Температура плавления хрома. Химические свойства соединений хрома

Хром, переходный метал, который широко используется в промышленности благодаря своей прочности и устойчивости к нагреву и коррозии. Эта статья даст вам понимание некоторых важных свойств и возможностей использования этого переходного металла.

Хром относится к категории переходных металлов. Это твердый, но хрупкий металл серо-стального цвета с атомным номером 24. Этот блестящий металл помещают в группы 6 периодической таблицы, и обозначают символом «Cr».

Имя хромий является производным от греческого слова хрома, что означает цвет.

Верный своему имени, хром образует несколько интенсивно окрашенных соединений. Сегодня практически весь коммерчески используемый хром извлекается из руды хромита железа или окиси хрома (FeCr2O4).

Свойства хрома

  • Хром является наиболее распространенным элементом на земной коре, но он никогда не происходит в чистом виде. В основном добывается из шахт, таких как хромитовые рудники.
  • Расплавляют хром при температуре 2180 K или 3465°F, а температура кипения составляет 2944 K или 4840°F. его атомный вес 51.996 г/моль, и по шкале Мооса составляет 5,5.
  • Хром встречается во многих окислительных состояниях, таких как +1, +2, +3, +4, +5, и +6, из которых +2, +3 и +6 являются наиболее распространенными, а +1, +4, А +5-это редкое окисление. В +3 степени окисления является наиболее стабильным состоянием хрома. Хром (III) может быть получен растворением элементарного хрома в соляной или серной кислоте.
  • Этот металлический элемент известен своими уникальными магнитными свойствами. При комнатной температуре, он обладает антиферромагнитным упорядочением, которое показано на других металлах при относительно низких температурах.
  • Антиферромагнетизм - это где соседние ионы, которые ведут себя как магниты присоединяются к противоположным или антипараллельным механизмам через материал. В результате, магнитное поле, создаваемое магнитными атомами или ионами, ориентируются в одном направлении отменяя магнитные атомы или ионы, выстроенные в противоположном направлении, так, что материал не проявляет никаких грубых внешних магнитных полей.
  • При температуре выше 38°C, хром становится парамагнетиком, т. е. его привлекает внешне приложенное магнитное поле. Другими словами, хром привлекает внешнее магнитное поле при температуре выше 38°С.
  • Хром не подвергается водородному охрупчиванию, т. е. не становятся хрупкими при воздействии атомарного водорода. Но при воздействии азота, он теряет свою пластичность и становится хрупким.
  • Хром обладает высокой устойчивостью к коррозии. Тонкая защитная оксидная пленка образуется на поверхности металла, когда он вступает в контакт с кислородом в воздухе. Этот слой препятствует диффузии кислорода в основной материал и таким образом, защищает его от дальнейшей коррозии. Этот процесс называется пассивация, пассивация хромом дает устойчивость к воздействию кислот.
  • Существует три основных изотопа хрома, которые называются 52Cr, 53Cr, 54Cr и, из которых 52 CR является наиболее распространенным изотопом. Хром реагирует с большинством кислот, но не взаимодействует с водой. При комнатной температуре он реагирует с кислородом, образуя оксид хрома.

Применение

Производство нержавеющей стали

Хром нашел широкий спектр применения благодаря своей твердости и устойчивости к коррозии. Он используется в основном в трех отраслях промышленности ― металлургической, химической и огнеупорной. Он широко используется для производства нержавеющей стали, так как это предотвращает коррозию. Сегодня это очень важный легирующий материал для сталей. Он также используется для изготовления нихрена, что используется в нагревательных элементах сопротивления из-за его способности выдерживать высокие температуры.

Покрытие поверхностей

Кислый хромат или дихромат используется также для покрытия поверхностей. Обычно это делается с помощью метода гальваники, в котором тонкий слой хрома наносится на металлическую поверхность. Другой способ - это хромирование деталей , через который хроматы используются для нанесения защитного слоя на определенные металлы, такие как алюминий (Al), кадмий (CD), цинк (Zn), серебро, а также магний (MG).

Сохранение древесины и дубление кож

Соли хрома (VI) являются токсичными, поэтому они используются для сохранения древесины от повреждения и разрушения грибком, насекомыми и термитами. Хром (III), особенно хромовые квасцы или сульфат калия используется в кожевенной промышленности, так как он помогает стабилизировать кожу.

Красители и пигменты

Хром также используется для изготовления пигментов или красителей. Желтый хром и хромат свинца, широко использовались в качестве пигмента в прошлом. Из-за экологических проблем, его использование существенно снизилось, а затем, наконец, его заменили свинец и хромовые пигменты. Другие пигменты на основе хрома, красного хрома, оксида зеленого хрома, которые является смесью желтой и Берлинской лазури. Окись хрома используется для придания зеленоватого цвета стекла.

Синтез искусственных рубинов

Изумруды обязаны своим зеленым оттенком хрому. Окись хрома применяется также для производства синтетических рубинов. Естественные рубины корунды или кристаллы оксида алюминия, которые обретают красный оттенок из-за присутствия хрома. Синтетические или искусственные рубины сделаны легированием хрома (III) на синтетических кристаллах корунда.

Биологические функции

Хрома (III) или трехвалентный хром, необходим в организме человека, но в очень небольших количествах. Это, как полагают, играет важную роль в липиде и метаболизме сахара. В настоящее время он используется во многих диетических добавках, которые как утверждают, имеют несколько преимуществ для здоровья, однако, это является спорным вопросом. Биологическая роль хрома не была должным образом проверена, и многие эксперты считают, что это не важно для млекопитающих, в то время как другие рассматривают его как важнейший микроэлемент для человека.

