Уравнение диффузии. Диффузия нейтронов

Замедление и диффузия нейтронов.

За время существования нейтрона с момента испускания при давлении до момента поглощения проходят 2 процесса:

1).процесс замедления быстрого нейтрона от энергии деления(~2 Мэв) до тепловой энергии(<0,2эв)(0,025эв);

2).процесс диффузии теплового нейтрона.

Время существования нейтрона ~0,001сек и зависит от состава активной зоны.

Нейтроны подобно газам диффундируют из области с большей плотностью в область с меньшей плотностью.

Между столкновениями- прямой участок. Типичная траектория- зигзагообразный вид из прямолинейных отрезков разной длины.

Если бы отсутствовал нейтронный захват- траектория бесконечна. После рассеивающего соударения движется по направлению, образующему угол ψ с первоначальным направлением движения.

Угол ψ-у рассеяния. Важно для изучения диффузии и замедления, какова вероятность рассеяния в любом направлении. Экспериментально установлено, что имеет тенденцию к рассеянию в направлении своего первоначального движения.

Если бы рассеяние происходило с одинаковой вероятностью во все стороны (изотропное рассеяние), то значение const, осредненное по всем столкновениям было бы =0.

В действительности же средний cos ψ >0 (нуля) и определяется равенством cos ψ= ,

где А-массовое число рассеивающего ядра.

Начиная с бериллия, отклонение почти изотропно. При изотропном рассеянии среднее расстояние, проходимое между рассеивающими соударениями равно

В действительности же эффективное расстояние больше, чем средняя длина свободного пробега λ s , вследствие преимущественного рассеяния вперед. Это расстояние назавают транспортной длиной свободного пробега:

По аналогии с е вводится также понятие о транспортном сечении

Т.к. в качестве замедлителя в ядерных реакторах используют легкие элементы, то процесс замедления быстрых нейтронов происходит в основном в результате упругого рассеяния .

Потеря энергии при соударении зависит от ψ. При ψ=0 Е 2 /Е 1 =1. Наибольшая потеря Е при столкновения происходят при ψ= 0-π. При прочих равных условиях замедлитель тем эффективнее, чем больше энергии будет терять быстрый деления

при столкновении с ядрами замедлителя.

В качестве меры изменения энергии нейтрона при упругом столкновении испускается средний логарифмический декремент энергии на 1 столкновение(или средняя логарифмическая потеря энергии):

ξ=(ln Е 2 /Е 1) ср,

Е 1 - до столкновения

Е 2 - после столкновения

Усредненная по всевозможным углам рассеяния величина ξ зависит только от атомного веса элемента А:

т.е ξ не зависит от начальной энергии .

Это значит, что в среднем теряет одну и ту же долю своей первоначальной энергии независимо от того, при какой начальной энергии нейтрона произошло столкновение.

Высота ступенек говорит о изменении ln Е приходяшиеся на 1 столкновение, т.е. определяет ξ.,т.к. ξ не зависит от Е, то в среднем высота ступенек одинакова в течение всего времени замедления.

Среднее число столкновений с атомами вещества, необходимое для уменьшения энергии от Е 1 до Е 2 определяется соотношением

Физически-с увеличением ξ. Увеличивается потеря Е на 1 атом, а значит, уменьшается среднее число столкновений необходимых для снижения Е=2Мэв до 0,025эв.

С растет с увеличением массового числа ядер замедлителя(на воде требуется 19 столкновений, а на графите-114). Чем меньше С, тем лучше замедлитель. Однако и С,и ξ не достаточно полно отражают замедлительные свойства вещества. Они определяются средней потерей энергии на 1 столкновение, но не отражают того, на сколько вероятно рассеивающее столкновение нейтрона с ядрами данного замедлителя. Последнее определяется макроскопическим поперечным сечением рассеяния.

Σ s = σ s ∙N,

где σ s - микроскопическое сечение;

N-плотность ядер замедлителя

Поэтому в качестве более подходящей характеристики замедляющих свойств вводится произведение:

ξΣ s , называемое замедляющей способностью, т.к. оно характеризуется и потерей Е(ξ), и вероятностью того,что произойдет столкновение. При выборе замедлителя приходится считаться с тем важным требованием, чтобы он возможно меньше поглощал нейтроны. Поэтому вводится к-т замедлитель:

Для замедлителя ядерных реакторов могут использоваться только такие вещества, которые одновременно обладают высокими значениями к з и замедляющей способностью ξΣ s . Такими материалами являются обычная вода, тяжелая вода, графит, бериллий, окись бериллия и некоторые органические жидкости. Наилучший- тяжелая вода. В обычной воде к з наименьшее из-за повышенного захвата тепловых нейтронов в водороде.

