Теореме пифагора известны длины. Несколько способов доказательства теоремы пифагора


Теорема Пифагора

Своеобразна судьба иных теорем и задач... Как объяснить, например, столь исключительное внимание со стороны математиков и любителей математики к теореме Пифагора? Почему многие из них не довольствовались уже известными доказательствами, а находили свои, доведя за двадцать пять сравнительно обозримых столетий количество доказательств до нескольких сотен?
Когда речь идет о теореме Пифагора, необычное начинается уже с ее названия. Считается, что сформулировал ее впервые отнюдь не Пифагор. Сомнительным полагают и то, что он дал ее доказательство. Если Пифагор - реальное лицо (некоторые сомневаются даже в этом!), то жил он, скорее всего, в VI-V в. до н. э. Сам он ничего не писал, называл себя философом, что значило, в его понимании, «стремящийся к мудрости», основал пифагорейский союз, члены которого занимались музыкой, гимнастикой, математикой, физикой и астрономией. По-видимому, был он и великолепным оратором, о чем свидетельствует следующая легенда, относящаяся к пребыванию его в городе Кротоне: «Первое появление Пифагора пред народом в Кротоне началось речью к юношам, в которой он так строго, но вместе с тем и так увлекательно изложил обязанности юношей, что старейшие в городе просили не оставить и их без поучения. В этой второй речи он указывал на законность и на чистоту нравов, как на основы семейства; в следующих двух он обратился к детям и женщинам. Последствием последней речи, в которой он особенно порицал роскошь, было то, что в храм Геры доставлены были тысячи драгоценных платьев, ибо ни одна женщина не решалась более показываться в них на улице...» Тем не менее еще во втором столетии нашей эры, т. е. спустя 700 лет, жили и творили вполне реальные люди, незаурядные ученые, находившиеся явно под влиянием пифагорейского союза и относящиеся с большим уважением к тому, что согласно легенде создал Пифагор.
Несомненно также, что интерес к теореме вызывается и тем, что она занимает в математике одно из центральных мест, и удовлетворением авторов доказательств, преодолевших трудности, о которых хорошо сказал живший до нашей эры римский поэт Квинт Гораций Флакк: «Трудно хорошо выразить общеизвестные факты».
Первоначально теорема устанавливала соотношение между площадями квадратов, построенных на гипотенузе и катетах прямоугольного треугольника:
.
Алгебраическая формулировка:
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
То есть, обозначив длину гипотенузы треугольника через c, а длины катетов через a и b: a 2 +b 2 =c 2 . Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника.
Обратная теорема Пифагора. Для всякой тройки положительных чисел a, b и c, такой, что
a 2 + b 2 = c 2 , существует прямоугольный треугольник с катетами a и b и гипотенузой c.

Доказательства

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.
Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например с помощью дифференциальных уравнений).

Через подобные треугольники

Следующее доказательство алгебраической формулировки - наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры.
Пусть ABC есть прямоугольный треугольник с прямым углом C. Проведём высоту из C и обозначим её основание через H. Треугольник ACH подобен треугольнику ABC по двум углам.
Аналогично, треугольник CBH подобен ABC. Введя обозначения

получаем

Что эквивалентно

Сложив, получаем

или

Доказательства методом площадей

Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.

Доказательство через равнодополняемость

1. Расположим четыре равных прямоугольных треугольника так, как показано на рисунке.
2. Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол - 180°.
3. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и внутреннего квадрата.



Что и требовалось доказать.

Доказательства через равносоставленность

Пример одного из таких доказательств указан на чертеже справа, где квадрат, построенный на гипотенузе, перестановкой преобразуется в два квадрата, построенных на катетах.

Доказательство Евклида

Идея доказательства Евклида состоит в следующем: попробуем доказать, что половина площади квадрата, построенного на гипотенузе, равна сумме половин площадей квадратов, построенных на катетах, а тогда и площади большого и двух малых квадратов равны. Рассмотрим чертеж слева. На нём мы построили квадраты на сторонах прямоугольного треугольника и провели из вершины прямого угла С луч s перпендикулярно гипотенузе AB, он рассекает квадрат ABIK, построенный на гипотенузе, на два прямоугольника - BHJI и HAKJ соответственно. Оказывается, что площади данных прямоугольников в точности равны площадям квадратов, построенных на соответствующих катетах. Попытаемся доказать, что площадь квадрата DECA равна площади прямоугольника AHJK Для этого воспользуемся вспомогательным наблюдением: Площадь треугольника с той же высотой и основанием, что и данный прямоугольник, равна половине площади заданного прямоугольника. Это следствие определения площади треугольника как половины произведения основания на высоту. Из этого наблюдения вытекает, что площадь треугольника ACK равна площади треугольника AHK (не изображённого на рисунке), которая, в свою очередь, равна половине площади прямоугольника AHJK. Докажем теперь, что площадь треугольника ACK также равна половине площади квадрата DECA. Единственное, что необходимо для этого сделать, - это доказать равенство треугольников ACK и BDA (так как площадь треугольника BDA равна половине площади квадрата по указанному выше свойству). Равенство это очевидно, треугольники равны по двум сторонам и углу между ними. Именно - AB=AK,AD=AC - равенство углов CAK и BAD легко доказать методом движения: повернём треугольник CAK на 90° против часовой стрелки, тогда очевидно, что соответствующие стороны двух рассматриваемых треугольников совпадут (ввиду того, что угол при вершине квадрата - 90°). Рассуждение о равенстве площадей квадрата BCFG и прямоугольника BHJI совершенно аналогично. Тем самым мы доказали, что площадь квадрата, построенного на гипотенузе, слагается из площадей квадратов, построенных на катетах.