Другое использование

Высокая температура плавления и теплостойкость сделать хром идеальным огнеупорным материалом. Он нашел себе применение в доменных печах, цементных печах, и металлических. Многие соединения хрома применяются в качестве катализаторов для переработки углеводородов. Хром (IV) используется, чтобы произвести магнитные ленты, используемые в аудио и видеокассетах.

Шестивалентный хром или хром (VI) называется токсическим и мутагенным веществом, а хром (IV) является известным своими канцерогенными свойствами. Хромат соли также вызывает аллергические реакции у некоторых людей. Благодаря заботе о здравоохранении и экологическим проблемам, некоторые ограничения были наложены на использование соединений хрома в различных частях мира.

«Национальный исследовательский Томский политехнический Университет»

Институт природных ресурсов Геоэкология и геохимия

Хром

По дисциплине:

Химия

Выполнил:

студент группы 2Г41 Ткачева Анастасия Владимировна 29.10.2014

Проверил:

преподаватель Стась Николай Федорович

Положение в периодической системе

Хром - элемент побочной подгруппы 6-ой группы 4-го периода периодической системы химических элементов Д. И. Менделеева с атомным номером 24. Обозначается символом Cr (лат. Chromium ). Простое вещество хром - твёрдый металлголубовато-белого цвета. Хром иногда относят к чёрным металлам.

Строение атома

17 Cl)2)8)7 - схема строения атома

1s2s2p3s3p- электронная формула

Атом располагается в III периоде, и имеет три энергетических уровня

Атом располагается в VII в группе, в главной подгруппе – на внешнем энергетическом уровне 7 электронов

Свойства элемента

Физические свойства

Хром - белый блестящий металл с кубической объемно-центрированной решеткой, а = 0,28845 нм, отличающийся твердостью и хрупкостью, с плотностью 7,2 г/см 3 , один из самых твердых чистых металлов (уступает только бериллию, вольфраму и урану), с температурой плавления 1903 град. И с температурой кипения около 2570 град. С. На воздухе поверхность хрома покрывается оксидной пленкой, которая предохраняет его от дальнейшего окисления. Добавка углерода к хрому еще больше увеличивает его твердость.

Химические свойства

Хром при обычных условиях – инертный металл, при нагревании становится довольно активным.

    Взаимодействие с неметаллами

При нагревании выше 600°С хром сгорает в кислороде:

4Cr + 3O 2 = 2Cr 2 O 3 .

С фтором реагирует при 350°С, с хлором – при 300°С, с бромом – при температуре красного каления, образуя галогениды хрома (III):

2Cr + 3Cl 2 = 2CrCl 3 .

С азотом реагирует при температуре выше 1000°С с образованием нитридов:

2Cr + N 2 = 2CrN

или 4Cr + N 2 = 2Cr 2 N.

2Cr + 3S = Cr 2 S 3 .

Реагирует с бором, углеродом и кремнием с образованием боридов, карбидов и силицидов:

Cr + 2B = CrB 2 (возможно образование Cr 2 B, CrB, Cr 3 B 4 , CrB 4),

2Cr + 3C = Cr 2 C 3 (возможно образование Cr 23 C 6 , Cr 7 B 3),

Cr + 2Si = CrSi 2 (возможно образование Cr 3 Si, Cr 5 Si 3 , CrSi).

С водородом непосредственно не взаимодействует.

    Взаимодействие с водой

В тонкоизмельченном раскаленном состоянии хром реагирует с водой, образуя оксид хрома (III) и водород:

2Cr + 3H 2 O = Cr 2 O 3 + 3H 2

    Взаимодействие с кислотами

В электрохимическом ряду напряжений металлов хром находится до водорода, он вытесняет водород из растворов неокисляющих кислот:

Cr + 2HCl = CrCl 2 + H 2 ;

Cr + H 2 SO 4 = CrSO 4 + H 2 .

В присутствии кислорода воздуха образуются соли хрома (III):

4Cr + 12HCl + 3O 2 = 4CrCl 3 + 6H 2 O.

Концентрированная азотная и серная кислоты пассивируют хром. Хром может растворяться в них лишь при сильном нагревании, образуются соли хрома (III) и продукты восстановления кислоты:

2Cr + 6H 2 SO 4 = Cr 2 (SO 4) 3 + 3SO 2 + 6H 2 O;

Cr + 6HNO 3 = Cr(NO 3) 3 + 3NO 2 + 3H 2 O.

    Взаимодействие с щелочными реагентами

В водных растворах щелочей хром не растворяется, медленно реагирует с расплавами щелочей с образованием хромитов и выделением водорода:

2Cr + 6KOH = 2KCrO 2 + 2K 2 O + 3H 2 .

Реагирует с щелочными расплавами окислителей, например хлоратом калия, при этом хром переходит в хромат калия:

Cr + KClO 3 + 2KOH = K 2 CrO 4 + KCl + H 2 O.

    Восстановление металлов из оксидов и солей

Хром – активный металл, способен вытеснять металлы из растворов их солей: 2Cr + 3CuCl 2 = 2CrCl 3 + 3Cu.

Свойства простого вещества

Устойчив на воздухе за счёт пассивирования. По этой же причине не реагирует с серной и азотной кислотами. При 2000 °C сгорает с образованием зелёного оксида хрома(III) Cr 2 O 3 , обладающего амфотерными свойствами.

