Распределение вейбулла пример. Вейбулла распределение

Логарифмически нормальная функция распределения нашла широкое применение при анализе надежности объектов техники, биологии, экономики и др. Например, функцию успешно применяют для описания наработки до отказа подшипников, электронных приборов и других изделий.

Неотрицательные случайные значения некоторого параметра распределены логарифмически нормально, если его логарифм распределен нормально. Плотность распределения для различных значений σ приведена на рис. 4.3.

Рис. 4.3.

Плотность распределения описывается зависимостью

где М х и σ – параметры, оцениваемые по результатам п испытаний до отказа:

(4.4)

Для логарифмически нормального закона распределения функция надежности

(4.5)

Вероятность безотказной работы можно определить по таблицам для нормального распределения (см. табл. П6.1 приложения 6) в зависимости от значения квантиля

Математическое ожидание наработки до отказа

Среднее квадратическое отклонение и коэффициент вариации соответственно будут равны

Если v x 0,3, то полагают, что ν x = σ, при этом ошибка составляет не более 1%.

Часто применяют запись зависимостей для логарифмически нормального закона распределения в десятичных логарифмах. В соответствии с этим законом плотность распределения

Оценки параметров lg x 0 и σ определяют по результатам испытаний:

Математическое ожидание М х, среднее квадратическое отклонение σ x и коэффициент вариации ν x наработки до отказа соответственно равны

Пример 4.6

Определить вероятность безотказной работы редуктора в течение t = 103 ч, если ресурс распределен логарифмически нормально с параметрами lg t 0 = 3,6; σ = 0,3.

Решение

Найдем значение квантиля и определим вероятность безотказной работы:

Ответ: R (t ) = 0,0228.

Распределение Вейбулла

Функция распределения Вейбулла представляет собой двухпараметрическое распределение. Описываемый ею закон является универсальным, так как при соответствующих значениях параметров превращается в нормальное, экспоненциальное и другие виды распределений. Автор данного закона распределения В. Вейбулл использовал его при описании и анализе экспериментально наблюдавшихся разбросов усталостной прочности стали, пределов ее упругости. Закон Вейбулла удовлетворительно описывает наработку до отказа подшипников, элементов электронной аппаратуры, его используют для оценки надежности деталей и узлов машин, в том числе автомобилей, а также для оценки надежности машин в процессе их приработки. Плотность распределения описывается зависимостью

где α – параметр формы кривой распределения; λ – параметр масштаба кривой распределения.

График функции плотности распределения приведен на рис. 4.4.

Рис. 4.4.

Функция распределения Вейбулла

Функция надежности для этого закона распределения

Математическое ожидание случайной величины х равно

где Г(x ) – гамма-функция.

Для непрерывных значений х

Для целочисленных значений х гамма-функцию вычисляют по формуле

также верны формулы

Дисперсия случайной величины равна

Широкое применение при анализе и расчетах надежности изделий закона распределения Вейбулла объясняется тем, что этот закон, обобщая экспоненциальное распределение, содержит дополнительный параметр α.

Подбирая нужным образом параметры а и λ, можно получить лучшее соответствие расчетных значений опытным данным по сравнению с экспоненциальным законом, который является однопараметрическим (параметр λ).

Так, для изделий, у которых имеются скрытые дефекты, но которые длительное время не используются (а значит, медленнее стареют), опасность отказа имеет наибольшее значение в начальный период, а потом быстро падает. Функция надежности для такого изделия хорошо описывается законом Вейбулла с параметром α < 1.

Наоборот, если изделие хорошо контролируется при изготовлении и почти не имеет скрытых дефектов, но подвергается быстрому старению, то функция надежности описывается законом Вейбулла с параметром α > 1. При α = 3,3 распределение Вейбулла близко к нормальному.


3. ОСНОВНЫЕ МАТЕМАТИЧЕСКИЕ МОДЕЛИ, НАИБОЛЕЕ ЧАСТО ИСПОЛЬЗУЕМЫЕ В РАСЧЕТАХ НАДЕЖНОСТИ

3.1. Распределение Вейбулла

Опыт эксплуатации очень многих электронных приборов и значительного количества электромеханической аппаратуры показывает, что для них характерны три вида зависимостей интенсивности отказов от времени (рис. 3.1), соответствующих трем периодам жизни этих устройств .

Нетрудно увидеть, что этот рисунок аналогичен рис. 2.3, так как график функции l (t) соответствует закону Вейбулла. Указанные три вида зависимостей интенсивности отказов от времени можно получить, используя для вероятностного описания случайной наработки до отказа двухпараметрическое распределение Вейбулла . Согласно этому распределению плотность вероятности момента отказа

, (3.1)

где d - параметр формы (определяется подбором в результате обработки экспериментальных данных, d > 0); l - параметр масштаба, .

