т = 1:

Обозначим т - 1 = к; тогда

Таким образом, параметр а представляет собой не что иное, как математическое ожидание случайной величины X.

Для определения дисперсии найдем сначала второй начальный момент величины X:

По ранее доказанному кроме того, следовательно,

Таким образом, дисперсия случайной величины , распределенной по закону Пуассона , равна ее математическому ожиданию а.

Это свойство распределения Пуассона часто применяется на практике для решения вопроса, правдоподобна ли гипотеза о том, что случайная величина X распределена по закону Пуассона. Для этого определяют из опыта статистические характеристики - математическое ожидание и дисперсию - случайной величины . Если их значения близки, то это может служить доводом в пользу гипотезы о пуассоновском распределении; резкое различие этих характеристик, напротив, свидетельствует против гипотезы.

Определим для случайной величины X, распределенной по закону Пуассона, вероятность того, что она примет значение не меньше заданного к. Обозначим эту вероятность R k:

Очевидно, вероятность R k может быть вычислена как сумма

Однако значительно проще определить ее из вероятности противоположного события:

В частности, вероятность того, что величина X примет положительное значение, выражается формулой

Мы уже упоминали о том, что многие задачи практики приводят к распределению Пуассона. Рассмотрим одну из типичных задач такого рода.

Пусть на оси абсцисс Ох случайным образом распределяются точки (рис. 5.9.2). Допустим, что случайное распределение точек удовлетворяет следующим условиям:

Рис. 5.9.2

  • 1. Вероятность попадания того или иного числа точек на отрезок / зависит только от длины этого отрезка, но не зависит от его положения на оси абсцисс. Иными словами, точки распределены на оси абсцисс с одинаковой средней плотностью. Обозначим эту плотность (т.е. математическое ожидание числа точек, приходящихся на единицу длины) через X.
  • 2. Точки распределяются на оси абсцисс независимо друг от друга, т.е. вероятность попадания того или другого числа точек на заданный отрезок не зависит от того, сколько их попало на любой другой отрезок, не перекрывающийся с ним.
  • 3. Вероятность попадания на малый участок Ах двух или более точек пренебрежимо мала по сравнению с вероятностью попадания одной точки (это условие означает практическую невозможность совпадения двух или более точек).

Выделим на оси абсцисс определенный отрезок длины / и рассмотрим дискретную случайную величину X - число точек, попадающих на этот отрезок. Возможные значения величины будут

Так как точки попадают на отрезок независимо друг от друга, то теоретически не исключено, что их там окажется сколь угодно много, т.е. ряд (5.9.6) продолжается неограниченно.

Докажем, что случайная величина X имеет закон распределения Пуассона. Для этого вычислим вероятность Р т того, что на отрезок / попадет ровно т точек.

Сначала решим более простую задачу. Рассмотрим на оси Ох малый участок Ах и вычислим вероятность того, что на этот участок попадет хотя бы одна точка. Будем рассуждать следующим образом. Математическое ожидание числа точек, попадающих на этот участок, очевидно, равно ХАх (так как на единицу длины попадает в среднем X точек). Согласно условию 3 для малого отрезка Ах можно пренебречь возможностью попадания на него двух или больше точек. Поэтому математическое ожидание ХАх числа точек, попадающих на участок Ах, будет приближенно равно вероятности попадания на него одной точки (или, что в наших условиях равнозначно, хотя бы одной).

Таким образом, с точностью до бесконечно малых высшего порядка при Ах -» 0 можно считать вероятность того, что на участок Ах попадет одна (хотя бы одна) точка, равной ХАх, а вероятность того, что не попадет ни одной, равной 1 - ХАх.

Воспользуемся этим для вычисления вероятности Р т попадания на отрезок / ровно т точек. Разделим отрезок / на п равных частей длиной . Условимся называть элементарный отрезок Ах «пустым»,

если в него не попало ни одной точки, и «занятым», если в него попала хотя бы одна. Согласно вышедоказанному вероятность того, что отрезок Ах окажется «занятым», приближенно равна ; вероятность

того, что он окажется «пустым», равна

Так как согласно условию 2 попадания точек в неперекрывающиеся отрезки независимы, то наши п отрезков можно рассмотреть как п не зависимых «опытов», в каждом из которых отрезок может быть «занят» с вероятностью Найдем вероятность того, что среди п отрезков будет ровно

т «занятых». По теореме о повторении опытов эта вероятность равна

или, обозначая XI = а,

При достаточно большом п эта вероятность приближенно равна вероятности попадания на отрезок / ровно т точек, так как попадание двух или больше точек на отрезок Ах имеет пренебрежимо малую вероятность. Для того чтобы найти точное значение Р т, нужно в выражении (5.9.7) перейти к пределу при п -> оо:

Преобразуем выражение, стоящее под знаком предела:

Первая дробь и знаменатель последней дроби в выражении (5.9.9) при п -> оо, очевидно, стремятся к единице. Выражение от п не зависит. Числитель последней дроби можно преобразовать так:

При и выражение (5.9.10) стремится к е~ а.