Синтезированы соединения хрома с бором (бориды Cr 2 B, CrB, Cr 3 B 4 , CrB 2 , CrB 4 и Cr 5 B 3), с углеродом (карбиды Cr 23 C 6 , Cr 7 C 3 и Cr 3 C 2), c кремнием (силициды Cr 3 Si, Cr 5 Si 3 и CrSi) и азотом (нитриды CrN и Cr 2 N).

Соединения Cr(+2)

Степени окисления +2 соответствует основный оксид CrO (чёрный). Соли Cr 2+ (растворы голубого цвета) получаются при восстановлении солей Cr 3+ или дихроматов цинком в кислой среде («водородом в момент выделения»):

Все эти соли Cr 2+ - сильные восстановители вплоть до того, что при стоянии вытесняют водород из воды. Кислородом воздуха, особенно в кислой среде, Cr 2+ окисляется, в результате чего голубой раствор быстро зеленеет.

Коричневый или желтый гидроксид Cr(OH) 2 осаждается при добавлении щелочей к растворам солей хрома(II).

Синтезированы дигалогениды хрома CrF 2 , CrCl 2 , CrBr 2 и CrI 2

Соединения Cr(+3)

Степени окисления +3 соответствует амфотерный оксид Cr 2 O 3 и гидроксид Cr(OH) 3 (оба - зелёного цвета). Это - наиболее устойчивая степень окисления хрома. Соединения хрома в этой степени окисления имеют цвет от грязно-лилового (ион 3+) до зелёного (в координационной сфере присутствуют анионы).

Cr 3+ склонен к образованию двойных сульфатов вида M I Cr(SO 4) 2 ·12H 2 O (квасцов)

Гидроксид хрома (III) получают, действуя аммиаком на растворы солей хрома (III):

Cr+3NH+3H2O→Cr(OH)↓+3NH

Можно использовать растворы щелочей, но в их избытке образуется растворимый гидроксокомплекс:

Cr+3OH→Cr(OH)↓

Cr(OH)+3OH→

Сплавляя Cr 2 O 3 со щелочами получают хромиты:

Cr2O3+2NaOH→2NaCrO2+H2O

Непрокаленный оксид хрома(III) растворяется в щелочных растворах и в кислотах:

Cr2O3+6HCl→2CrCl3+3H2O

При окислении соединений хрома(III) в щелочной среде образуются соединения хрома(VI):

2Na+3HO→2NaCrO+2NaOH+8HO

То же самое происходит при сплавлении оксида хрома (III) со щелочью и окислителями, или со щелочью на воздухе (расплав при этом приобретает жёлтую окраску):

2Cr2O3+8NaOH+3O2→4Na2CrO4+4H2O

Соединения хрома (+4) [

При осторожном разложении оксида хрома(VI) CrO 3 в гидротермальных условиях получают оксид хрома(IV) CrO 2 , который является ферромагнетикоми обладает металлической проводимостью.

Среди тетрагалогенидов хрома устойчив CrF 4 , тетрахлорид хрома CrCl 4 существует только в парах.

Соединения хрома (+6)

Степени окисления +6 соответствует кислотный оксид хрома (VI) CrO 3 и целый ряд кислот, между которыми существует равновесие. Простейшие из них - хромовая H 2 CrO 4 и двухромовая H 2 Cr 2 O 7 . Они образуют два ряда солей: желтые хроматы и оранжевые дихроматы соответственно.

Оксид хрома (VI) CrO 3 образуется при взаимодействии концентрированной серной кислоты с растворами дихроматов. Типичный кислотный оксид, при взаимодействии с водой он образует сильные неустойчивые хромовые кислоты: хромовую H 2 CrO 4 , дихромовую H 2 Cr 2 O 7 и другие изополикислоты с общей формулой H 2 Cr n O 3n+1 . Увеличение степени полимеризации происходит с уменьшением рН, то есть увеличением кислотности.

Имеет необходимые свойства для успешного использования в металлургической промышленности. Этот металл отличает стальной оттенок и высокая плотность. В естественных условиях его добывают из ископаемого хромистого железняка.

Сырье подвергают восстановлению (алюминотермическим или силиконотермическим способом) на металлургических предприятиях путем применения кокса.

Для производства этого металла может применяться также способ металлотермической плавки, при котором удается добиться снижения расхода алюминия. Возрастает извлечение хрома до 92%.

Температура выплавки хрома имеет значение 2300 градусов по Цельсию, в составе этого металла можно выделить: 98,9-99,2 % Хрома (Cr), 0,01-0,2 % Углерода (С), 0,07-0,12 % Кремния (Si), 0,25-0,4 % Железа и Алюминия (Al, Fe), 0,005% Фосфора (P).

Этот металл незаменим, когда требуется придать стальным изделиям высокую жароустойчивость и стойкость к коррозии. С его помощью производят легирование сплавов, повышают прочность стали. заменяет собой феррохром, и с его помощью удается получать сталь специальных марок, в которых процентное содержание железа строго ограничено.

Для производства стали берется хром без посторонних примесей и инородных включений, допускаются лишь следы окислительной пленки. Используются куски металла массой менее 10 кг, до места применения хром подвозят в специальных контейнерах - металлических барабанах и деревянных ящиках.