вещество ξ. С к з σ а σ s
Вода 0,918 1,53 0,66 0,0218 1,45 2,7
Тяжелая вода 0,51 0,37 2,6∙10 -3 0,86∙10 -4 0,50
Бериллий 0,207 0,176 9∙10 -3 10,8∙10 -4 0,84
Окись бериллия 0,174 0,129 9∙10 -3 11,2 6,5∙10 -4 0,81
Дифения 0,892 1,5 4∙10 -3 4,8 3,32∙10 -4 0,998
Дифениальная смесь 0,886 1,61 117,5
Графит 0,158 0,064 4∙10 -3 4,8 3,32∙10 -4 0,998
Гелий в нормальном состоянии 0,525 1,6∙10 -5
Литий 0,268 0,0172 Ничтожно малы
Бор 0,171 0,0875

В процессе замедления помимо изменения энергии, имеет место смещение нейтрона в пространстве от точки его испускания до точки, где он становится тепловым. Смещение в пространстве продолжается и в процессе диффузии ,достигшего теплового уровня.

Для описания некоторых важных закономерностей процесса диффузии в реакторах введем и уточним некоторые определения. Определим плотность потока нейтронов Ф , чаще называемую «потоком» как число нейтронов, пересекающих сферическую поверхность 1 см. 2 в секунду, таким образом размерность потока будет 1/(см 2 *с). Ранее мы уже определили микроскопическое сечение реакции типа «» изотопа «i»   i как площадь взаимодействия одного ядра в барнах. Теперь определим т.н. макроскопическое сечение реакции типа «» изотопа «i» как сечение взаимодействия всех ядер «i» , находящихся в 1 см 3 вещества   i .

Эти два сечения связаны между собой величиной т.н. «ядерной плотности» или плотности ядер , которая характеризует количество молекул (или ядер) в 1 см 3 вещества.

 = N A * / 

N A – число Авогадро (равное 0.6023*10 24 молекул/гмоль);

- физическая плотность любого сложного вещества (г/см 3);

- молекулярный вес вещества (г/гмоль).

Тогда связь между микроскопическим и макроскопическим сечением можно записать как:

  i =  i *  i

При этом плотности ядер данного изотопа  i будут связаны с плотностью молекул  через число атомов данного вида «i» в молекуле вещества.

Наконец, единственной величиной, которая может быть реально измерена в ядерных реакциях (в том числе в дозиметрических приборах, камерах деления, реализуется внутри реактора) является скорость реакции данного типа « » для выбранного изотопа «i» A  i:

A  i = Ф*   i

Эта величина измеряется в единицах количества реакций в 1 см 3 в секунду (1/(см 3 *с)). При этом для процесса деления существует важная связь количества делений и выделяемой при этом мощности 1Вт=3.3 *10 10 дел/с.

Диффузия тепловых нейтронов . Когда энергия нейтронов снизится до энергий, характерных для энергий теплового движения атомов среды, нейтроны приходят в равновесие с этими атомами. Теперь при столкновении с атомом среды нейтрон может не только передать ему часть своей энергии, но и получить порцию энергии. В результате нейтрон продолжает двигаться в среде, но теперь его энергия от столкновения к столкновению может не только уменьшаться, но и увеличиваться, колеблясь около некоторого среднего значения, зависящего от температуры среды. Для комнатной температуры такое среднее значение энергии составляет примерно 0,04 эВ. Нейтрон, пришедший в тепловое равновесие со средой, называется тепловым нейтроном , а движение тепловых нейтронов с постоянной в среднем скоростью – диффузией тепловых нейтронов . Аналогично процессу замедления, процесс диффузии характеризуется длиной диффузии L d , которая равняется среднему расстоянию от точки, где нейтрон стал тепловым, до точки, где он прекратил свое свободное существование в результате поглощения каким-нибудь встречным ядром (см. табл.1.8).