Доказательство Леонардо да Винчи

Главные элементы доказательства - симметрия и движение.

Рассмотрим чертёж, как видно из симметрии, отрезок CI рассекает квадрат ABHJ на две одинаковые части (так как треугольники ABC и JHI равны по построению). Пользуясь поворотом на 90 градусов против часовой стрелки, мы усматриваем равенство заштрихованных фигур CAJI и GDAB. Теперь ясно, что площадь заштрихованной нами фигуры равна сумме половин площадей квадратов, построенных на катетах, и площади исходного треугольника. С другой стороны, она равна половине площади квадрата, построенного на гипотенузе, плюс площадь исходного треугольника. Последний шаг в доказательстве предоставляется читателю.

Вокруг да около

История теоремы Пифагора уходит в века и тысячелетия. В этой статье, мы не будем подробно останавливаться на исторических темах. Для интриги, скажем только, что, по-видимому, эту теорему знали еще древне-египетские жрецы, жившие более 2000 лет до нашей эры. Для тех, кому любопытно, вот ссылка на статью в Википедии .

Прежде всего, хочется для полноты изложения привести здесь доказательство теоремы Пифагора, которое, по моему мнению, наиболее элегантно и очевидно. На рисунке выше изображено два одинаковых квадрата: левый и правый. Из рисунка видно, что слева и справа площади закрашенных фигур равны, так как в каждом из больших квадратов закрашено по 4 одинаковых прямоугольных треугольника. А это означает, что и незакрашенные (белые) площади слева и справа тоже равны. Замечаем, что в первом случае площадь незакрашенной фигуры равна , а во втором - площадь незакрашенной области равна . Таким образом, . Теорема доказана!

Как же назвать эти числа? Треугольниками не назовешь, ведь четыре числа никак не могут образовать треугольник. И тут! Как гром среди ясного неба

Раз есть такие четверки чисел, значит должен быть геометрический объект с такими же свойствами, отраженными в этих числах!

Теперь осталось только подобрать какой-то геометрический объект под это свойство, и все встанет на свои места! Конечно, предположение было чисто гипотетическое, и никакого подтверждения под собой не имело. Но что если это так!

Начался перебор объектов. Звезды, многоугольники, правильные, неправильные, с прямым углом и так далее и тому подобное. Опять ничего не подходит. Что делать? И в этот момент Шерлок получает свою вторую зацепку.

Надо повысить размерность! Раз тройке соответствуют треугольник на плоскости, значит четверке соответствует нечто трехмерное!

О нет! Опять перебор вариантов! А в трехмерии гораздо, гораздо больше всевозможных геометрических тел. Попробуй перебрать их все! Но не все так плохо. Есть же еще прямой угол и другие зацепки! Что мы имеем? Египетские четверки чисел (пусть будут египетские, надо же их как-то называть), прямой угол (или углы) и некий трехмерный объект. Дедукция сработала! И… Полагаю, что догадливые читатели уже поняли, что речь идет о пирамидах, у которых при одной из вершин все три угла - прямые. Можно даже назвать их прямоугольными пирамидами по аналогии с прямоугольным треугольником.

Новая теорема

Итак, у нас есть все что нужно. Прямоугольные (!) пирамиды, боковые грани-катеты и секущая грань-гипотенуза . Пришло время нарисовать еще одну картинку.


На картинке изображена пирамида с вершиной в начале прямоугольных координат (пирамида как бы лежит на боку). Пирамида образована тремя взаимно-перпендикулярными векторами, отложенными из начала координат вдоль координатных осей. То есть каждая боковая грань пирамиды - это прямоугольный треугольник с прямым углом при начале координат. Концы векторов определяют секущую плоскость и образуют грань-основание пирамиды.