Производство металлического хрома ведется в соответствии с требованиями ГОСТ 5905-79, в его составе может содержаться небольшое примесное количество свинца, углерода, серы, кобальта, фосфора, кремния и т.д.

Добавлением хрома добиваются уменьшения размеров зерна стали, повышения прочности, пластичности и поднятия ее прокаливаемости. При высоких температурах хром не влияет на окисляемость.

Сфера использования данного материала - это авиастроение, создание космических аппаратов, химическое производство и производство реактивных двигателей, газовых турбин, и др.

Нихром, шарикоподшипники, жаропрочные и нержавеющие сплавы - все это создается благодаря умелому использованию замечательных свойств хрома металлического. Изделия, выполненные из хромированной стали, имеют гораздо более длительный срок службы и высокую стойкость к химическим и другим воздействиям.

ОАО «Каменск-Уральский завод по обработке цветных металлов» увеличило объем реализации цветного металлопроката для предприятий российской машиностроительной отрасли. Поставки с начала...

Тверской районный суд Москвы избрал домашний арест в качестве временной меры пресечения для генерального директора АО "Загорский трубный завод" Дениса Сафина, которого подозревают в нецелевой...

Статья посвящена элементу № 24 таблицы Менделеева — хрому, истории его открытия и распространения в природе, строению его атома, химическим свойствам и соединениям, тому, как его получает и зачем он нам нужен. Среднее содержание хрома в земной коре не велико 0,0083% . Этот элемент, вероятно, более характерен для мантии Земли.

Хром образует массивные и вкрапленные руды в ультраосновных горных породах; с ними связано образование крупнейших месторождений Хрома. В основных породах содержание Хрома достигает лишь 2·10-2%, в кислых — 2,5·10-3%, в осадочных породах (песчаниках) — 3,5·10-3%, глинистых сланцах — 9·10-3% . Хром — сравнительно слабый водный мигрант: содержание Хрома в морской воде 0,00005 мг/л, в поверхностной воде -0,0015 мг/л.
В целом хром — металл глубинных зон Земли.

Сегодня общий объем потребления чистого хрома (не менее 99% Cr) составляет около 15 тысяч тонн, из них около трети приходится на электролитический хром. Мировым лидером в производстве высокочистого хрома является английская фирма Bell Metals. Первое место по объемам потребления занимают США (50%), второе – страны Европы (25%), третье – Япония. Рынок металлического хрома довольно нестабилен, и цены на металл колеблются в широком диапазоне.

1. ХРОМ КАК ХИМИЧЕСКИЙ ЭЛЕМЕНТ

Хром – (Chromium) Cr, химический элемент 6(VIb) группы Периодической системы. Атомный номер 24, атомная масса 51,996. Известно 24 изотопа хрома с 42 Cr по 66 Cr. Изотопы 52 Cr, 53 Cr, 54 Cr являются стабильными. Изотопный состав природного хрома: 50 Cr (период полураспада 1,8·10 17 лет) – 4,345%, 52 Cr – 83,489%, 53 Cr – 9,501%, 54 Cr – 2,365%. Основные степени окисления +3 и +6.

В 1761 профессор химии Петербургского университета Иоганн Готтлоб Леман (Johann Gottlob Lehmann) у восточного подножия Уральских гор на Березовском руднике обнаружил замечательный красный минерал, который при измельчении в порошок давал яркую желтую окраску. В 1766 Леман привез образцы минерала в Петербург. Обработав кристаллы соляной кислотой, он получил белый осадок, в котором обнаружил свинец. Леман назвал минерал сибирским красным свинцом (plomb rouge de Sibérie), теперь известно, что это был крокоит (от греческого «krokos» – шафран) – природный хромат свинца PbCrO 4 .

Немецкий путешественник и естествоиспытатель Петер Симон Паллас (Peter Simon Pallas) (1741–1811) возглавил экспедицию Петербургской Академии наук в центральные регионы России и в 1770 побывал на Южном и Среднем Урале, в том числе на Березовском руднике и, подобно Леману, заинтересовался крокоитом. Паллас писал: «Этот удивительный красный свинцовый минерал не встречается более ни в одном месторождении. При растирании в порошок становится желтым, и может быть использован в художественной миниатюре». Несмотря на редкость и трудность доставки крокоита с Березовского рудника в Европу (на это уходило почти два года), использование минерала в качестве красящего вещества было оценено по достоинству. В Лондоне и Париже конца 17 в. все знатные особы ездили на каретах, покрашенных мелко растертым крокоитом, кроме того, лучшие образцы сибирского красного свинца пополняли коллекции многих минералогических кабинетов Европы.

В 1796 образец крокоита попал к профессору химии Парижской минералогической школы Никола Луи Вокелену (Nicolas-Louis Vauquelin) (1763–1829), который проанализировал минерал, но не нашел в нем ничего кроме оксидов свинца, железа и алюминия. Продолжая исследования сибирского красного свинца, Вокелен прокипятил минерал с раствором поташа и после отделения белого осадка карбоната свинца получил желтый раствор неизвестной соли. При обработке его солью свинца образовывался желтый осадок, солью ртути – красный, а при добавлении хлорида олова раствор становился зеленым. Разлагая крокоит минеральными кислотами, он получил раствор «кислоты красного свинца», упаривание которой давало рубиново-красные кристаллы (сейчас понятно, что это был хромовый ангидрид). Прокалив их с углем в графитовом тигле, обнаружил после реакции множество сросшихся серых игольчатых кристаллов неизвестного до того времени металла. Вокелен констатировал высокую тугоплавкость металла и его устойчивость по отношению к кислотам.