Таблица 1.8. Длины замедления и диффузии нейтронов в различных веществах

Процессы замедления и диффузии нейтронов иллюстрирует рис. 1.4

Рис. 1.4. Иллюстрация процессов замедления и диффузии нейтронов в веществе.

Диффузия нейтронов, так же как и диффузия других веществ в жидких и газообразных средах описывается универсальным законом Фика, который связывает диффузионный ток J D c плотностью частиц N или потоком через коэффициент пропорциональности, называемый коэффициентом диффузии D:

J D = -D*grad(N) = -D* (N)

Распространение нейтронов в модели диффузии(правда, при выполнении целого ряда допущений) хорошо описывается математическими функциями. Для неразмножающих сред с источником (что соответствует подкритическому реактору) в простейшем случае это экспоненты:

Ф(z)= С 1 exp(+z/ L d )+ С 1 * exp(-z/ L d )

Какими будут функции для размножающих сред будет показано в следующей главе.

Диффузия нейтронов

Замедленные до тепловых энергий нейтроны начинают диффундировать, распространяясь по веществу во все стороны от источника. Этот процесс уже приближенно описывается обычным уравнением диффузии с обязательным учетом поглощения, которое для тепловых нейтронов всегда велико (на практике для того их делают тепловыми, чтобы нужная реакция шла интенсивно). Такая возможность вытекает из того, что в хорошем замедлителе (в котором сечение рассеяния уs значительно превышает сечение поглощения уa) тепловой нейтрон может испытать очень много соударений с, ядрами до захвата:

N= уs/уa=лa/лs, (3.10)

при этом в связи с малостью среднего свободного пути лs, для тепловых нейтронов выполняется условие применимости диффузионного приближения -- малость изменения плотности нейтронов на протяжении лs. Наконец, скорость движения тепловых нейтронов можно считать постоянной: .

Диффузионное уравнение имеет следующий вид:

где с(r , t) - плотность тепловых нейтронов в точке r в момент t; Д - оператор Лапласа; D - коэффициент диффузии; tзахв - среднее время жизни тепловых нейтронов до захвата; q - плотность источников тепловых нейтронов. Уравнение (3.11) выражает баланс изменения плотности нейтронов во времени за счет трех процессов: притока нейтронов из соседних областей (DД с), поглощения нейтронов (- с /tзахв) и образования нейтронов (q). В общем случае (с учетом анизотропии рассеяния) коэффициент диффузии:

однако для тепловых нейтронов его можно с хорошей степенью точности записать в простейшей форме:

Это связано с тем, что энергия тепловых нейтронов меньше энергии химической связи атомов в молекуле, из-за чего рассеяние тепловых нейтронов происходит не на свободных атомах, а на тяжелых связанных молекулах (или даже на кристаллических зернах среды).

Основной характеристикой среды, описывающей процесс диффузии, является длина диффузии L, определяемая соотношением

где - средний квадрат расстояния, на которое уходит тепловой нейтрон в веществе от места рождения до поглощения. Длина диффузии имеет примерно тот же порядок, что и длина замедления. Обе эти величины определяют расстояния от источника, на которых в веществе будет заметное количество тепловых нейтронов. В таблице 3.1 приведены величины ф и L для наиболее употребительных замедлителей. Из этой таблице видно, что у обычной воды >>L, что указывает на сильное поглощение. У тяжелой воды, наоборот, L>>. Поэтому она и является лучшим замедлителем. Величина L зависит не только от собственной диффузии, но и от поглощающих свойств среды. Поэтому L не полностью характеризует процесс диффузии. Дополнительной независимой характеристикой диффузии является время жизни диффундирующего нейтрона.

Таблица 3.1

Значения и L для наиболее употребительных замедлителей

Диффузное отражение нейтронов

Интересным свойством нейтронов является их способность отражаться от различных веществ. Это отражение не когерентное, а диффузное. Его механизм таков. Нейтрон, попадая в среду, испытывает беспорядочные столкновения с ядрами и после ряда столкновений может вылететь обратно. Вероятность такого вылета носит название альбедо нейтронов данной среды. Очевидно, что альбедо тем выше, чем больше сечение рассеяния и чем меньше сечение поглощения нейтронов ядрами среды. Хорошие отражатели отражают до 90% попадающих в них нейтронов, т. е. имеют альбедо до 0,9. В частности, для обычной воды альбедо равно 0,8. Неудивительно поэтому, что отражатели нейтронов широко применяются в ядерных реакторах и других нейтронных установках. Возможность столь интенсивного отражения нейтронов объясняется следующим образом. Вошедший в отражатель нейтрон при каждом столкновении с ядром может рассеяться в любую сторону. Если нейтрон у поверхности рассеялся назад, то он вылетает обратно, т. е. отражается. Если же нейтрон рассеялся в другом направлении, то он может рассеяться так, что уйдет из среды при последующих столкновениях.