Таким образом, доказано, что вероятность попадания ровно т точек в отрезок / выражается формулой

где а = XI, т.е. величина X распределена по закону Пуассона с параметром а = XI.

Отметим, что величина а по смыслу представляет собой среднее число точек, приходящееся на отрезок I.

Величина R, (вероятность того, что величина X примет положительное значение) в данном случае выражает вероятность того , что на отрезок I попадет хотя бы одна точка :

Таким образом, мы убедились, что распределение Пуассона возникает там, где какие-то точки (или другие элементы) занимают случайное положение независимо друг от друга, и подсчитывается количество этих точек, попавших в какую-то область. В нашем случае такой «областью» был отрезок / на оси абсцисс. Однако наш вывод легко распространить и на случай распределения точек на плоскости (случайное плоское поле точек) и в пространстве (случайное пространственное поле точек). Нетрудно доказать, что если соблюдены условия:

  • 1) точки распределены в поле статистически равномерно со средней плотностью Х
  • 2) точки попадают в неперекрывающиеся области независимым образом;
  • 3) точки появляются поодиночке, а не парами, тройками и т.д., то число точек X, попадающих в любую область D (плоскую или пространственную), распределяется по закону Пуассона:

где а - среднее число точек, попадающих в область D.

Для плоского случая

где S D - площадь области D для пространственного

где V D - объем области D.

Заметим, что для наличия пуассоновского распределения числа точек, попадающих в отрезок или область, условие постоянной плотности (X = const) несущественно. Если выполнены два других условия, то закон Пуассона все равно имеет место, только параметр а в нем приобретает другое выражение: он получается не простым умножением плотности X на длину, площадь или объем области, а интегрированием переменной плотности по отрезку, площади или объему (подробнее об этом см. подраздел 19.4).

Наличие случайных точек, разбросанных на линии, на плоскости или объеме - не единственное условие, при котором возникает распределение Пуассона. Можно, например, доказать, что закон Пуассона является предельным для биномиального распределения:

если одновременно устремлять число опытов п к бесконечности, а вероятность р - к нулю, причем их произведение пр сохраняет постоянное значение:

Действительно, это предельное свойство биномиального распределения можно записать в виде:

Но из условия (5.9.13) следует, что

Подставляя (5.9.15) в (5.9.14), получим равенство

которое только что было доказано нами по другому поводу.

Это предельное свойство биномиального закона часто находит применение на практике. Допустим, что производится большое количество независимых опытов п, в каждом из которых событие А имеет очень малую вероятность р. Тогда для вычисления вероятности Р т „ того, что событие А появится ровно т раз, можно воспользоваться приближенной формулой

где пр = а - параметр того закона Пуассона, которым приближенно заменяется биномиальное распределение.

От этого свойства закона Пуассона - выражать биномиальное распределение при большом числе опытов и малой вероятности события - происходит его название, часто применяемое в учебниках статистики: закон редких явлений.

Рассмотрим несколько примеров, связанных с пуассоновским распределением, из различных областей практики.

Пример 1. На автоматическую телефонную станцию поступают вызовы со средней плотностью К вызовов в час. Считая, что число вызовов на любом участке времени распределено по закону Пуассона, найти вероятность того, что за две минуты на станцию поступит ровно три вызова.

Решение. Среднее число вызовов за две минуты равно:

По формуле (5.9.1) вероятность поступления ровно трех вызовов

Пример 2. В условиях предыдущего примера найти вероятность того, что за две минуты придет хотя бы один вызов.

Решение. По формуле (5.9.4) имеем:

Пример 3. В тех же условиях найти вероятность того, что за две минуты придет не менее трех вызовов.

Решение. По формуле (5.9.4) имеем:

Пример 4. На ткацком станке нить обрывается в среднем 0,375 раза в течение часа работы станка. Найти вероятность того, что за смену (8 часов) число обрывов нити будет заключено в границах 2 и 4 (не менее 2 и не более 4 обрывов).