Вокелен назвал новый элемент хромом (от греческого  – цвет, окраска) ввиду множества образуемых им разноцветных соединений. На основании своих исследований Вокелен впервые констатировал, что изумрудная окраска некоторых драгоценных камней объясняется примесью в них соединений хрома. Например, природный смарагд представляет собой окрашенный в глубокий зеленый цвет берилл, в котором алюминий частично замещен хромом.

Скорее всего, Вокеленом был получен не чистый металл, а его карбиды, о чем свидетельствует игольчатая форма полученных кристаллов, но Парижская Академия наук тем не менее зарегистрировала открытие нового элемента, и сейчас Вокелен справедливо считается первооткрывателем элемента № 24.

В 1798 Ловиц и Клапрот (Klaproth) независимо от Вокелена обнаружили хром в образце тяжелого черного минерала (это был хромит FeCr 2 O 4), найденного на Урале, но значительно севернее Березовского месторождения. В 1799 Ф.Тассерт (Tassaert) обнаружил новый элемент в том же минерале, найденном на юго-востоке Франции. Считается, что именно Тассерту впервые удалось получить относительно чистый металлический хром.

2. ХРОМ В ПРИРОДЕ И ЕГО ПРОМЫШЛЕННОЕ ИЗВЛЕЧЕНИЕ

Хром – довольно распространенный элемент на Земле. Его кларк (среднее содержание в земной коре) коре составляет 8,3·10 –3 %. Хром никогда не встречается в свободном состоянии. В хромовых рудах практическое значение имеет только хромит FeCr 2 O 4 , относящийся к шпинелям – изоморфным минералам кубической системы с общей формулой МО·Ме 2 О 3 , где М – ион двухвалентного металла, а Ме – ион трехвалентного металла. Шпинели могут образовывать друг с другом твердые растворы, поэтому в природе отдельно или в качестве примесей к хромиту встречаются также магнохромит (Mg,Fe)Cr 2 O 4 , алюмохромит Fe(Cr,Al) 2 O 4 , хромпикотит (Mg,Fe)(Cr,Al) 2 O 4 – все они относятся к классу хромшпинелидов. Помимо шпинелидов, хром встречается во многих значительно менее распространенных минералах, например, меланохроите 3PbO·2Cr 2 O 3 , вокелените 2(Pb,Cu)CrO 4 (Pb,Cu) 3 (PO 4) 2 , тарапакаите K 2 CrO 4 , дитцеите CaIO 3 ·CaCrO 4 и других.

Хромиты окрашены в темный или почти черный цвет, имеют металлический блеск и обычно залегают в виде сплошных массивов. Месторождения хромита имеют магматическое происхождение. Его выявленные ресурсы оценены в 47 странах мира и составляют 15 миллиардов тонн. Первое место по запасам хромита занимает ЮАР (76% от разведанных мировых запасов), где наибольшее значение имеет группа Бушвельдских месторождений, содержание хромовой руды в которых составляет 1 миллиард тонн. Второе место в мире по ресурсам хромита занимает Казахстан (9% от мировых запасов), хромовые руды там очень высокого качества. Все ресурсы хромита в Казахстане сосредоточены в Актюбинской области (Кемпирсайский массив с запасами 300 млн. тонн); месторождения разрабатываются с конца 1930-х. Третье место занимает Зимбабве (6% от мировых запасов). Кроме того, значительными ресурсами хромита обладают США, Индия, Филиппины, Турция, Мадагаскар, Бразилия. В России довольно крупные залежи хромита встречаются на Урале (Сарановское, Верблюжьегорское, Алапаевское, Монетная дача, Халиловское и другие месторождения).

В начале 19 в. основным источником хромита являлись уральские месторождения, но в 1827 американец Исаак Тисон (Isaac Tyson) обнаружил крупное месторождение хромовой руды на границе Мериленда и Пенсильвании, став монополистом в области добычи на долгие годы. В 1848 залежи хромита высокого качества были найдены в Турции, неподалеку от Бурсы. После истощения запасов в Мериленде Турция являлась лидером по добыче хромитов, пока в 1906 эстафету не перехватили Индия и ЮАР.

Сейчас в мире ежегодно добывается 11–14 миллионов тонн хромитов. Ведущее место по добыче хромовой руды занимает ЮАР (около 6 млн. тонн ежегодно), за ней следует Казахстан, обеспечивая 20% мировых потребностей. Из-за большой глубины залегания хромовой руды ее обычно добывают шахтным способом (85%), но иногда практикуется и открытая (карьерная) добыча, например, в Финляндии и на Мадагаскаре. Обычно добываемые руды относятся к категории достаточно качественных и нуждаются только в механической сортировке. Часто обогащать хромиты нецелесообразно, так как при этом можно повысить только содержание Cr 2 O 3 , а отношение Fe: Cr остается без изменения. Цена хромита на мировом рынке колеблется в пределах 40–120 долларов США за тонну.