Этот же процесс приводит к тому, что концентрация нейтронов резко снижается вблизи границы среды, в которой они рождаются, так как вероятность для нейтрона уйти наружу велика.

Рассмотрим баланс нейтронов в единице объема dV при заданных Ф(r ), Ss.

Баланс нейтронов

К изменению числа нейтронов приводят поглощение, утечка, рождение. Тогда

рождение – утечка – поглощение.

Рождение нейтронов обусловлено источником: S(r ) -число нейтронов, рождающихся в единицу времени в единице объема вблизи r . Поглощение нейтронов определяется числом реакций в единицу времени в единице объема. Нужно найти выход реакции в элементе объёма

Найдем утечку нейтронов, зная вектор плотности J из закона Фика

Если известен вектор J в каждой точке поверхности элементарного объема dV, то утечка равна divJ - число нейтронов, пересекающих поверхность единичного объема в единицу времени. Причем

div /D= const/= – D DФ

Таким образом, имеем уравнение

В стационарном случае

Замечания:

При выводе данных уравнений пользовались законом Фика, который справедлив, если распределение потока по координатам является линейным на расстоянии в несколько. Значит, эти уравнения плохо работают вблизи границы источника. Коэффициент D здесь уже учитывает возможную несферичность рассеяния(см. ранее).

Граничные условия:

1) поток Ф нейтронов конечен и неотрицателен в области, где применимо уравнение диффузии;

2) на границе двух сред, отличающихся хотя бы одной характеристикой взаимодействия нейтронов с ядрами.

Взаимодействие нейтронов с ядрами

Видно, что это граничное условие нельзя записать, зная только зависимость Ф от r . Используем следующий прием: изобразим Ф(r ) в плоском реакторе. Очевидно, поток на границе меньше, чем в центре активной зоны, но не равен 0, т.е. . Уравнение наиболее просто решается при нулевых граничных условиях.

Поток на границе

х
Ф(х)
Ф max
Ф
α

Решение уравнения диффузии особенно просто, когда на какой-либо границе поток равен 0. Будем считать, что поток образуется в 0 не на физической, а на некоторой экстраполированной границе реактора (экстраполяция линейная).

Длина экстраполяции d – величина неопределенная, но вносящая малую поправку в уравнение диффузии. Оценка d была сделана как теоретически, так и экспериментально. Оказалось, что при d = 0,71λ tr наблюдается наилучшее совпадение теории с опытом.

Конец работы -

Эта тема принадлежит разделу:

Физическая теория реакторов

Фгаоу впо уральский федеральный университет.. имени первого президента России б н ельцина.. к а некрасов..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Простейший ядерный реактор
Содержание теории ядерных реакторов легче всего понять на примере простейшего реактора ­- сферы из делящегося изотопа 235U. Диаметр этой сферы, в которой может осуществляться неза

Топливо ядерных реакторов
Для работы ядерного реактора основные ядерные реакции должны удовлетворять двум условиям: 1) на каждый поглощенный нейтрон должно выделяться больше одного нейтрона; 2) реакция дол

Коэффициент воспроизводства
Отношение числа делящихся ядер, образующихся в реакторе при поглощении нейтронов, к числу выгоревших делящихся ядер, называется коэффициентом воспроизводства (КВ).

Механизм ядерных реакций
Энергия нуклона в ядре Еn r Рис. 2.1.1. Для взаимодейс

Ядерные уровни энергии
Так же, как и в атоме, полная внутренняя энергия ядра Eвн имеет определенные дискретные уровни. Под Eвн понимается сумма кинетической энергии и потенциальной эне

Резонансное поглощение
Пусть на слой вещества падает стационарный поток нейтронов. Будем считать, что энергию падающих нейтронов мы можем плавно менять. Тогда можно заметить, что для определенных значений кинетической эн

Рассеяние нейтронов
Процесс, единственным результатом которого является передача энергии от одной частицы к другой, называется рассеянием. Существует 2 вида рассеяния: упругое и неупругое.