Решение. Очевидно,

имеем:

По таблице 8 приложения при а = 3

Пример 5. С накаленного катода за единицу времени вылетает в среднем q(t) электронов, где t - время, протекшее с начала опыта. Найти вероятность того, что за промежуток времени длительности т, начинающийся в момент t 0 , с катода вылетит ровно т электронов.

Решение. Находим среднее число электронов а, вылетающих с катода за данный отрезок времени. Имеем:

По вычисленному а определяем искомую вероятность:

Пример 6. Число осколков, попадающих в малоразмерную цель при заданном положении точки разрыва, распределяется по закону Пуассона. Средняя плотность осколочного поля, в котором оказывается цель при данном положении точки разрыва, равна 3 оск. /м 2 . Площадь цели равна S = 0,5 м 2 . Для поражения цели достаточно попадания в нее хотя бы одного осколка. Найти вероятность поражения цели при данном положении точки разрыва.

Решение, а = XS= 1,5. По формуле (5.9.4) находим вероятность попадания хотя бы одного осколка:

(Для вычисления значения показательной функции е~ а пользуемся табл. 2 приложения.)

Пример 7. Средняя плотность болезнетворных микробов в одном кубическом метре воздуха равна 100. Берется на пробу 2 дм 3 воздуха. Найти вероятность того, что в нем будет обнаружен хотя бы один микроб. Решение. Принимая гипотезу о пуассоновском распределении числа микробов в объеме, находим:

Пример 8. По некоторой цели производится 50 независимых выстрелов. Вероятность попадания в цель при одном выстреле равна 0,04. Пользуясь предельным свойством биномиального распределения (формула (5.9.17)), найти приближенно вероятность того, что в цель не попадет ни одного снаряда, попадет один снаряд, два снаряда.

Решение. Имеем а = пр = 50 0,04 = 2. По таблице 8 приложения находим вероятности:

  • О способах экспериментального определения этих характеристик см. далее, главы7 и 14.

Введение

Теория вероятностей – это математическая наука, изучающая закономерности в случайных явлениях. На сегодняшний день это полноценная наука, имеющая большое практическое значение.

История теории вероятности восходит к XVII веку, когда были предприняты первые попытки систематического исследования задач, относящихся к массовым случайным явлениям, и появился соответствующий математический аппарат. С тех пор, многие основы были разработаны и углублены до нынешних понятий, были открыты другие важные законы и закономерности. Множество ученых работало и работает над проблемами теории вероятностей.

Среди них нельзя не обратить внимание на труды Симеона Дени Пуассона ((1781–1840) – французский математик), доказавшего более общую, чем у Якова Бернулли, форму закона больших чисел, а также впервые применившего теорию вероятностей к задачам стрельбы. С именем Пуассона связан один из законов распределения, играющий большую роль в теории вероятностей и ее приложениях.

Число наступлений определённого случайного события за единицу времени, когда факт наступления этого события в данном эксперименте не зависят от того, сколько раз и в какие моменты времени оно осуществлялось в прошлом, и не влияет на будущее. А испытания производятся в стационарных условиях, то для описания распределения такой случайной величины обычно используют закон Пуассона (данное распределение впервые предложено и опубликовано этим учёным в 1837 г.).

Этот закон можно также описывать как предельный случай биноминального распределения, когда вероятность p осуществления интересующего нас события в единичном эксперименте очень мала, но число экспериментов m, производимых в единицу времени, достаточно велико, а именно такое, что в процессе p

0 и m произведение mp стремится к некоторой положительной постоянной величине (т.е. mp ).

Поэтому закон Пуассона часто называют также законом редких событий.


Распределение Пуассона в теории вероятностей

Функция и ряд распределения

Распределение Пуассона – это частный случай биномиального распределения (при n >> 0 и при p –> 0 (редкие события)).