Интенсивность отказов определяется по выражению

(3.2)

Вероятность безотказной работы

, (3.3)

а средняя наработки до отказа

. (3.4)

Отметим, что при параметре d = 1 распределение Вейбулла переходит в экспоненциальное, а при d = 2 - в распределение Рэлея.

При d< 1 интенсивность отказов монотонно убывает (период приработки), а при монотонно возрастает (период износа), см. рис. 3.1. Следовательно, путем подбора параметра d можно получить, на каждом из трех участков, такую теоретическую кривую l (t), которая достаточно близко совпадает с экспериментальной кривой, и тогда расчет требуемых показателей надежности можно производить на основе известной закономерности.

Распределение Вейбулла достаточно близко подходит для ряда механических объектов (к примеру, шарикоподшипников), оно может быть использовано при ускоренных испытаниях объектов в форсированном режиме .

3.2. Экспоненциальное распределение

Как было отмечено в подразд. 3.1 экспоненциальное распределение вероятности безотказной работы является частным случаем распределения Вейбулла, когда параметр формы d = 1. Это распределение однопараметрическое, то есть для записи расчетного выражения достаточно одного параметра l = const . Для этого закона верно и обратное утверждение: если интенсивность отказов постоянна, то вероятность безотказной работы как функция времени подчиняется экспоненциальному закону:

. (3.5)

Среднее время безотказной работы при экспоненциальном законе распределения интервала безотказной работы выражается формулой:

. (3.6)

Заменив в выражении (3.5) величину l величиной 1 / Т 1 , получим . (3.7)

Таким образом, зная среднее время безотказной работы Т 1 (или постоянную интенсивность отказов l ), можно в случае экспоненциального распределения найти вероятность безотказной работы для интервала времени от момента включения объекта до любого заданного момента t.

Отметим, что вероятность безотказной работы на интервале, превышающем среднее время Т 1 , при экспоненциальном распределении будет менее 0,368:

Р(Т 1) == 0,368 (рис. 3.2).

Длительность периода нормальной эксплуатации до наступления старения может оказаться существенно меньше Т 1 , то есть интервал времени на котором допустимо пользование экспоненциальной моделью, часто бывает меньшим среднего времени безотказной работы, вычисленного для этой модели. Это легко обосновать, воспользовавшись дисперсией времени безотказной работы. Как известно , если для случайной величины t задана плотность вероятности f(t) и определено среднее значение (математическое ожидание) Т 1 , то дисперсия времени безотказной работы находится по выражению:

(3.8)

и для экспоненциального распределения соответственно равна:

. (3.9)

После некоторых преобразований получим:

. (3.10) Таким образом, наиболее вероятные значения наработки, группирующиеся в окрестности Т 1 , лежат в диапазоне, то есть в диапазоне от t = 0 до t = 2Т 1 . Как видим, объект может отработать и малый отрезок времени и время t = 2Т 1 , сохранив l = const. Но вероятность безотказной работы на интервале 2Т 1 крайне низка: .

Важно отметить, что если объект отработал предположим, время t без отказа, сохранив l = соnst, то дальнейшее распределение времени безотказной работы будет таким, как в момент первого включения l = соnst.

Таким образом, отключение работоспособного объекта в конце интервала и новое его включение на такой же интервал множество раз приведет к пилообразной кривой (см. рис. 3.3).

Другие распределения не имеют указанного свойства. Из рассмотренного следует на первый взгляд парадоксальный вывод: поскольку за все время t устройство не стареет (не меняет своих свойств), то нецелесообразно проводить профилактику или замену устройств для предупреждения внезапных отказов, подчиняющихся экспоненциальному закону. Конечно, никакой парадоксальности этот вывод не содержит, так как предположение об экспоненциальном распределении интервала безотказной работы означает, что устройство не стареет. С другой стороны, очевидно, что чем больше время, на которое включается устройство, тем больше всевозможных случайных причин, которые могут вызвать отказ устройства. Это весьма важно для эксплуатации устройств, когда приходится выбирать интервалы, через которые следует производить профилактические работы с тем, чтобы сохранить высокую надежность работы устройства. Этот вопрос подробно рассматривается в работе .

Модель экспоненциального распределения часто используется для априорного анализа, так как позволяет не очень сложными расчетами получить простые соотношения для различных вариантов создаваемой системы. На стадии апостериорного анализа (опытных данных) должна проводиться проверка соответствия экспоненциальной модели результатам испытаний. В частности, если при обработке результатов испытаний окажется, что , то это является доказательством экспоненциальности анализируемой зависимости.