Рассеяние и замедление нейтронов
В реакции деления рождаются нейтроны с кинетической энергией ~ 2 МэВ. Такие нейтроны называются быстрыми. Эти быстрые нейтроны попадают в среду реактора, состоящую из ядер различных элементов. Ядра

Нейтронные поперечные сечения
Рассмотрим поток нейтронов пронизывающий поток вещества с ядрами. Будем считать, что поток настолько тонкий, что ядра не затеняют друг друга, то есть (d << λ). Поперечным

Выход нейтронных реакций
Выход нейтронных реакций - это число реакций, происходящих в единицу времени в единице объема. Рассчитаем выход нейтронных реакций в предположении, что все нейтроны обладают одинаковой энергией, то

Испускание нейтронов
Область устойчивых ядер Рис. 3.1.1. Для любых массовых чисел, ядра устойчивы только при определенном отношении числа нейтронов к числу протонов и эта область устой

Механизм деления ядер
Свойства тяжелых ядер во многом аналогичны свойствам капли жидкости. Ядерные силы стремятся придать ядру сферическую форму. Аналогом ядерных сил являются молекулярные силы в жидкости, которые тоже

Баланс освобождающейся энергии
Причина выделения энергии при делении - большая энергия связи на 1 кулон для более легких ядер. Полная энергия, выделяющаяся в одном акте распада урана около 204Мэв, в том числе: · кинетич

Цепная реакция деления
В каждой реакции деления U235 рождается 2 и более нейтронов. Необходимым условием цепной реакции является то, чтобы рождалось больше частиц, чем поглощалось инициаторов реакции (нейтроно

Коэффициент размножения реактора бесконечных размеров
Для реактора бесконечных размеров коэффициент размножения должен быть больше 1, чтобы его запустить. Для тепловых реакторов можно решить задачу о нахождении коэффициента размножения. Пусть имеем ра

Величина обогащения, необходимая для поддержания стационарной цепной реакции
Нужно ли обогащение, для ядерных реакторов? Для ответа на вопрос рассмотрим. Очевидно, необходимо для стационарной цепной реакции ³1. В выражении для произведение epf»1, поэтом

Утечка нейтронов
Для реактора конечных размеров справедливо выражение Kэф = K∞P, где Р – вероятность избегания утечки. Тогда условие критичн

Действие запаздывающих нейтронов
Рассмотрим влияние запаздывающих нейтронов на управление ядерным реактором. Ранее мы использовали среднее время жизни нейтронного поколения с учетом запаздывания равное 0.1 сек. (время жизни мгнове

Распределение нейтронов в реакторе
В реакторе нейтроны рождаются во всех точках активной зоны, то есть источники нейтронов равномерно распределены по пространству. Энергия рождающихся нейтронов ~2Мэв, они имеют различное напр

Замедление нейтронов в бесконечных средах
Пусть имеем бесконечную однородную активную среду. Тогда останется зависимость n(E). Рассмотрим основные процессы, происходящие при замедлении нейтронов: 1. упругие

Упругое рассеяние нейтронов
Упругое рассеяние-главный процесс в тепловых реакторах. Его рассмотрение позволяет найти энергетический спектр замедляющихся нейтронов. Пусть нейтроны рассеиваются на неподвижных свободных ядрах (р

Замедление в водороде без поглощения
Замедление на водороде рассматривается в связи с особой простотой его спектра, т.к. нейтрон может замедляться вплоть до нулевой энергии. Замедление нейтрона на водороде до нулевой энергии

Плотность замедления
Плотностью замедления q(E) называется число нейтронов, которые в единице объема в единицу времени пересекают значение энергии Е. Эта величина удобна при рассм

Замедление без поглощения в неводородных средах
Пусть А>>1 (А>10), тогда изменение энергии на одно столкновение мало, малым является средний логарифмический декремент энергии, и решение упрощается. Ферми предложил модель, в которой нейт