Хром – серебристый металл с плотностью 7200 кг/м 3 . Определение температуры плавления чистого хрома представляет собой чрезвычайно трудную задачу, так как малейшие примеси кислорода или азота существенно влияют на величину этой температуры. По результатам современных измерений она равняется 1907° С. Температура кипения хрома 2671° С. Совершенно чистый (без газовых примесей и углерода) хром довольно вязок, ковок и тягуч. При малейшем загрязнении углеродом, водородом, азотом и т.д. становится хрупким, ломким и твердым. При обычных температурах существует в виде a-модификации и имеет кубическую объемноцентрированную решетку. Химически хром довольно инертен вследствие образования на его поверхности прочной тонкой пленки оксида. Он не окисляется на воздухе даже в присутствии влаги, а при нагревании окисление проходит только на поверхности. Хром пассивируется разбавленной и концентрированной азотной кислотой, царской водкой, и даже при кипячении металла с этими реагентами растворяется лишь незначительно. Пассивированный азотной кислотой хром, в отличие от металла без защитного слоя, не растворяется в разбавленных серной и соляной кислотах даже при длительном кипячении в растворах этих кислот, тем не менее, в определенный момент начинается быстрое растворение, сопровождающееся вспениванием от выделяющегося водорода – из пассивной формы хром переходит в активированную, не защищенную пленкой оксида:

Cr + 2HCl = CrCl 2 + H 2

Если в процессе растворения добавить азотной кислоты, то реакция сразу прекращается – хром снова пассивируется.

При нагревании металлический хром соединяется с галогенами, серой, кремнием, бором, углеродом и некоторыми другими элементами:

Cr + 2F 2 = CrF 4 (с примесью CrF 5)

2Cr + 3Cl 2 = 2CrCl 3

2Cr + 3S = Cr 2 S 3

Cr + C = смесь Cr 23 C 6 + Cr 7 C 3 .

При нагревании хрома с расплавленной содой на воздухе, нитратами или хлоратами щелочных металлов получаются соответствующие хроматы(VI):

2Cr + 2Na 2 CO 3 + 3O 2 = 2Na 2 CrO 4 + 2CO 2 .

В зависимости от требуемой степени чистоты металла существует несколько промышленных способов получения хрома.

Возможность алюмотермического восстановления оксида хрома(III) была продемонстрирована еще Фридрихом Вёлером в 1859 однако в промышленном масштабе этот метод стал доступен, как только появилась возможность получения дешевого алюминия. Промышленное алюмотермическое получение хрома началось с работ Гольдшмидта, которому впервые удалось разработать надежный способ регулирования сильно экзотермического (а, следовательно, взрывоопасного) процесса восстановления:

Cr 2 O 3 + 2Al = 2Cr + 2Al 2 O 3 .

Предварительно смесь равномерно прогревается до 500-600° С. Восстановление можно инициировать либо смесью перекиси бария с порошком алюминия, либо запалом небольшой порции шихты с последующим добавлением остального количества смеси. Важно, чтобы выделяющейся в процессе реакции теплоты, хватило на расплавление образующегося хрома и его отделение от шлака. Хром, получающийся алюмотермическим способом, обычно содержит 0,015–0,02% С, 0,02% S и 0,25–0,40% Fe, а массовая доля основного вещества в нем составляет 99,1–99,4% Cr. Он очень хрупок и легко размалывается в порошок.

При получении высокочистого хрома используются электролитические методы, возможность этого в 1854 показал Бунзен , подвергший электролизу водный раствор хлорида хрома. Сейчас электролизу подвергают смеси хромового ангидрида или хромоаммонийных квасцов с разбавленной серной кислотой. Выделяющийся в процессе электролиза хром содержит растворенные газы в качестве примесей. Современные технологии позволяют получать в промышленном масштабе металл чистотой 99,90–99,995% с помощью высокотемпературной очистки в потоке водорода и вакуумной дегазации. Уникальные методики рафинирования электролитического хрома позволяют избавляться от кислорода, серы, азота и водорода, содержащихся в «сыром» продукте.

Есть еще несколько менее значимых способов получения металлического хрома. Силикотермическое восстановление основано на реакции:

2Cr 2 O 3 + 3Si + 3CaO = 4Cr + 3CaSiO 3 .

Восстановление кремнием, хотя и носит экзотермический характер, требует проведения процесса в дуговой печи. Добавка негашеной извести позволяет перевести тугоплавкий диоксид кремния в легкоплавкий шлак силикат кальция.

Восстановление оксида хрома(III) углем применяется для получения высокоуглеродистого хрома, предназначенного для производства специальных сплавов. Процесс также ведется в электродуговой печи.

В процессе Ван Аркеля – Кучмана – Де Бура применяется разложение иодида хрома(III) на нагретой до 1100° С проволоке с осаждением на ней чистого металла.

Хром можно также получать восстановлением Cr 2 O 3 водородом при 1500° С, восстановлением безводного CrCl 3 водородом, щелочными или щелочноземельными металлами, магнием и цинком.