На практике часто бывает, что l№ const,однако, и в этом случае его можно применять для ограниченных отрезков времени. Это допущение оправдывается тем, что при ограниченном периоде времени переменную интенсивность отказов без большой ошибки можно заменить средним значением:

l (t) " l cр(t) = const.

3.3. Распределение Рэлея

Плотность вероятности в законе Рэлея (см. рис. 3.4) имеет следующий вид

¦ , (3.11)

где d* - параметр распределения Рэлея (равен моде этого распределения ). Его не нужно смешивать со среднеквадратическим отклонением: .

Интенсивность отказов равна:

Характерным признаком распределения Рэлея является прямая линия графика l (t), начинающаяся с начала координат.

Вероятность безотказной работы объекта в этом случае определится по выражению

. (3.12)

Средняя наработка до отказа

. (3.13)

3.4. Нормальное распределение (распределение Гаусса)

Нормальный закон распределения характеризуется плотностью вероятности вида

, (3.14)

где m x , s x - соответственно математическое ожидание и среднеквадратическое отклонение случайной величины х.

При анализе надежности электроустановок в виде случайной величины, кроме времени, часто выступают значения тока, электрического напряжения и других аргументов. Нормальный закон - это двухпараметрический закон, для записи которого нужно знать m x и s x .

Вероятность безотказной работы определяется по формуле

, (3.15)

а интенсивность отказов - по формуле

На рис. 3.5 изображены кривые l (t), Р(t) и ¦ (t) для случая s t << m t , характерного для элементов, используемых в системах автоматического управления .

В данном пособии показаны только наиболее распространенные законы распределения случайной величины. Известен целый ряд законов, так же используемых в расчетах надежности : гамма-распределение, -распределение, распределение Максвелла, Эрланга и др.

Следует отметить, что если неравенство s t << m t не соблюдается, то следует использовать усеченное нормальное распределение .

Для обоснованного выбора типа практического распределения наработки до отказа необходимо большое количество отказов с объяснением физических процессов, происходящих в объектах перед отказом.

В высоконадежных элементах электроустановок, во время эксплуатации или испытаний на надежность, отказывает лишь незначительная часть первоначально имеющихся объектов. Поэтому значение числовых характеристик, найденное в результате обработки опытных данных, сильно зависит от типа предполагаемого распределения наработки до отказа. Как показано в , при различных законах наработки до отказа, значения средней наработки до отказа, вычисленные по одним и тем же исходным данным, могут отличаться в сотни раз. Поэтому вопросу выбора теоретической модели распределения наработки до отказа необходимо уделять особое внимание с соответствующим доказательством приближения теоретического и экспериментального распределений (см. разд. 8).

3.5. Примеры использования законов распределения в расчетах надежности

Определим показатели надежности для наиболее часто используемых законов распределения времени возникновения отказов.

3.5.1. Определение показателей надежности при экспоненциальном законе распределения

Пример . Пусть объект имеет экспоненциальное распределение времени возникновения отказов с интенсивностью отказов l = 2,5 Ч 10 -5 1/ч.

Требуется вычислить основные показатели надежности невосстанавливаемого объекта за t = 2000 ч.

Решение.

q (2000) = 1 - Р (2000) = 1 - 0,9512 = 0,0488.
  1. Используя выражение (2.5), вероятность безотказной работы в интервале времени от 500 ч до 2500 ч при условии, что объект проработал безотказно 500 ч равна
.
  1. Средняя наработка до отказа
ч.

3.5.2. Определение показателей надежности при распределении Рэлея

Пример. Параметр распределения d* = 100 ч.

Требуется определить для t = 50 ч величины P(t), Q(t), l (t),Т 1 .

Решение.

Воспользовавшись формулами (3.11), (3.12), (3.13), получим

3.5.3. Определение показателей схемы при распределении Гаусса

Пример. Электрическая схема собрана из трех последовательно включенных типовых резисторов: ;

(в % задано значение отклонения сопротивлений от номинального).

Требуется определить суммарное сопротивление схемы с учетом отклонений параметров резисторов.

Решение.

Известно, что при массовом производстве однотипных элементов плотность распределения их параметров подчиняется нормальному закону . Используя правило 3 s (трех сигм), определим по исходным данным диапазоны, в которых лежат значения сопротивлений резисторов: ;

Следовательно,

Когда значения параметров элементов имеют нормальное распределение, и элементы при создании схемы выбираются случайным образом, результирующее значение R е является функциональной переменной, распределенной так же по нормальному закону , причем дисперсия результирующего значения, в нашем случае , определяется по выражению

Поскольку результирующее значение R е распределено по нормальному закону, то, воспользовавшись правилом 3 s , запишем

где - номинальные паспортные параметры резисторов.