Теорема

Пусть есть прямоугольная пирамида, образованная тремя взаимно-перпендикулярными векторами , у которой площади граней-катетов равны - , и площадь грани-гипотенузы - . Тогда

Альтернативная формулировка: У четырехгранной пирамиды, у которой при одной из вершин все плоские углы прямые, сумма квадратов площадей боковых граней равна квадрату площади основания.

Разумеется, если обычная теорема Пифагора формулируется для длин сторон треугольников, то наша теорема формулируется для площадей сторон пирамиды. Доказать эту теорему в трех измерениях очень просто, если вы немного знаете векторную алгебру.

Доказательство

Выразим площади через длины векторов .

где .

Площадь представим как половину площади параллелограмма, построенного на векторах и

Как известно, векторное произведение двух векторов - это вектор, длина которого численно равна площади параллелограмма, построенного на этих векторах.
Поэтому

Таким образом,

Что и требовалось доказать!

Конечно, как у человека, профессионально занимающегося исследованиями, подобное в моей жизни уже случалось, и не раз. Но этот момент был самым ярким и самым запоминающимся. Я испытал полную гамму чувств, эмоций, переживаний первооткрывателя. От зарождения мысли, кристализации идеи, нахождения доказательства - до полного непонимания и даже неприятия, которое встретили мои идеи у моих друзей, знакомых и, как мне тогда казалось, у целого мира. Это было уникально! Я словно почувствовал себя в шкуре Галлилея, Коперника, Ньютона, Шредингера, Бора, Эйнштейна и многих многих других открывателей.

Послесловие

В жизни, все оказалось гораздо проще и прозаичнее. Я опоздал… Но на сколько! Всего-то навсего 18 лет! Под страшными продолжительными пытками и не с первого раза Гугл признался мне, что эта теорема была опубликована в 1996 году!

Статья опубликована издательством Техасского технического университета. Авторы, профессиональные математики, ввели терминологию (которая, кстати, во многом совпала с моей) и доказали также и обобщенную теорему справедливую для пространства любой размерности большей единицы. Что же произойдет в размерностях более высоких, чем 3? Все очень просто: вместо граней и площадей будут гиперповерхности и многомерные объемы. А утверждение, конечно, останется все тем же: сумма квадратов объемов боковых граней равна квадрату объема основания, - просто количество граней будет больше, а объем каждой из них станет равен половине произведения векторов-образующих. Вообразить это почти невозможно! Можно только, как говорят философы, помыслить!

Что удивительно, узнав о том, что такая теорема уже известна, я ничуть не расстроился. Где-то в глубине души я подозревал, что вполне возможно, я был не первый, и понимал, что нужно быть всегда к этому готовым. Но тот эмоциониальный опыт, который я получил, зажег во мне искру исследователя, которая, я уверен, теперь уже не угаснет никогда!

P.S.

Эрудированный читатель в комментариях прислал ссылку
Теорема де Гуа

Выдержка из Википедии

В 1783 году теорема была представлена Парижской академии наук французским математиком Ж.-П. де Гуа, однако ранее она была известна Рене Декарту и до него Иоганну Фульгаберу (англ.), который, вероятно, первым открыл её в 1622 году. В более общем виде теорему сформулировал Шарль Тинсо (фр.) в докладе Парижской академии наук в 1774 году

Так что я опоздал не на 18 лет, а как минимум на пару веков!

Источники

Читатели указали в комментариях несколько полезных ссылок. Вот эти и некоторые другие ссылки:

Когда вы только начинали изучать квадратные корни и способы решения иррациональных уравнений (равенств, содержащих неизвестную под знаком корня), вы, вероятно, получили первое представление об их практическом использовании. Умение извлекать квадратный корень из чисел также необходимо для решения задач на применение теоремы Пифагора. Эта теорема связывает длины сторон любого прямоугольного треугольника.

Пусть длины катетов прямоугольного треугольника (тех двух сторон, которые сходятся под прямым углом) будут обозначены буквами и , а длина гипотенузы (самой длинной стороны треугольника, расположенной напротив прямого угла) будет обозначена буквой . Тогда соответствующие длины связаны следующим соотношением:

Данное уравнение позволяет найти длину стороны прямоугольного треугольника в том случае, когда известна длина двух других его сторон. Кроме того, оно позволяет определить, является ли рассматриваемый треугольник прямоугольным, при условии, что длины всех трёх сторон заранее известны.

Решение задач с использованием теоремы Пифагора

Для закрепления материала решим следующие задачи на применение теоремы Пифагора.

Итак, дано:

  1. Длина одного из катетов равняется 48, гипотенузы – 80.
  2. Длина катета равняется 84, гипотенузы – 91.