Замедление в бесконечных средах при наличии поглощения
Поглощение нейтронов происходит в любой реальной среде, в которой имеются замедлитель, конструкционные материалы. Роль процесса поглощения зависит от типа реактора: в тепловом реакторе поглощение -

Вероятность избежать резонансного захвата в средах с массовым числом больше единицы
Пусть Σa<<Σs, а также пусть спектр с учетом резонансного захвата мало отличается от спектра Ферми. В отсутствии поглощения плотность замедления постоянн

Эффективный резонансный интеграл
В ядерных реакторах на тепловых нейтронах Sa<200 эВ поглощение можно не учитывать). Резонансные пики пог

Эффект Доплера
Эффект Доплера – это зависимость макросечения взаимодействия от скорости ядер и, следовательно, от температуры Т среды, т.е. при повышении Т резонансные пики макросечения взаимодействия, если таков

Плотность тока нейтронов. Закон Фика
Пусть есть среда с заданным распределением нейтронов по пространству (задан F(r)) и сечением рассеяния Ss (при этом Sa=0). Найдем плотность тока через единичную площадку dS, л

Длина диффузии
Это понятие вводят для того, чтобы характеризовать расстояние, на которое смещаются нейтроны во время диффузии от точки рождения до точки поглощения. Рассмотрим точечный источник нейтронов

Альбедо
Это коэффициент отражения. А зона окружения отражает (возврат нейтрона в активную зону). Каждая среда обладает системами ΣS и Σа. Свойства отражения ср

Модель непрерывного замедления
Нейтрон при диффузии замедляется. надо искать распределение нейтронов данной энергии по пространству, т.е. энергетический спектр нейтронов в любой точке пространства. Теория возраста создана Э. Фер

Уравнение диффузии с учетом замедления
Обозначим Ф(r, u) - сумма путей, проходимых нейтронами с летаргией в единичном интервале вблизи летаргии u и в единице объема вблизи r за единицу в

Предположения и ограничения теории возраста
Возраст связан с летаргией. Получили распределение нейтронов данного возраста, а значит данной энергии по пространству, т.е. спектр нейтронов в каждой данной точке. При выводе уравнения диффузии мы


Пусть в бесконечной среде заданы =0, а все нейтроны имеют энергию Е=2МэВ. Найдем плотность замедления нейтронов. для сферически симметричной задачи, т.е. . Решение уравнен

Физический смысл возраста
Возраст был введен как удобная переменная, [t]=см2, связанная с характером среды. Найдем средний rdflhfn расстояния от точки рождения до точки, где он пересекает значени

Время диффузии и время замедления
Необходимо знать, как соотносятся время замедления нейтрона до тепловой энергии и время диффузии нейтрона как теплового. Согласно модели упругого рассеивания.

Условие критичности. Геометрический и материальный параметр
Если задан состав в активной зоне, то определённые характеристики, такие как возраст тепловых нейтронов, квадрат длины диффузии, коэффициент размножения заданы. Условие критичности даёт единственно

Вероятность избежать утечки
Имеем Кэфф = КР1Р2 где Р1- вероятность избежать утечки во время замедления, где Р2- вероятность избежать утечки во время дифф

Геометрические параметры для реакторов, имеющих размеры и форму в виде сферы и цилиндра
Наиболее часто встречается цилиндрическая форма активной зоны. Геометрический параметр – минимальное собственное значение волнового уравнения: . Требуется найти решение, удовлетво

Экспериментальное определение критического размера реактора
Как построить реактор критического размера? Если начинать строить реактор, то в результате отсутствия нейтронов в подкритичном реакторе мы не сможем рассматривать степень приближения к критическому

Свойства отражателя
Критическую массу реактора можно уменьшить, окружая АЗ рассеивающим веществом. Будет ли эффект, если окружить АЗ хорошо поглощающим веществом? Хуже не будет. Самое плохое – вакуум. В нём нет рассеи

Распределение нейтронов и критические размеры реактора с отражателем
Проще всего построить реактор, пользуясь односкоростной (одногрупповой) моделью. Нейтроны рождаются, диффундируют и поглощаются при одной и той же энергии. Можно рассматривать энергетический спектр

Эффективная добавка отражателя
Уменьшение критического размера реактора из-за наличия отражателя характеризуется эффективной добавкой отражателя: , где H0 - критические размеры (толщина активной зон