3. ПРИМЕНЕНИЕ ХРОМА В ПРОМЫШЛЕННОСТИ

На протяжении многих десятилетий с момента открытия металлического хрома применение находил лишь крокоит и некоторые другие его соединения в качестве пигментов при изготовлении красок. В 1820 Кохлен предложил использовать дихромат калия как протраву при крашении тканей. В 1884 началось активное использование растворимых хромовых соединений в качестве дубильных веществ в кожевенной промышленности. Впервые хромит нашел применение во Франции в 1879 как огнеупорное вещество, но основное его использование началось в 1880-х в Англии и Швеции, когда стала наращивать обороты промышленная выплавка феррохрома. В небольших количествах феррохром умели получать уже в начале 19 в., так Бертье еще в 1821 предложил восстанавливать смесь оксидов железа и хрома древесным углем в тигле. Первый патент на изготовление хромистой стали был выдан в 1865. Промышленное производство высокоуглеродистого феррохрома началось с использованием доменных печей для восстановления хромита коксом. Феррохром конца 19 в. был очень низкого качества, так как содержал обычно 7–8% хрома, и был известен под названием «тасманского чугуна» ввиду того, что исходная железо-хромовая руда ввозилась из Тасмании. Переломный момент в производстве феррохрома наступил в 1893, когда Анри Муассан впервые выплавил высокоуглеродистый феррохром, содержащий 60% Cr. Основным достижением в этой отрасли стала замена доменной печи на электродуговую, созданную Муассаном, что позволило увеличить температуру процесса, уменьшить расход энергии и значительно повысить качество выплавляемого феррохрома, который стал содержать 67–71% Cr и 4–6% С. Способ Муассана до сих пор лежит в основе современного промышленного производства феррохрома. Восстановление хромита обычно ведут в открытых электродуговых печах, и шихту загружают сверху. Дуга образуется между погруженными в шихту электродами.

Хром встречается в природе в основном в виде хромистого железняка Fe(CrO 2) 2 (хромит железа). Из него получают феррохром восстановлением в электропечах коксом (углеродом):

FeO·Cr 2 O 3 + 4C → Fe + 2Cr + 4CO

6) с помощью электролиза получают электролитический хром из раствора хромового ангидрида в воде, содержащего добавку серной кислоты . При этом на катодах совершаются в основном 3 процесса:

– восстановление шестивалентного хрома до трех валентного с переходом его в раствор;

– разряд ионов водорода с выделением газообразного водорода;

– разряд ионов, содержащих шестивалентный хром с осаждением металлического хрома;

Cr 2 O 7 2− + 14Н + + 12е − = 2Сr + 7H 2 O

В свободном виде - голубовато-белый металл с кубической объемно-центрированной решеткой, а = 0,28845 нм. При температуре 39 °C переходит из парамагнитного состояния в антиферромагнитное (точка Нееля).

Устойчив на воздухе. При 300 °C сгорает с образованием зелёного оксида хрома(III) Cr 2 O 3 , обладающего амфотерными свойствами . Сплавляя Cr 2 O 3 со щелочами получают хромиты

Несмотря на большое значение высокоуглеродистого феррохрома для получения многих сортов нержавеющих сталей, он не пригоден для выплавки некоторых высокохромистых сталей, так как наличие углерода (в виде карбида Cr 23 C 6 , кристаллизующегося по границам зерен) делает их хрупкими и легко поддающимися коррозии. Производство низкоуглеродистого феррохрома стало развиваться с началом использования промышленного алюмотермического восстановления хромитов. Сейчас алюмотермический процесс вытеснен силикотермическим процессом (процессом Перрена) и симплекс-процессом, заключающемся в смешении высокоуглеродистого феррохрома с частично окисленным порошком феррохрома, последующем брикетировании и нагревании до 1360° С в вакууме. Феррохром, приготовленный симплекс-процессом, обычно содержит всего 0,008% углерода, а брикеты из него легко растворяются в расплаве стали.

Рынок феррохрома цикличен. Мировое производство феррохрома в 2000 составило 4,8 миллиона тонн, а в 2001, из-за низкого спроса, 3,4 миллиона тонн. В 2002 спрос на феррохром вновь активизировался. Первое место в мире по выплавке феррохрома занимает южно-африканская «Большая двойка» (The «Big Two») – компании Xstrata South Africa (Pty) Ltd. (филиал Xstrata AG) и Samancor Chrome Division (филиал Samancor Ltd.). На их долю приходится до 40% мировой выплавки феррохрома. В ЮАР и Финляндии выпускается преимущественно чардж-хром (от англ. charge – загружать уголь), содержащий 52–55% Cr, а в Китае, России, Зимбабве, Казахстане феррохром, содержащий более 60% Cr. Феррохром используется в качестве легирующей добавки к низколегированным сталям. При содержании более 12% хрома сталь почти не ржавеет.

Коррозионную стойкость железных сплавов можно значительно увеличить нанесением на их поверхность тонкого слоя хрома. Такая процедура называется хромированием. Хромированные слои хорошо противостоят воздействию влажной атмосферы, морского воздуха, водопроводной воды, азотной и многих органических кислот. Все способы хромирования можно разделить на два вида – диффузионные и электролитические. Диффузионный способ Беккера – Дэвиса – Штейнберга заключается в нагревании до 1050–1100° С хромируемого изделия в атмосфере водорода, засыпанного смесью феррохрома и огнеупора, предварительно обработанных хлороводородом при 1050° С. Находящийся в порах огнеупора CrCl 2 улетучивается и хромирует изделие. В процессе электролитического хромирования металл осаждается на поверхности обрабатываемого изделия, выступающего в качестве катода. Электролит часто представляет собой соединение шестивалентного хрома (обычно CrO 3), растворенное в водной H 2 SO 4 . Хромовые покрытия бывают защитные и декоративные. Толщина защитных покрытий достигает 0,1 мм, они наносятся непосредственно на изделие и придают ему повышенную износостойкость. Декоративные покрытия имеют эстетическое значение, и наносятся на подслой другого металла (никеля или меди), выполняющего собственно защитную функцию. Толщина такого покрытия всего 0,0002–0,0005 мм.