Приступим к решению:

a) Подстановка данных в приведённое выше уравнение даёт следующие результаты:

48 2 + b 2 = 80 2

2304 + b 2 = 6400

b 2 = 4096

b = 64 или b = -64

Поскольку длина стороны треугольника не может быть выражена отрицательным числом, второй вариант автоматически отбрасывается.

Ответ к первому рисунку: b = 64.

b) Длина катета второго треугольника находится тем же способом:

84 2 + b 2 = 91 2

7056 + b 2 = 8281

b 2 = 1225

b = 35 или b = -35

Как и в предыдущем случае, отрицательное решение отбрасывается.

Ответ ко второму рисунку: b = 35

Нам дано:

  1. Длины меньших сторон треугольника равны 45 и 55 соответственно, большей – 75.
  2. Длины меньших сторон треугольника равны 28 и 45 соответственно, большей – 53.

Решаем задачу:

a) Необходимо проверить, равна ли сумма квадратов длин меньших сторон данного треугольника квадрату длины большей:

45 2 + 55 2 = 2025 + 3025 = 5050

Следовательно, первый треугольник не является прямоугольным.

b) Выполняется та же самая операция:

28 2 + 45 2 = 784 + 2025 = 2809

Следовательно, второй треугольник является прямоугольным.

Сперва найдем длину наибольшего отрезка, образованного точками с координатами (-2, -3) и (5, -2). Для этого используем известную формулу для нахождения расстояния между точками в прямоугольной системе координат:

Аналогично находим длину отрезка, заключенного между точками с координатами (-2, -3) и (2, 1):

Наконец, определяем длину отрезка между точками с координатами (2, 1) и (5, -2):

Поскольку имеет место равенство:

то соответствующий треугольник является прямоугольным.

Таким образом, можно сформулировать ответ к задаче: поскольку сумма квадратов сторон с наименьшей длиной равняется квадрату стороны с наибольшей длиной, точки являются вершинами прямоугольного треугольника.

Основание (расположенное строго горизонтально), косяк (расположенный строго вертикально) и трос (протянутый по диагонали) формируют прямоугольный треугольник, соответственно, для нахождения длины троса может использоваться теорема Пифагора:

Таким образом, длина троса будет составлять приблизительно 3,6 метра.

Дано: расстояние от точки R до точки P (катет треугольника) равняется 24, от точки R до точки Q (гипотенуза) – 26.

Итак, помогаем Вите решить задачу. Поскольку стороны треугольника, изображённого на рисунке, предположительно образуют прямоугольный треугольник, для нахождения длины третьей стороны можно использовать теорему Пифагора:

Итак, ширина пруда составляет 10 метров.

Сергей Валерьевич

Теорема Пифагора : Сумма площадей квадратов, опирающихся на катеты (a и b ), равна площади квадрата, построенного на гипотенузе (c ).

Геометрическая формулировка:

Изначально теорема была сформулирована следующим образом:

Алгебраическая формулировка:

То есть, обозначив длину гипотенузы треугольника через c , а длины катетов через a и b :

a 2 + b 2 = c 2

Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади . То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника.

Обратная теорема Пифагора:

Доказательства

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы . Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.

Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например с помощью дифференциальных уравнений).

Через подобные треугольники

Следующее доказательство алгебраической формулировки - наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры .

Пусть ABC есть прямоугольный треугольник с прямым углом C . Проведём высоту из C и обозначим её основание через H . Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC . Введя обозначения

получаем

Что эквивалентно

Сложив, получаем

Доказательства методом площадей

Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.

Доказательство через равнодополняемость

  1. Расположим четыре равных прямоугольных треугольника так, как показано на рисунке 1.
  2. Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол - 180°.
  3. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и двух внутренних квадратов.

Что и требовалось доказать.

Доказательства через равносоставленность

Элегантное доказательство при помощи перестановки

Пример одного из таких доказательств указан на чертеже справа, где квадрат, построенный на гипотенузе, перестановкой преобразуется в два квадрата, построенных на катетах.

Доказательство Евклида

Чертеж к доказательству Евклида

Иллюстрация к доказательству Евклида

Идея доказательства Евклида состоит в следующем: попробуем доказать, что половина площади квадрата, построенного на гипотенузе, равна сумме половин площадей квадратов, построенных на катетах, а тогда и площади большого и двух малых квадратов равны.

Рассмотрим чертеж слева. На нём мы построили квадраты на сторонах прямоугольного треугольника и провели из вершины прямого угла С луч s перпендикулярно гипотенузе AB, он рассекает квадрат ABIK, построенный на гипотенузе, на два прямоугольника - BHJI и HAKJ соответственно. Оказывается, что площади данных прямоугольников в точности равны площадям квадратов, построенных на соответствующих катетах.