Период реактора
Знание этого раздела необходимо для практической работы на реакторе в качестве оператора, т.к. нужно уметь предсказывать поведение нейтронного потока и тепловыделения во времени и в любой точке реа

Большие реактивности
Пусть T настолько мал, что, т.е. Тогда Снова - прямая, наклон которой характеризуется средним временем жизни мгновенных нейтроно

Тепловой взрыв
Период реактора может стать малым, оператор не среагирует, возникнет тепловой взрыв. Реактор состоит не только из горючего, в любом реакторе есть замедлитель, теплоноситель. В уран-водном реакторе

Нарушение нейтронного баланса
Чтобы реактор работал длительное время на заданной мощности, необходимо, чтобы в течение этого времени Кэфф=1. Однако в энергетическом реакторе существуют причины, приводящие к уменьшению Кэфф:

Регулирующие стержни
Регулирующие стержни изготовляют из Cd113 или B10 - это изотопы, которые имеют очень большое сечение поглощения. Сечение поглощения при тепловой энергии нейтронов l =0.01см

Отравление реактора продуктами деления
Отравление обусловлено практически одним радиоактивным изотопом Xe135(sa=2,7×106барн). Это сечение очень велико, т.к. оно соответствует линейному размеру 1.7×10-9см., т.е. порядка разме

Зашлаковывание
Зашлаковывание - это поглощение нейтронов стабильными или долго живущими изотопами Этот процесс аналогичен отравлению, только здесь радиоактивный распад происходит медленно и его скоростью

Последовательное поглощение нейтронов
Существуют такие цепочки ядерных реакций, когда каждое последовательное поглощение нейтронов не приводит к уничтожению ядра - шлака, т. е. образуются ядра с достаточно большим сечением поглощения.

Изменение реактивности при выгорании горючего и его воспроизводстве
Основные ядерные реакции в делящемся веществе Предположим, что скоростью распада долгоживущих изотопов можно

Глубина выгорания топлива
Глубина выгорания топлива определяет топливную составляющую стоимости электроэнергии (они обратно пропорциональны). Глубина выгорания - это отношение числа ядер выгоревшего горючего (делящ

Об атомной бомбе
Для осуществления ядерного взрыва необходимо соединить подкритичные куски в существенно подкритичное целое, а после соединения герметизировать горючее для удержания его в компактном состоянии, чтоб

Измерение запаса горючего по мере выгорания горючего
Чтобы запустить реактор, выйти на мощность нужно иметь запас реактивности, т. е. Кэфф~1,3. По мере работы реактор отравляется. За 20 часов будет израсходован запас реактивности 0.05, зат

Теория возмущений в одногрупповом эффективном приближении
; Пусть имеем невозмущенный реактор. Поток нейтронов в нем подчиняется уравнению диффузии (волновому уравнению): ; Пусть в малый объ

Особенности гетерогенного реактора
Рассмотрение теории ядерных реакторов удобно разделить на 2 части: 1. Микроскопическая теория, которая занимается вычислением К и М2. Эти величины являются существенно внутренними х

Главные эффекты размещения урана в виде блоков
1. Внутренний блок-эффект для вероятности избежать резонансного захвата обусловлен внешними пиками резонансного поглощения на уране 238. Наличие сильного резонансного поглощения обеспечива

Вычисление коэффициента размножения для гетерогенных систем
Коэффициент теплового использования f – это отношение числа тепловых нейтронов, поглощённых горючим, к общему числу тепловых нейтронов. Горючее и замедлитель в гетерогенном реакторе полность

Коэффициент размножения на быстрых нейтронах
В гомогенном реакторе ε слабо отличаются от единицы. Для гетерогенных 1,03 ¸ 1,06. Каждая сотая - на вес золота, так как максимально возможный kэф = 1,08 для ура

Приведем еще один пример, дающий уравнение того же вида, но на сей раз относящееся к диффузии. В гл. 43 (вып. 4) мы рассмотрели диффузию ионов в однородном газе и диффузию одного газа сквозь другой. Теперь возьмем другой пример — диффузию нейтронов в материале типа графита. Мы выбрали графит (разновидность чистого углерода), потому что углерод не поглощает медленных нейтронов. Нейтроны путешествуют в нем свободно. Они проходят по прямой в среднем несколько сантиметров, прежде чем рассеются ядром и отклонятся в сторону. Так что если у нас есть большой кусок графита толщиной в несколько метров, то нейтроны, находившиеся сначала в одном месте, будут переходить в другие места. Мы опишем их усредненное поведение, т. е. их средний поток.