Таким образом

Или

Данный пример показывает, что при увеличении количества последовательно соединенных элементов результирующая погрешность уменьшается. В частности, если суммарная погрешность всех отдельных элементов равна ± 600 Ом, то суммарная результирующая погрешность равна ± 374 Ом. В более сложных схемах, например в колебательных контурах, состоящих из индуктивностей и емкостей, отклонение индуктивности или емкости от заданных параметров сопряжено с изменением резонансной частоты, и возможный диапазон ее изменения можно предусмотреть методом, аналогичным с расчетом резисторов .

3.5.4. Пример определения показателей надежности неремонтируемого объекта по опытным данным

Пример. На испытании находилось N о = 1000 образцов однотипной невосстанавливаемой аппаратуры, отказы фиксировались через каждые 100 часов.

Требуется определить в интервале времени от 0 до 1500 часов. Число отказов на соответствующем интервале представлено в табл. 3.1. Таблица 3.1
Исходные данные и результаты расчетов

Номер i-го интервала шт. ,1/ч
1 0 -100 50 0,950
2 100 -200 40 0,910 0,430
3 200 -300 32 0,878 0,358
4 300 - 400 25 0,853 0,284
5 400 - 500 20 0,833 0,238
6 500 - 600 17 0,816 0,206
7 600 -700 16 0,800 0,198
8 700 - 800 16 0,784 0,202
9 800 - 900 15 0,769 0,193
10 900 -1000 14 0,755 0,184
11 1000 -1100 15 0,740 0,200
12 1100 -1200 14 0,726 0,191
13 1200 -1300 14 0,712 0,195
14 1300 -1400 13 0,699 0,184
15 1400 -1500 14 0,685 0,202 Ч

Решение. .

Средняя наработка до отказа, при условии отказов всех N o объектов, определяется по выражению

, где tj - время отказа j-го объекта (j принимает значения от 0 до N о). В данном эксперименте из N о = 1000 объектам отказало всего объектов. Поэтому по полученным опытным данным можно найти только приближенное значение средней наработки до отказа. В соответствии с поставленной задачей воспользуемся формулой из : при r Ј N о, (3.16)

где tj - наработка до отказа j-го объекта (j принимает значения
от 1 до r); r - количество зафиксированных отказов (в нашем случае r = 315); tr - наработка до r-го (последнего) отказа. Из графика видно, что после периода приработки t і 600 ч интенсивность отказов приобретает постоянную величину. Если предположить, что и в дальнейшем l будет постоянной, то период нормальной эксплуатации связан с экспоненциальной моделью наработки до отказа испытанного типа объектов. Тогда средняя наработка до отказа

ч.

Таким образом, из двух оценок средней наработки до отказа
= 3831 ч и T 1 = 5208 ч надо выбрать ту, которая более соответствует фактическому распределению отказов. В данном случае можно предполагать, что если бы провести испытания до отказа всех объектов, то есть r = N о, достроить график рис. 3.6 и выявить время, когда l начнет увеличиваться, то для интервала нормальной эксплуатации (l = const) следует брать среднюю наработку до отказа T 1 = 5208 ч.

В заключение по данному примеру отметим, что определение средней наработки до отказа по формуле (2.7), когда r << N о, дает грубую ошибку. В нашем примере

ч.

Если вместо N о поставим количество отказавших объектов
r = 315, то получим

ч.

В последнем случае не отказавшие за время испытания объекты в количестве N о - r = 1000-315 = 685 шт. вообще в оценку не попали, то есть была определена средняя наработка до отказа только 315 объектов. Эти ошибки достаточно распространены в практических расчетах.

Рассмотрим распределение Вейбулла, вычислим его математическое ожидание, дисперсию, медиану. С помощью функции MS EXCEL ВЕЙБУЛЛ.РАСП() построим графики функции распределения и плотности вероятности. Сгенерируем массив случайных чисел и произведем оценку параметров распределения.

Распределение Вейбулла (англ. Weibull distribution ) зависит от 2-х параметров: α (альфа)>0 (определяет форму распределения) и b (бета)>0 (определяет масштаб). этого распределения задается следующей формулой:

Если параметр альфа = 1, то распределение Вейбулла превращается в . Параметр бета на практике обычно принимается >=1.

Функция распределения задается следующей формулой:

Примечание : Для удобства написания формул в файле примера для параметров распределения альфа и бета созданы соответствующие .

В файле примера также построены графики плотности вероятности и функции распределения с отмеченными значениями среднего , и .