Попытаемся доказать, что площадь квадрата DECA равна площади прямоугольника AHJK Для этого воспользуемся вспомогательным наблюдением: Площадь треугольника с той же высотой и основанием, что и данный прямоугольник, равна половине площади заданного прямоугольника. Это следствие определения площади треугольника как половины произведения основания на высоту. Из этого наблюдения вытекает, что площадь треугольника ACK равна площади треугольника AHK (не изображённого на рисунке), которая, в свою очередь, равна половине площади прямоугольника AHJK.

Докажем теперь, что площадь треугольника ACK также равна половине площади квадрата DECA. Единственное, что необходимо для этого сделать, - это доказать равенство треугольников ACK и BDA (так как площадь треугольника BDA равна половине площади квадрата по указанному выше свойству). Равенство это очевидно, треугольники равны по двум сторонам и углу между ними. Именно - AB=AK,AD=AC - равенство углов CAK и BAD легко доказать методом движения: повернём треугольник CAK на 90° против часовой стрелки, тогда очевидно, что соответствующие стороны двух рассматриваемых треугольников совпадут (ввиду того, что угол при вершине квадрата - 90°).

Рассуждение о равенстве площадей квадрата BCFG и прямоугольника BHJI совершенно аналогично.

Тем самым мы доказали, что площадь квадрата, построенного на гипотенузе, слагается из площадей квадратов, построенных на катетах. Идея данного доказательства дополнительно проиллюстрирована с помощью анимации, расположенной выше.

Доказательство Леонардо да Винчи

Доказательство Леонардо да Винчи

Главные элементы доказательства - симметрия и движение.

Рассмотрим чертёж, как видно из симметрии, отрезок C I рассекает квадрат A B H J на две одинаковые части (так как треугольники A B C и J H I равны по построению). Пользуясь поворотом на 90 градусов против часовой стрелки, мы усматриваем равенство заштрихованных фигур C A J I и G D A B . Теперь ясно, что площадь заштрихованной нами фигуры равна сумме половин площадей квадратов, построенных на катетах, и площади исходного треугольника. С другой стороны, она равна половине площади квадрата, построенного на гипотенузе, плюс площадь исходного треугольника. Последний шаг в доказательстве предоставляется читателю.

Доказательство методом бесконечно малых

Следующее доказательство при помощи дифференциальных уравнений часто приписывают известному английскому математику Харди , жившему в первой половине XX века.

Рассматривая чертёж, показанный на рисунке, и наблюдая изменение стороны a , мы можем записать следующее соотношение для бесконечно малых приращений сторон с и a (используя подобие треугольников):

Доказательство методом бесконечно малых

Пользуясь методом разделения переменных, находим

Более общее выражение для изменения гипотенузы в случае приращений обоих катетов

Интегрируя данное уравнение и используя начальные условия, получаем

c 2 = a 2 + b 2 + constant.

Таким образом, мы приходим к желаемому ответу

c 2 = a 2 + b 2 .

Как нетрудно видеть, квадратичная зависимость в окончательной формуле появляется благодаря линейной пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми вкладами от приращения разных катетов.

Более простое доказательство можно получить, если считать, что один из катетов не испытывает приращения (в данном случае катет b ). Тогда для константы интегрирования получим

Вариации и обобщения

  • Если вместо квадратов построить на катетах другие подобные фигуры, то верно следующее обобщение теоремы Пифагора: В прямоугольном треугольнике сумма площадей подобных фигур, построенных на катетах, равна площади фигуры, построенной на гипотенузе. В частности:
    • Сумма площадей правильных треугольников, построенных на катетах, равна площади правильного треугольника, построенного на гипотенузе.
    • Сумма площадей полукругов, построенных на катетах (как на диаметре), равна площади полукруга, построенного на гипотенузе. Этот пример используется при доказательстве свойств фигур, ограниченных дугами двух окружностей и носящих имя гиппократовых луночек .

История

Чу-пей 500–200 до нашей эры. Слева надпись: сумма квадратов длин высоты и основания есть квадрат длины гипотенузы.

В древнекитайской книге Чу-пей говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.

Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м. и привяжем к ней по цветной полоске на расстоянии 3м. от одного конца и 4 метра от другого. Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра. Гарпедонаптам можно было бы возразить, что их способ построения становиться излишним, если воспользоваться, например, деревянным угольником, применяемым всеми плотниками. И действительно, известны египетские рисунки, на которых встречается такой инструмент, например рисунки, изображающие столярную мастерскую.

Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммураби, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника . Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях. Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой-на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал следующий вывод:

Литература

На русском языке

  • Скопец З. А. Геометрические миниатюры. М., 1990
  • Еленьский Щ. По следам Пифагора. М., 1961
  • Ван-дер-Варден Б. Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. М., 1959
  • Глейзер Г. И. История математики в школе. М., 1982
  • В.Литцман, «Теорема Пифагора» М., 1960.
    • Сайт о теореме Пифагора с большим числом доказательств материал взят из книги В.Литцмана, большое число чертежей представлено в виде отдельных графических файлов.
  • Теорема Пифагора и пифагоровы тройки глава из книги Д. В. Аносова «Взгляд на математику и нечто из нее»
  • О теореме Пифагора и способах ее доказательства Г. Глейзер, академик РАО, Москва

На английском

  • Теорема Пифагора на WolframMathWorld (англ.)
  • Cut-The-Knot, секция посвящённая теореме пифагора, около 70 доказательств и обширная дополнительная информация (англ.)

Wikimedia Foundation . 2010 .

Различные способы доказательства теоремы Пифагора

учащаяся 9 «А» класса

МОУ СОШ №8

Научный руководитель:

учитель математики,

МОУ СОШ №8

ст. Новорождественской

Краснодарского края.

Ст. Новорождественская

АННОТАЦИЯ.

Теорема Пифагора по праву считается самой важной в курсе геометрии и заслуживает при­стального внимания. Она являет­ся основой решения множества геометрических задач, базой для изучения теоретического и практического курса геометрии в дальнейшем. Теорема окружена богатей­шим историческим материалом, связанным с её появлением и способами доказательства. Изучение истории развития геометрии прививает любовь к данному предмету, способствует развитию познава­тельного интереса, общей культу­ры и творчества, а так же развивает навыки научно-исследовательской работы .

В результате поисковой деятельности была достигнута цель работы, заключающаяся в пополнении и обобщении знаний по доказательству теоремы Пифагора. Удалось найти и рассмотреть различные способы доказательства и углубить знания по теме, выйдя за страницы школьного учебника.

Собранный материал ещё больше убеждает в том, что теорема Пифагора является великой теоремой геометрии, имеет огромное теоретическое и практическое значение.

Введение. Историческая справка 5 Основная часть 8

3. Заключение 19

4. Используемая литература 20
1. ВВЕДЕНИЕ. ИСТОРИЧЕСКАЯ СПРАВКА.

Суть истины вся в том, что нам она - навечно,

Когда хоть раз в прозрении ее увидим свет,

И теорема Пифагора через столько лет

Для нас, как для него, бесспорна, безупречна.

На радостях богам был Пифагором дан обет:

За то, что мудрости коснулся бесконечной,

Он сто быков заклал, благодаря предвечных;

Моленья и хвалы вознес он жертве вслед.

С тех пор быки, когда учуят, тужась,

Что к новой истине людей опять подводит след,

Ревут остервенело, так что слушать мочи нет,

Такой в них Пифагор вселил навеки ужас.

Быкам, бессильным новой правде противостоять,

Что остается? - Лишь глаза закрыв, реветь, дрожать.

Неизвестно, каким способом доказывал Пифагор свою теорему. Несомненно лишь то, что он открыл ее под силь­ным влиянием египетской науки. Частный случай теоре­мы Пифагора - свойства треугольника со сторонами 3, 4 и 5 - был известен строителям пирамид задолго до рожде­ния Пифагора, сам же он более 20 лет обучался у египет­ских жрецов. Сохранилась легенда, которая гласит, что, доказав свою знаменитую теорему, Пифагор принес богам в жертву быка, а по другим источникам, даже 100 быков. Это, однако, противоречит сведениям о моральных и ре­лигиозных воззрениях Пифагора. В литературных источ­никах можно прочитать, что он «запрещал даже убивать животных, а тем более ими кормиться, ибо животные имеют душу, как и мы». Пифагор питался только медом, хлебом, овощами и изредка рыбой. В связи со всем этим более правдоподобной можно считать следующую запись: «...и даже когда он открыл, что в прямоугольном треугольнике гипо­тенуза имеет соответствие с катетами, он принес в жертву быка, сделанного из пшеничного теста».

Популярность теоремы Пифагора столь велика, что ее доказательства встречаются даже в художественной литературе , например, в рассказе известного английско­го писателя Хаксли «Юный Архимед». Такое же Доказа­тельство, но для частного случая равнобедренного пря­моугольного треугольника приводится в диалоге Плато­на «Менон».

Сказка «Дом».