Пусть N (x , у, z ) ΔV — число нейтронов в элементе объема Δ V в точке (х, у, z ). Движение нейтронов приводит к тому, что одни покидают Δ V , а другие попадают в него. Если в одной области оказывается нейтронов больше, чем в соседней, то оттуда их будет переходить во вторую область больше, чем наоборот; в результате возникнет поток. Повторяя доказательства, приведенные в гл. 43 (вып. 4), можно описать поток вектором потока J. Его компонента J x есть результирующее число нейтронов, проходящих в единицу времени через единичную площадку, перпендикулярную оси х. Мы получим тогда

где коэффициент диффузии D дается в терминах средней скорости ν и средней длины свободного пробега l между столкновениями:

Скорость, с которой нейтроны проходят через некоторый элемент поверхности da , равна nda (где n, как обычно,— единичный вектор нормали). Результирующий поток из эле мента объема тогда равен (пользуясь обычным гауссовым доказательством) v·JdV . Этот поток приводил бы к уменьшению числа нейтронов в ΔV, если нейтроны не генерируются внутри ΔV (с помощью какой-нибудь ядерной реакции). Если в объеме присутствуют источники, производящие S нейтронов в единицу времени в единице объема, то результирующий поток из ΔV будет равен [S —(∂Nl∂t )] ΔV. Тогда получаем

Комбинируя (12.21) и (12.20), получаем уравнение диффузии нейтронов

В статическом случае, когда ∂N / ∂t =0 , мы снова имеем уравнение (12.4)! Мы можем воспользоваться нашими знаниями в электростатике для решения задач по диффузии нейтронов. Давайте же решим какую-нибудь задачу. (Пожалуй, вы недоумеваете: зачем решать новую задачу, если мы уже решили все задачи в электростатике? На этот раз мы можем решить быстрее именно потому, что электростатические задачи дей ствительно уже решены!)

Пусть имеется блок материала, в котором нейтроны (скажем, за счет деления урана) рождаются равномерно в сферической области радиусом а (фиг. 12.7). Мы хотели бы узнать, чему равна плотность нейтронов повсюду? Насколько однородна плотность нейтронов в области, где они рождаются? Чему равно отношение нейтронной плотности в центре к нейтронной плотности на поверхности области рождения? Ответы найти легко. Плотность нейтронов в источнике S o стоит вместо плотности зарядов ρ, поэтому наша задача такая же, как задача об однородно заряженной сфере. Найти N — все равно что найти потенциал φ. Мы уже нашли поля внутри и вне однородно заряженной сферы; для получения потенциала мы можем их проинтегрировать. Вне сферы потенциал равен Q/4πε 0 r, где полный заряд Q дается отношением 4πа 3 ρ/3. Следовательно,

Для внутренних точек вклад в поле дают только заряды Q (r ), находящиеся внутри сферы радиусом r; Q (r ) =4πr 3 ρ/3, следовательно,

Поле растет линейно с r. Интегрируя Е, получаем φ:

На расстоянии радиуса а φ внешн должен совпадать с φ внутр, поэтому постоянная должна быть равна ρа 2 /2ε 0 . (Мы предполагаем, что потенциал φ равен нулю на больших расстояниях от источника, а это для нейтронов будет отвечать обращению N в нуль.) Следовательно,

Теперь мы сразу же найдем плотность нейтронов в нашей диффузионной задаче

На фиг 12.7 представлена зависимость N от r.

Чему же теперь равно отношение плотности в центре к плотности на краю? В центре (r=0) оно пропорционально За 2 /2, а на краю (r=а) пропорционально 2а 2 /2; поэтому отношение плотностей равно 3/2. Однородный источник не дает однородной плотности нейтронов. Как видите, наши познания в электростатике дают хорошую затравку для изучения физики ядерных реакторов.

Диффузия играет большую роль во многих физических обстоятельствах. Движение ионов через жидкость или электронов черев полупроводник подчиняется все тому же уравнению. Мы снова и снова приходим к одним и тем же уравнениям.