Генерация случайных чисел и оценка параметров

Используем обратную функцию распределения (или p - quantile , см. статью про ), которая для распределения Вейбулла может быть выражена в явном виде с использованием элементарных функций:

С помощью этой функции можно сгенерировать значения случайной величины, имеющей распределение Вейбулла . Для этого нужно использовать формулу MS EXCEL:

Бета*(-LN(СЛЧИС()))^(1/альфа)

Функция СЛЧИС() генерирует от 0 до 1, что как раз соответствует диапазону изменения вероятности (см. файл примера лист Генерация ).

Теперь имея массив случайных чисел, сгенерированных с заданными параметрами распределения альфа и бета (пусть их будет 200), оценим параметры распределения.

Оценку параметров альфа и бета можно сделать с помощью линейной регрессии. Для этого необходимо привести функцию распределения Вейбулла к виду обычной прямой, задаваемой уравнением Y=aX+b. Для этого сделаем следующие преобразования:

Сравнивая выражение

с уравнением прямой Y=ax+b получим, что:

  • Y соответствует левая часть выражения,
  • X – соответствует ln(x),
  • параметр распределения бета соответствует коэффициенту a , отвечающего за наклон прямой к оси абсцисс.
  • выражение –бета*ln(альфа) соответствует коэффициенту b (ордината точки пересечения с осью Oy).

По сути, мы практически построили (probability plot) для распределения Вейбулла : если ln(x), отложенные по оси Ох, лягут приблизительно вдоль прямой, то это будет означать, что значения выборки взяты из распределения Вейбулла. Осталось модифицировать ось Оу с помощью формулы =LN(-LN(1-Ui)), где Ui=(i-0,5)/200, а i=1; 2; ...; 200.

Заметим, что -LN(1-Ui) – это обратная функция распределения с параметрами альфа=1 и бета=1. Второй логарифм нам потребовался, т.к. по оси абсцисс отложены не сами x, а ln(x).

Примечание : Т.к. форма распределения Вейбулла существенно зависит от его параметров, то вместо альфа=1 и бета=1 для обратной функции лучше использовать точечные оценки этих параметров , полученные на основании выборки . О том как вычислить оценку параметров альфа и бета см. ниже.

В файле примера на листе Генерация построен соответствующий Вероятностный график .

С помощью функции НАКЛОН() вычислим наклон получившейся кривой (коэффициент прямой а, англ. slope ), который служит оценкой параметра бета .

Функция ОТРЕЗОК() вернет ординату точки пересечения с Оу (коэффициент прямой b ). Выражение =EXP(-b/бета) служит оценкой параметра альфа .

Также можно сравнить плотности вероятностей модельного распределения и распределения с параметрами, полученными в результате оценки.

Как видно из диаграммы выше, совпадение также достаточно хорошее.

СОВЕТ : Т.к. генерирование случайных чисел происходит с помощью функции СЛЧИС() , то нажимая клавишу F9 , можно каждый раз получать новую выборку и, соответственно, новую оценку параметров.

СОВЕТ : О других распределениях MS EXCEL можно прочитать в статье .

Это распределение чаще всего используется при исследовании интенсивности отказов для периодов приработки и старения. На примере распределения сроков службы изоляции некоторых элементов электрической сети подробно рассмотрены физические процессы, приводящие к старению и отказу изоляции и описываемые распределением Вейбулла.

Надежность наиболее распространенных элементов электрических сетей, таких как силовые трансформаторы и кабельные линии, в значительной степени определяется надежностью работы изоляции, «прочность» которой изменяется в течение эксплуатации. Основной характеристикой изоляции электромеханических изделий является ее электрическая прочность, которая в зависимости от условий эксплуатации и вида изделия определяется механической прочностью, эластичностью, исключающей образование остаточных деформаций, трещин, расслоений под воздействием механических нагрузок, т.е. неоднородностей.

Однородность и монолитность структуры изоляции и ее высокая теплопроводность исключают возникновение повышенных местных нагревов, неизбежно приводящих к увеличению степени неоднородности электрической прочности. Разрушение изоляции при функционировании элемента происходит в основном в результате нагревания токами нагрузок и температурных воздействий внешней среды.

Рассмотрев два основных фактора (тепловое старение и механическая нагрузка), влияющих па срок службы изоляции, которые к тому же тесно связаны между собой, можно сделать вывод, что как усталостные явления в изоляции, так и тепловое ее старение в значительной степени зависят от качества изготовления и материала электротехнического изделия, от однородности материала изоляции, обеспечивающей отсутствие местных нагревов (так как трудно предположить, что откажет вся изоляция, т.е. пробой произойдет по всей площади изоляции).