«Далеко-далеко, куда не летают даже самолеты, находится страна Геометрия. В этой необычной стране был один удиви­тельный город - город Теорем. Однажды в этот город пришла красивая девочка по имени Гипотенуза. Она попробовала снять комнату, но куда бы она ни обращалась, ей всюду отказывали. Наконец она подошла к покосившемуся домику и постучала. Ей открыл мужчина, назвавший себя Прямым Углом, и он предло­жил Гипотенузе поселиться у него. Гипотенуза осталась в доме, в котором жили Прямой Угол и два его маленьких сына по имени Катеты. С тех пор жизнь в доме Прямого Угла пошла по-ново­му. На окошке гипотенуза посадила цветы, а в палисаднике развела красные розы. Дом принял форму прямоугольного тре­угольника. Обоим катетам Гипотенуза очень понравилась и они попросили ее остаться навсегда в их доме. Ло вечерам эта друж­ная семья собирается за семейным столом. Иногда Прямой Угол играет со своими детишками в прятки. Чаще всего искать при­ходится ему, а Гипотенуза прячется так искусно, что найти ее бывает очень трудно. Однажды во время игры Прямой Угол подметил интересное свойство: если ему удается найти катеты, то отыскать Гипотенузу не составляет труда. Так Прямой Угол пользуется этой закономерностью, надо сказать, очень успешно. На свойстве этого прямоугольного треугольника и основана тео­рема Пифагора.»

(Из книги А. Окунева «Спасибо за урок, дети»).

Шутливая формулировка теоремы:

Если дан нам треугольник

И притом с прямым углом,

То квадрат гипотенузы

Мы всегда легко найдем:

Катеты в квадрат возводим,

Сумму степеней находим –

И таким простым путем

К результату мы придем.

Изучая алгебру и начала анализа и геометрию в 10 классе , я убедилась в том, что кроме рассмотренного в 8 классе способа доказательства теоремы Пифагора существуют и другие способы доказательства. Представляю их на ваше обозрение.
2. ОСНОВНАЯ ЧАСТЬ.

Теорема. В прямоугольном треугольнике квадрат

гипотенузы равен сумме квадратов катетов.

1 СПОСОБ.

Пользуясь свойствами площадей многоугольников, установим замечательное соотношение между гипотенузой и катетами прямоугольного треугольника.

Доказательство.

а, в и гипотенузой с (рис.1, а).

Докажем, что с²=а²+в² .

Доказательство.

Достроим треугольник до квадрата со стороной а + в так, как показано на рис. 1, б. Площадь S этого квадрата равна (а + в)² . С другой стороны, этот квадрат составлен из четырех равных прямоугольных треугольников, площадь каждого из которых равна ½ав  , и квадрата со стороной с, поэтому S= 4 * ½ав + с ² = 2ав + с ².

Таким образом,

(а + в )² = 2ав + с ²,

с²=а²+в² .

Теорема доказана.
2 СПОСОБ.

После изучения темы «Подобные треугольники» я выяснила, что можно применить подобие треугольников к доказательству теоремы Пифагора. А именно, я воспользовалась утверждением о том, что катет прямоугольного треугольника есть среднее пропорциональное для гипотенузы и отрезка гипотенузы, заключённого между катетом и высотой, проведённой из вершины прямого угла.

Рассмотрим прямоугольный треугольник с прямым углом С, СD– высота (рис. 2). Докажем, что АС ² +СВ ² = АВ ² .

Доказательство.

На основании утверждения о катете прямоугольного треугольника:

АС = , СВ = .

Возведем в квадрат и сложим полученные равенства:

АС² = АВ * АD, СВ² = АВ * DВ;

АС² + СВ² = АВ * (АD + DВ), где АD+DB=AB, тогда

АС² + СВ² = АВ * АВ,

АС² + СВ² = АВ².

Доказательство закончено.
3 СПОСОБ.

К доказательству теоремы Пифагора можно применить определение косинуса острого угла прямоугольного треугольника. Рассмотрим рис. 3.

Доказательство:

Пусть АВС – данный прямоугольный треугольник с прямым углом С. Проведем высоту СD из вершины прямого угла С.

По определению косинуса угла:

cos А = АD/АС = АС/АВ. Отсюда АВ * АD = АС²

Аналогично,

cos В = ВD/ВС = ВС/АВ.

Отсюда АВ * ВD = ВС² .

Складывая полученные равенства почленно и замечая, что АD + DВ = АВ, получим:

АС ² + ВС ² = АВ (АD + DВ) = АВ ²

Доказательство закончено.
4 СПОСОБ.

Изучив тему «Соотношения между сторонами и углами прямоугольного треугольника», я думаю, что теорему Пифагора можно доказать ещё одним способом.

Рассмотрим прямоугольный треугольник с катетами а, в и гипотенузой с . (рис. 4).

Докажем, что с²=а²+в².