4. БИОЛОГИЧЕСКАЯ РОЛЬ ХРОМА

Хром – микроэлемент, необходимый для нормального развития и функционирования человеческого организма. Установлено, что в биохимических процессах принимает участие только трехвалентный хром. Важнейшая его биологическая роль состоит в регуляции углеводного обмена и уровня глюкозы в крови. Хром является составной частью низкомолекулярного комплекса – фактора толерантности к глюкозе (GTF), который облегчает взаимодействие клеточных рецепторов с инсулином, уменьшая, тем самым, потребность в нем организма. Фактор толерантности усиливает действие инсулина во всех метаболических процессах с его участием. Кроме того, хром принимает участие в регуляции обмена холестерина и является активатором некоторых ферментов.

Содержание хрома в организме человека составляет 6–12 мг. Точные сведения о физиологической потребности человека в этом элементе отсутствуют, кроме того, она сильно зависит от характера питания (например, сильно возрастает при избытке сахара в рационе). По разным оценкам норма ежедневного поступления хрома в организм составляет 20–300 мкг. Показателем обеспеченности организма хромом служит содержание его в волосах (норма 0,15–0,5 мкг/г). В отличие от многих микроэлементов, содержание хрома в тканях организма (за исключением легочной), по мере старения человека, снижается.

Концентрация элемента в растительной пище на порядок меньше его концентрации в тканях млекопитающих. Особенно высоко содержание хрома в пивных дрожжах, кроме того, в заметных количествах он есть в мясе, печени, бобовых, цельном зерне. Дефицит хрома в организме может вызвать диабетоподобное состояние, способствовать развитию атеросклероза и нарушению высшей нервной деятельности.

Уже в сравнительно небольших концентрациях (доли миллиграмма на м 3 для атмосферы) все соединения хрома оказывают токсическое действие на организм. Особенно опасны в этом отношении растворимые соединения шестивалентного хрома, обладающие аллергическим, мутагенным и канцерогенным действием.

Отравления хромом, и его соединениями встречаются при их производстве; в машиностроении (гальванические покрытия); металлургии (легирующие добавки, сплавы, огнеупоры); при изготовлении кож, красок и т. д. Токсичность соединений Хрома зависит от их химические структуры: дихроматы токсичнее хроматов, соединения Cr (VI) токсичнее соединений Cr(II), Cr(III). Начальные формы заболевания проявляются ощущением сухости и болью в носу, першением в горле, затруднением дыхания, кашлем и т. д.; они могут проходить при прекращении контакта с Хромом. При длительном контакте с соединениями Хрома развиваются признаки хронические отравления: головная боль, слабость, диспепсия, потеря в весе и других. Нарушаются функции желудка, печени и поджелудочной железы. Возможны бронхит, бронхиальная астма, диффузный пневмосклероз. При воздействии Хрома на кожу могут развиться дерматит, экзема. По некоторым данным, соединения Хрома, преимущественно Cr(III), обладают канцерогенным действием.
хромирование. Снижение содержания хрома в пище и крови приводит к уменьшению скорости роста, увеличению

Рипан Р., Четяну И. Неорганическая химия, т.2. – М.: Мир, 1972.

Инструкция

Хром образует вкрапленные массивные руды в ультраосновных горных породах, этот химический элемент более характерен для мантии Земли. Это металл глубинных зон нашей планеты, им также обогащены каменные метеориты.

Известно более 20 минералов хрома, однако промышленное значение имеют только хромшпинелиды. Помимо этого, хром содержится в ряде минералов, сопровождающих хромовые руды, но сами они не представляют практической ценности.

Хром входит в состав тканей растений и животных, в листьях он присутствует в виде низкомолекулярного комплекса, а в участвует в обмене белков, липидов и углеводов. Пониженное содержание хрома в пище ведет к уменьшению скорости роста и снижению чувствительности периферийных тканей.

Хром кристаллизуется в объемноцентрированной решетке. При температуре около 1830°С возможно его превращение в модификацию с гранецентрированной решеткой. Этот элемент химически малоактивен, хром устойчив к кислороду и влаге при обычных условиях.

Взаимодействие хрома с кислородом вначале протекает активно, затем резко замедляется из-за образования окисной пленки на поверхности металла. Пленка разрушается при 1200°С, после чего окисление начинает проходить быстро. При температуре около 2000°С хром , образуя темно-зеленую окись.

Хром легко вступает в реакцию с разбавленными растворами серной и соляной кислот, так получают сульфат и хлорид хрома, при этом выделяется водород. Этот металл образует множество солей с кислородсодержащими кислотами. Хромовые кислоты и их соли являются сильными окислителями.

Сырьем для получения хрома служат хромшпинелиды, их подвергают обогащению, после чего сплавляют с карбонатом калия в присутствии кислорода воздуха. Образующийся при этом хромат калия выщелачивают горячей водой под действием серной кислоты, превращая его в дихромат. Под действием концентрированного раствора серной кислоты из дихромата получают хромовый ангидрид.

В промышленных условиях чистый хром получают электролизом сульфата хрома или концентрированных водных растворов его оксида. Хром при этом выделяется на катоде из алюминия или нержавеющей стали. После чего металл очищают от примесей обработкой чистым водородом при температуре 1500-1700°С. В небольших количествах хром может быть получен восстановлением оксида хрома кремнием или алюминием.

Применение хрома основано на его устойчивости к коррозии и жаропрочности. Его значительное количество идет на декоративные покрытия, порошковый хром используют для производства металлокерамических изделий, а также материалов для сварочных электродов.