Микротрещипы, расслоения и другие неоднородности материала случайно распределены в отношении своего положения и своей величины по всему объему (площади) изоляции. При воздействии переменных неблагоприятных условий как теплового, так и электродинамического характера неоднородности материала увеличиваются: например, микротрещина распространяется в глубь изоляции и при случайном повышении напряжения может вызвать пробой изоляции. Причиной отказа может быть даже небольшая неоднородность материала.

Естественно предположить, что число неблагоприятных воздействий (тепловых или электромеханических), вызывающих пробой изоляции, есть функция, убывающая в зависимости от размеров неоднородности. Это число минимально для наибольшей по размерам неоднородности (трещины, расслоения и др.).

Следовательно, число неблагоприятных воздействий, определяющее срок службы изоляции, должно подчиняться закону распределения минимальной случайной величины из совокупности независимых случайных величин, соответствующих различным по размерам неоднородностям:

где Г и - время безотказной работы всей изоляции; Г и, - время безотказной работы /"-го участка (/" = 1,2, п).

Таким образом, для определения закона распределения времени безотказной работы такого объекта, как изоляция элемента электрической сети, необходимо найти закон распределения минимального времени безотказной работы совокупности всех участков. Наибольший интерес представляет случай, когда законы распределения времени безотказной работы отдельных участков имеют различный характер, но вид законов распределения одинаков, т.е. резко выраженных отличий у участков нет.

С позиций надежности участки такой системы соответствуют последовательному соединению. Функция распределения времени безотказной работы такой системы из п участков, соединенных последовательно:

Рассмотрим общий случай, когда распределение Р(г) имеет так называемый «порог чувствительности», т.е. элемент гарантированно не откажет в интервале времени (0, /о) (в частном случае /о может быть равно 0). Очевидно, что функция Р(1ц + Д/) > 0 - всегда неубывающая функция аргумента.

Для системы можно получить асимптотический закон распределения времени безотказной работы:

Если распределение не имеет порога чувствительности / 0 , то закон распределения будет иметь вид


где с - некоторый постоянный коэффициент, с > 0; а - показатель Вейбулла.

Этот закон называется распределением Вейбулла. Он довольно часто используется при аппроксимации распределения времени безотказной работы системы с конечным числом последовательно (с точки зрения надежности) соединенных элементов (протяженные кабельные линии со значительным числом муфт и др.).

Плотность распределения времени безотказной работы

При а = 1 плотность распределения превращается в обычную показательную функцию (рис. 3.3).

Для интенсивности отказов при плотности распределения по закону Вейбулла получим

Интенсивность отказов для этого закона в зависимости от параметра распределения а может расти, оставаться постоянной (показательный закон) и уменьшаться (рис. 3.4).

При а = 2 функция распределения времени безотказной работы совпадает с законом Рэлея, а при а » 1 достаточно хорошо аппроксимируется нормальным законом распределения в окрестности среднего времени безотказной работы.

Рис. 3.3.

Рис. 3.4.

Как видно из рис. 3.3 и 3.4, экспоненциальный закон распределения является частным случаем закона Вейбулла при а = 1 (А. = const).

Закон Вейбулла очень удобен для вычислений, но требует эмпирического подбора параметров А. и а для имеющейся зависимости А.(/).

Математическое ожидание (среднее время) безотказной работы и дисперсия при распределении по закону Вейбулла:

где Г(х) - гамма-функция, определяемая по таблице Г(.г) (см. прил. 2); с - некоторый постоянный коэффициент, определяющий вероятность появления к элементарных повреждений на интервале времени (0, /)

В теории надежности наибольшее распространение получили следующие законы распределения случайных величин f (t ):

Для дискретных случайных величин - биноминальный закон; закон Пуассона;

Для непрерывных случайных величин - экспоненциальный закон; нормальный закон; гамма-распределение; закон Вейбулла; х 2 - распределение; логарифмически-нормальное распределение.

Биноминальный закон распределения числа n появления события A в m независимых опытах (испытаниях). Если вероятность появления события A в одном испытании равна p , вероятность непоявления события A равна q = 1– p ; число независимых испытаний равно m, то вероятность появления n событий в испытаниях будет:

где: - число сочетаний из m по n .

1) число событий n - целое положительное число;

2) математическое ожидание числа событий равно mp ;

3) среднеквадратическое отклонение числа событий:

При увеличении числа испытаний биноминальное распределение приближается

к нормальному со средним значением n/m и дисперсией p (1– p ) / m .

Закон Пуассона - распределение чисел случайного события n i за время τ . Вероятность возникновения случайного события n раз за время τ :

где: λ- интенсивность случайного события.

Свойства распределения следующие:

1) математическое ожидание числа событий за время τ равно λτ;

2) среднеквадратическое отклонение числа событий:

Характерный признак распределения Пуассона - равенство математического ожидания и дисперсии. Это свойство используется для проверки степени соответствия исследуемого (опытного) распределения с распределением Пуассона.