Из математики известна формула, позволяющая примерно подсчитать значение любого члена биномиального распределения:

где a = n · p – параметр Пуассона (математическое ожидание), а дисперсия равна математическому ожиданию. Приведем математические выкладки, поясняющие этот переход. Биномиальный закон распределения

P m = C n m · p m · (1 – p ) n m

может быть написан, если положить p = a /n , в виде

Так как p очень мало, то следует принимать во внимание только числа m , малые по сравнению с n . Произведение


весьма близко к единице. Это же относится к величине

очень близка к e a . Отсюда получаем формулу:

число Эйлера (2,71…). ,

Для производящей функции

величины имеем:

Интегральная функция вероятности распределения равна

Классическим примером случайной величины, распределенной по Пуассону, является количество машин, проезжающих через какой-либо участок дороги за заданный период времен. Также можно отметить такие примеры, как количество звезд на участке неба заданной величины, количество ошибок в тексте заданной длины, количество телефонных звонков в call-центре или количество обращений к веб-серверу за заданный период времени.

Ряд распределения случайной величины Х, распределенной по закону Пуассона, выглядит следующим образом:

х m 0 1 2 m
P m e -a

На рис. 1 представлены многоугольники распределения случайной величины Х по закону Пуассона, соответствующие различным значениям параметра а .

Для начала убедимся, что последовательность вероятностей, может представлять собой ряд распределения, т.е. что сумма всех вероятностей Р m равна единице.


Используем разложение функции е х в ряд Маклорена:

Известно, что этот ряд сходится при любом значении х , поэтому, взяв х=а , получим

следовательно

Числовые характеристики положения о распределении Пуассона

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности.

По определению, когда дискретная случайная величина принимает счетное множество значений:

Первый член суммы (соответствующий m =0 ) равен нулю, следовательно, суммирование можно начинать с m =1 :


Таким образом, параметр а представляет собой не что иное, как математическое ожидание случайной величины Х .

Кроме математического ожидания, положение случайной величины характеризуется модой и медианой.

Модой случайной величины называется её наиболее вероятное значение.

Для непрерывной величины модой называется точкой локального максимума функции плотности распределения вероятностей. Если многоугольник или кривая распределения имеют один максимум (рис. 2 а), то распределение называется унимодальным, при наличии более одного максимума – мультимодальным (в частности, распределение, имеющее две моды, называется бимодальным). Распределение, имеющее минимум, называется антимодальным (рис. 2 б)

x mod x 0 x 1 x 2 x 3 x 4 x

Наивероятнейшим значением случайной величины называется мода, доставляющая глобальный максимум вероятности для дискретной случайной величины или плотности распределения для непрерывной случайной величины.

Медиана – это такое значение х l , которое делит площадь под графиком плотности вероятности пополам, т.е. медиана является любым корнем уравнения. Математическое ожидание может не существовать, а медиана существует всегда и может быть неоднозначно определенной.

Медианой случайной величины

называется такое её значение = x med , что P ( < x med) = Р ( > x med) = .

Числовые характеристики разброса

Дисперсией случайной величины Х называют математической ожидание квадрата отклонения случайной величины от ее математического ожидания.

$Х$ имеет распределение Пуассона с параметром $\lambda$ ($\lambda$$>$0), если эта величина принимает целые неотрицательные значения $к=0, 1, 2,\dots$ с вероятностями $рк$=$\frac{\lambda ^{:} }{:!} \cdot 5^{-\lambda } .$ (Это распределение впервые было рассмотрено французским математиком и физиком Симеоном Дени Пуассоном в 1837 г.)

Распределение Пуассона также называют законом редких событий, потому, что вероятности рк дают приближенное распределение числа наступлений некоторого редкого события при большом количестве независимых испытаний. В этом случае полагают $\lambda =n \cdot р$ , где $n$- число испытаний Бернулли, $р$- вероятность осуществления события в одном испытании.

Правомерность использования закона Пуассона вместо биномиального распределения при большом числе испытаний дает следующая теорема.

Теорема 1

Теорема Пуассона.

Если в схеме Бернулли n$\rightarrow$$\infty$, p$\rightarrow$0, так что $n \cdot p$$\rightarrow$$\lambda$ (конечному числу), то

$!_{n}^{k} p^{k} (1-p)^{n-k} \to \frac{\lambda ^{k} }{k!} e^{-\lambda } $ при любых $k=0, 1, 2,... $

Без доказательства.

Примечание 1

Формула Пуассона становится точнее, при малениких $p$ и больших чисел $n$, причём $n \cdot p $

Математическое ожидание случайной величины, имеющей распределение Пуассона с параметром $\lambda$:

$М(Х)$=$\sum \limits _{k=0}^{\infty }k\cdot \frac{\lambda ^{k} }{k!} e^{-\lambda } =\lambda \cdot e^{-\lambda } \sum \limits _{k=1}^{\infty }\frac{\lambda ^{k} }{k!} =\lambda \cdot e^{-\lambda } \cdot e^{\lambda } = $$\lambda$.