Доказательство.

sinВ= в/с ; cosВ= a/с, то, возведя в квадрат полученные равенства, получим:

sin²В= в²/с²; cos²В = а²/с².

Сложив их, получим:

sin²В + cos²В= в²/с²+ а²/с², где sin²В + cos²В=1,

1= (в²+ а²) / с², следовательно,

с²= а² + в².

Доказательство закончено.

5 СПОСОБ.

Данное доказательство основано на разрезании квадратов, построенных на катетах (рис. 5), и укладывании полученных частей на квадрате, по­строенном на гипотенузе.

6 СПОСОБ.

Для доказательства на катете ВС строим BCD ABC (рис.6). Мы знаем, что пло­щади подобных фигур отно­сятся как квадраты их сход­ственных линейных размеров:

Вычитая из первого равенства второе, получим

с2 = а2 + b2.

Доказательство закончено.

7 СПОСОБ.

Дано (рис. 7):

ABС, = 90°, ВС = а, АС= b, АВ = с.

Доказать: с2 = а2 + b2 .

Доказательство.

Пусть катет b а. Продолжим отре­зок СВ за точку В и построим треугольник BMD так, что­бы точки М и А лежали по одну сторону от прямой CD и, кроме того, BD = b, BDM = 90°, DM = a, тогда BMD = ABC по двум сторонам и углу между ними. Точки А и М соединим отрезками AM. Имеем MD CD и AC CD, значит, прямая АС параллельна прямой MD. Так как MD < АС, то прямые CD и AM не параллельны. Следова­тельно, AMDC - прямоугольная трапеция.

В прямоугольных треугольниках ABC и BMD 1 + 2 = 90° и 3 + 4 = 90°, но так как = =, то 3 + 2 = 90°; тогда АВМ =180° - 90° = 90°. Оказа­лось, что трапеция AMDC разбита на три неперекрываю­щихся прямоугольных треугольника, тогда по аксиомам площадей

(a+b)(a+b)

Разделив все члены неравенства на , получим

а b + с2 + а b = (а + b) , 2 ab + с2 = а2 + b + b2,

с2 = а2 + b2.

Доказательство закончено.

8 СПОСОБ.

Данный способ основывается на гипотенузе и кате­тах прямоугольного тре­угольника ABC. Он строит соответствующие квадра­ты и доказывает, что квадрат, построенный на гипотенузе, равновелик сумме квадратов, постро­енных на катетах (рис. 8).

Доказательство.

1) DBC = FBA = 90°;

DBC + ABC = FBA + ABC, значит, FBC = DBA.

Таким образом, FBC =ABD (по двум сторонам и углу между ними).

2) , где AL DE, так как BD - общее основание, DL - общая высота.

3) , так как FB –снование, АВ - общая высота.

4)

5) Аналогично можно доказать, что

6) Складывая почленно, получаем:

, ВС2 = АВ2 + АС2 . Доказательство закончено.

9 СПОСОБ.

Доказательство.

1) Пусть ABDE - квадрат (рис. 9), сторона которого рав­на гипотенузе прямоугольно­го треугольника ABC (АВ = с, ВС = а, АС = b).

2) Пусть DK BC и DK = ВС, так как 1 + 2 = 90° (как острые углы прямоугольно­го треугольника), 3 + 2 = 90° (как угол квадрата), АВ = BD (стороны квадрата).

Значит, ABC = BDK (по гипотенузе и острому углу).

3)Пусть EL DK, AM EL. Можно легко доказать, что ABC = BDK =DEL = ЕАМ (с катетами а и b). Тогда КС = СМ = ML = LK = а - b.

4) SKB = 4S + SKLMC = 2ab + (a - b), с 2 = 2ab + a2 - 2ab + b2, c2 = a2 + b2 .

Доказательство закончено.

10 СПОСОБ.

Доказательство может быть проведено на фигуре, в шутке называемой «Пифагоровы штаны» (рис. 10). Идея его со­стоит в преобразовании квад­ратов, построенных на кате­тах, в равновеликие треуголь­ники, составляющие вместе квадрат гипотенузы.

ABC сдвигаем, как пока­зано стрелкой, и он занимает положение KDN. Оставша­яся часть фигуры AKDCB рав­новелика площади квадрата AKDC – это параллелограмм AKNB.

Сделана модель параллелограмма AKNB . Параллелограмм перекладываем так, как зарисовано в содержании работы. Чтобы показать преобразование парал­лелограмма в равновеликий треугольник, на глазах уча­щихся отрезаем на модели треугольник и перекладываем его вниз. Таким образом, площадь квадрата AKDC получилась равна площади прямоугольника. Аналогично преоб­разуем площадь квадрата в площадь прямоугольника.