Распределение Пуассона получается из биноминального распределения, если число испытаний m неограниченно возрастает, а математическое ожидание числа событий a = λτ остается постоянным.

Тогда вероятность биноминального распределения при каждом n , равном 0, 1, 2, ..., стремится к пределу:

Закон Пуассона используется тогда, когда необходимо определить вероятность того, что в изделии за заданное время произойдет один, два, три и т. д. отказов.

Экспоненциальный (показательный) закон распределения случайной величины X (рис. 4.3.3, а) записывается в общем случае так:

P (x ) = exp(–λx ),

где: P (x ) - вероятность того, что случайная величина X имеет значение больше x ; значения е–х даются в приложении 1.

В частном случае, когда за случайную величину принимается время работы объекта t , вероятность того, что изделие на протяжении времени t будет находиться в работоспособном состоянии, равна еxp(–λt ):

P (t ) = exp(–λt ), (4.3.4)

где: λ- интенсивность отказов объекта для экспоненциального распределения

(она постоянна), т. е. λ= const.

Выражение (4.3.4) можно получить непосредственно из (4.3.3), если число отказов n принять равным 0.

Вероятность отказа за время t из (4.3.4):

Q (t ) = 1– P (t ) = 1– exp(–λt ). (4.3.5)

Среднее время работы до возникновения отказа:

Дисперсия времени работы до возникновения отказа:

Среднеквадратическое время работы:

σ(t ) =T 1 . (4.3.9)

Равенство среднеквадратического отклонения среднему времени работы - характерный признак экспоненциального распределения.

Статистические материалы об отказах элементов свидетельствуют о том, что в основном время их работы подчиняется экспоненциальному закону распределения. Условием возникновения экспоненциального закона распределения времени до отказа служит постоянство интенсивности отказов, что характерно для внезапных отказов на интервале времени, когда период приработки объекта закончился, а период износа и старения еще не начался, т. е. для нормальных условий эксплуатации. Постоянной становится интенсивность отказов сложных объектов, если вызываются они отказами большого числа комплектующих элементов.

Время возникновения первичных отказов может быть расположено на оси времени так, что суммарный поток отказов сложного изделия становится близким к простейшему, т. е. с постоянной интенсивностью отказов.

Этими обстоятельствами, а также тем, что предположение об экспоненциальном распределении существенно упрощает расчеты надежности, объясняется широкое применение экспоненциального закона в инженерной практике.

Гамма-распределение случайной величины (рис. 4.3.3, б). Если отказ устройства возникает тогда, когда произойдет не менее k отказов его элементов, а отказы элементов подчинены экспоненциальному закону с параметрами λ 0 , плотность вероятности отказа устройства:

где: λ 0 - исходная интенсивность отказов элементов устройства, отказ которого вызывается отказом k элементов.

Этому распределению подчиняется время работы резервированных устройств. Равенство (4.3.9) получается из (4.3.3).

Вероятность k и более отказов, т. е. вероятность отказа данного устройства:

Плотность вероятности отказа устройства за время t :

Среднее время работы устройства до отказа:

Интенсивность отказов устройства:

Вероятность безотказного состояния устройства:

При k = 1 γ-распределение совпадает с экспоненциальным распределением. При увеличении k γ-распределение будет приближаться к симметричному распределению, а интенсивность отказов будет иметь все более выраженный характер возрастающей функции времени.

Распределение Вейбулла . Для случая, когда поток отказов не стационарный, т. е. плотность потока изменяется с течением времени, функция распределения времени до отказа приобретает вид, показанный на рис. 4.3.3, в.

Плотность вероятности отказов этого распределения:

t :

Интенсивность отказов:

В (4.3.15)-(4.3.17) α и λ 0 - параметры закона распределения. Параметр λ 0 определяет масштаб, при его изменении кривая распределения сжимается или растягивается. При α = 1 функция распределения Вейбулла совпадает с экспоненциальным распределением; при α < 1 интенсивность отказов будет монотонно убывающей функцией; при α > 1- монотонно возрастающей. Это обстоятельство дает возможность подбирать для опытных данных наиболее подходящие параметры α и λ 0 , с тем чтобы уравнение функции распределения наилучшим образом совпадало с опытными данными. Распределение Вейбулла имеет место для отказов, возникающих по причине усталости тела детали или поверхностных слоев (подшипники, зубчатые передачи). Этот случай связан с развитием усталостной трещины в зоне местной концентрации напряжений, технологического дефекта или начального повреждения. Период времени до зарождения микротрещины характеризуется признаками внезапного отказа, а процесс разрушения - признаками износового отказа.