Дисперсия случайной величины, имеющей распределение Пуассона параметром $\lambda$:

$D(X)$=$\lambda$ .

Применение формулы Пуассона при решении задач

Пример 1

Вероятность появления бракованного изделия при массовом производстве равна $0,002$. Найти вероятность того, что в партии из $1500$ изделий будет не более 3-х бракованных. Найти среднее число бракованных изделий.

  • Пусть $А$-число бракованных изделий в партии из $1500$ изделий. Тогда искомая вероятность, это вероятность того, что $А$ $\leq$ $3$. В данной задаче мы имеем схему Бернулли с $n=1500$ и $р=0,002$. Для применения теоремы Пуассона положим $\lambda=1500 \cdot 0,002=3$. Тогда искомая вероятность
\
  • Среднее число бракованных изделий $М(А)$=$\lambda$=3.

Пример 2

Коммутатор учреждения обслуживает $100$ абонентов. Вероятность того, что в течение $1$ минуты абонент позвонит, равна $0,01$. Найти вероятность того, что в течение $1$ минуты никто не позвонит.

Пусть $А$- число позвонивших на коммутатор в течение $1$ минуты. Тогда искомая вероятность -- это вероятность того, что $А=0$. В данной задаче применима схема Бернулли с $n=100$, $p=0,01$. Для использования теоремы Пуассона положим

$\lambda=100 \cdot 0,01=1$.

Тогда искомая вероятность

$Р = е^-1$ $\approx0,37$.

Пример 3

Завод отправил на базу $500$ изделий. Вероятность повреждения изделия в пути равна $0,002$. Найти вероятности того, что в пути будет повреждено

  1. ровно три изделия;
  2. менее трех изделий.

    Рассмотрев замечание к формуле Пуассона, поскольку вероятность $р=0,002$ повреждения изделия мала, а число изделий $n=500$ велико, и $a=n\cdot p=1

    Для решения второй задачи применима формула, где $k1=0$ и $k2=2$. Имеем:

\

Пример 4

Учебник издан тиражом $100000$ экземпляров. Вероятность того, что один учебник сброшюрован неправильно, равна $0,0001$. Какова вероятность того, что тираж содержит $5$ бракованных книг?

По условию задачи $n = 100000$, $p = 0,0001$.

События "из $n$ книг ровно $m$ книг сброшюрованы неправильно", где $m = 0,1,2, \dots ,100000$, являются независимыми. Так как число $n$ велико, а вероятность $p$ мала, вероятность $P_n (m)$ можно вычислить по формуле Пуассона: $P_n$(m)$\approx \frac{{\lambda }^m\cdot e^{-\lambda }}{m!}$ , где $\lambda = np$.

В рассматриваемой задаче

$\lambda = 100000 \cdot 0,0001 = 10$.

Поэтому искомая вероятность $P_{100000}$(5) определяется равенством:

$P_{100000}$ (5)$\approx \frac{e^{-10}\cdot {10}^5}{5!}\approx $ ${10}^5$ $\frac{0,000045}{120}$ = $0,0375$.

Ответ: $0,0375$.

Пример 5

Завод отправил на базу $5000$ доброкачественных изделий. Вероятность того, что в пути изделие повредиться равно $0,0002$. Найти вероятность того, что на базу прибудут три негодных изделия.

По условию $n=5000$; $р = 0,0002$; $k = 3$. Найдем $\lambda $:

$\lambda = n \cdot p = 5000 \cdot 0,0002 = 1$.

Искомая вероятность по формуле Пуассона равна:

Пример 6

Вероятность того, что на телефонную станцию в течение одного часа позвонит один абонент, равна 0,01. В течение часа позвонили 200 абонентов. Найти вероятность того, что в течение часа позвонят 3 абонента.

Рассматрев условие задачи видим, что:

Найдем $\lambda $ для формуллы Пуассона:

\[\lambda =np=200\cdot 0,01=2.\]

Подставим значения в формулу Пуассона и получим значение:

Пример 7

На факультете насчитывается 500 студентов. Какова вероятность того, что 1 сентября является днем рождения одновременно для 2-х студентов?

Имеем $n=500$; $p=1/365 \approx 0,0027$, $q=0,9973$. Поскольку количество испытаний велико, а вероятность выполнения очень мала и $npq=1,35 \