Этот закон применим для отказов устройства, состоящего из последовательно соединенных дублированных элементов и других подобных случаев.

Это распределение иногда используется для описания надежности подшипников качения (α =1,4-1,7).

Средняя наработка до первого отказа определится из следующего выражения:

Значения Γ (гамма-функции) табулированы (приложении 2).

Нормальное распределение (рис. 4.3.3, г) случайной величины X возникает всякий раз, когда X зависит от большого числа однородных по своему влиянию случайных факторов, причем влияние каждого из этих факторов по сравнению с совокупностью всех остальных незначительно. Это условие характерно для времени возникновения отказа, вызванного старением, т. е. этот закон используется для оценки надежности изделий при наличии постепенных (износовых) отказов.

Плотность вероятности отказов:

где: T - средняя наработка до отказа;

σ - среднее квадратическое (стандартное) отклонение времени безотказной работы.

Вероятность отказа время t :

Значение функции распределения определяется формулой:

F (t ) = 0,5 + Φ(u ) =Q (t ); u = (t T ) / σ. (4.3.21)

Вероятность отсутствия отказа за время t :

P (t ) = 1 −Q (t ) = 1 − = 0,5 −Ф (u ). (4.3.22)

Значения F (t ) табулированы (приложение 3).

График λ(t ) показан на рис. 4.3.3, г. Интенсивность отказов монотонно возрастает и после T начинает приближаться к асимптоте:

y = (t T ) / σ. (4.3.23)

Монотонное возрастание интенсивности отказов с течением времени - характерный признак нормального распределения. Нормальное распределение существенно отличается от экспоненциального. Началом отсчета времени t в (4.3.20) служит начало эксплуатации объекта, т. е. момент, когда начинается процесс износа и старения, а началом отсчета в (4.3.4) - момент времени, когда установлено, что изделие исправно (этот момент может быть расположен в любой точке на оси времени).

Усеченное нормальное распределение (рис. 4.3.3, д). Так как при нормальном распределении случайная величина может принимать любые значения от −∞ до +∞, а время безотказной работы может быть только положительным, следует рассматривать усеченное нормальное распределение с плотностью вероятности отказов:

Нормирующий множитель c определяется из выражения:

c = 1 / F (T 1 / σ) = 1 / , (4.3.26)

табулированная (приложение 4) интегральная функция нормального распределения;

нормированная функция Лапласа.

Тогда (4.3.24) запишется следующим образом:

Средняя наработка до отказа в усеченном распределении и параметр T 1 неусеченного нормального распределения связаны зависимостью:

При T / σ ≥ 2, что имеет место в абсолютном большинстве случаев при оценке надежности устройств с нормально распределенными отказами, коэффициент c мало отличается от единицы и усеченное нормальное распределение достаточно точно аппроксимируется обычным нормальным законом.

Вероятность безотказной работы определяется из выражения:

Распределение Рэлея (рис. 4.3.3, е) - непрерывное распределение вероятностей с плотностью:

зависящей от масштабного параметраσ > 0. Распределение имеет положительную асимметрию, его единственная мода находится в точке x = σ. Все моменты распределения Рэлея конечны.

Также как и распределение Вейбулла или γ-распределение, распределение Рэлея пригодно для описания поведения изнашивающихся или стареющих изделий.

Частота отказов (функция плотности распределения вероятности отказов) определяется:

Вероятность безотказной работы вычисляется из выражения:

Интенсивность отказов находится из:

λ(t ) = t / σ 2 . (4.3.35)

Средняя наработка до первого отказа составит:

3.4. О выборе закона распределения отказов при расчете надежности Определение закона распределения отказов имеет большое значение при исследованиях и оценках надежности. Определение P (t ) по одной и той же исходной информации о T , но при различных предположениях о законе распределения может привести к существенно отличающимся результатам.

Закон распределения отказов можно определить по экспериментальным данным, но для этого необходимо проведение большого числа опытов в идентичных условиях. Практически эти условия, как правило, трудно обеспечить. Кроме того, такое решение содержит черты пассивной регистрации событий.

Вместе с тем во многих случаях за время эксплуатации успевает отказать лишь незначительная доля первоначально имевшихся объектов. Полученным статистическим данным соответствует начальная (левая) часть экспериментального распределения.

Более рационально - изучение условий, физических процессов при которых возникает то или другое распределение. При этом составляются модели возникновения отказов и соответствующие им законы распределения времени до появления отказа, что позволяет делать обоснованные предположения о законе распределения.

Опытные данные должны служить средством проверки обоснованности прогноза, а не единственным источником данных о законе распределения. Такой подход необходим для оценки надежности новых изделий, для которых статистический материал весьма ограничен.