Высота тона звука определяется. Физические параметры звука

Звука, то есть от числа колебаний среды (обычно воздуха) в секунду, которые воздействуют на барабанную перепонку человека. С увеличением частоты колебаний растёт высота звука . В первом приближении субъективная высота звука пропорциональна логарифму частоты - согласно закону Вебера-Фехнера .

Основные сведения

Высота звука - субъективное качество слухового ощущения человека, наряду с громкостью и тембром , позволяющее располагать все звуки по шкале от низких к высоким. Для чистого тона (что это?) она зависит главным образом от частоты (с ростом частоты высота звука повышается), но при субъективном восприятии - также и от его интенсивности (амплитуды?) - при возрастании интенсивности высота звука кажется ниже . Высота звука со сложным спектральным составом зависит от распределения энергии по шкале частот.

Частотные сигналы сложного спектра без основной частоты (первой гармоники в спектре) называются резидуальными . Восприятие высоты частотного сигнала совпадает с восприятием высоты резидуальной версии такого же сигнала .

Напишите отзыв о статье "Высота звука"

Примечания

Литература

  • Haynes B., Cooke P.R. Pitch // The New Grove Dictionary of Music and Musicians . London; New York, 2001.

См. также

Отрывок, характеризующий Высота звука

Источник этой необычайной силы прозрения в смысл совершающихся явлений лежал в том народном чувстве, которое он носил в себе во всей чистоте и силе его.
Только признание в нем этого чувства заставило народ такими странными путями из в немилости находящегося старика выбрать его против воли царя в представители народной войны. И только это чувство поставило его на ту высшую человеческую высоту, с которой он, главнокомандующий, направлял все свои силы не на то, чтоб убивать и истреблять людей, а на то, чтобы спасать и жалеть их.
Простая, скромная и потому истинно величественная фигура эта не могла улечься в ту лживую форму европейского героя, мнимо управляющего людьми, которую придумала история.
Для лакея не может быть великого человека, потому что у лакея свое понятие о величии.

5 ноября был первый день так называемого Красненского сражения. Перед вечером, когда уже после многих споров и ошибок генералов, зашедших не туда, куда надо; после рассылок адъютантов с противуприказаниями, когда уже стало ясно, что неприятель везде бежит и сражения не может быть и не будет, Кутузов выехал из Красного и поехал в Доброе, куда была переведена в нынешний день главная квартира.
День был ясный, морозный. Кутузов с огромной свитой недовольных им, шушукающихся за ним генералов, верхом на своей жирной белой лошадке ехал к Доброму. По всей дороге толпились, отогреваясь у костров, партии взятых нынешний день французских пленных (их взято было в этот день семь тысяч). Недалеко от Доброго огромная толпа оборванных, обвязанных и укутанных чем попало пленных гудела говором, стоя на дороге подле длинного ряда отпряженных французских орудий. При приближении главнокомандующего говор замолк, и все глаза уставились на Кутузова, который в своей белой с красным околышем шапке и ватной шинели, горбом сидевшей на его сутуловатых плечах, медленно подвигался по дороге. Один из генералов докладывал Кутузову, где взяты орудия и пленные.
Кутузов, казалось, чем то озабочен и не слышал слов генерала. Он недовольно щурился и внимательно и пристально вглядывался в те фигуры пленных, которые представляли особенно жалкий вид. Большая часть лиц французских солдат были изуродованы отмороженными носами и щеками, и почти у всех были красные, распухшие и гноившиеся глаза.
Одна кучка французов стояла близко у дороги, и два солдата – лицо одного из них было покрыто болячками – разрывали руками кусок сырого мяса. Что то было страшное и животное в том беглом взгляде, который они бросили на проезжавших, и в том злобном выражении, с которым солдат с болячками, взглянув на Кутузова, тотчас же отвернулся и продолжал свое дело.
Кутузов долго внимательно поглядел на этих двух солдат; еще более сморщившись, он прищурил глаза и раздумчиво покачал головой. В другом месте он заметил русского солдата, который, смеясь и трепля по плечу француза, что то ласково говорил ему. Кутузов опять с тем же выражением покачал головой.
– Что ты говоришь? Что? – спросил он у генерала, продолжавшего докладывать и обращавшего внимание главнокомандующего на французские взятые знамена, стоявшие перед фронтом Преображенского полка.
– А, знамена! – сказал Кутузов, видимо с трудом отрываясь от предмета, занимавшего его мысли. Он рассеянно оглянулся. Тысячи глаз со всех сторон, ожидая его сло ва, смотрели на него.
Перед Преображенским полком он остановился, тяжело вздохнул и закрыл глаза. Кто то из свиты махнул, чтобы державшие знамена солдаты подошли и поставили их древками знамен вокруг главнокомандующего. Кутузов помолчал несколько секунд и, видимо неохотно, подчиняясь необходимости своего положения, поднял голову и начал говорить. Толпы офицеров окружили его. Он внимательным взглядом обвел кружок офицеров, узнав некоторых из них.
– Благодарю всех! – сказал он, обращаясь к солдатам и опять к офицерам. В тишине, воцарившейся вокруг него, отчетливо слышны были его медленно выговариваемые слова. – Благодарю всех за трудную и верную службу. Победа совершенная, и Россия не забудет вас. Вам слава вовеки! – Он помолчал, оглядываясь.
– Нагни, нагни ему голову то, – сказал он солдату, державшему французского орла и нечаянно опустившему его перед знаменем преображенцев. – Пониже, пониже, так то вот. Ура! ребята, – быстрым движением подбородка обратись к солдатам, проговорил он.

Говоря о строении слухового аппарата, мы переходим постепенно к принципу анализа мозгом полученного сигнала от слуховой улитки. В чем он заключается? И как мозг расшифровывает его? Как он определяет высоту тона звука? Сегодня мы как раз поговорим о последнем, так как в нем автоматически раскрываются ответы и на первые два вопроса.

Надо отметить, что мозг определяет только периодические синусоидальные компоненты звука. Восприятие высоты тона человеком так же зависит от громкости и длительности. В прошлой статье мы говорили о базилярной мембране и ее строении. Как известно, она обладает неоднородностью по жесткости строения. Это позволяет ей механически разбивать звук на компоненты, у которых есть особое место размещение на ее поверхности. Откуда волосковые клетки позже подают сигнал в мозг. Из-за этой особенности строения мембраны, «звуковая» волна, пробегающая по ее поверхности, имеет разные максимумы: низкие частоты – вблизи вершины мембраны, высокие – у овального окна. Мозг автоматически пытается определить высоту по этой «топографической карте», находя на ней локализацию фундаментальной частоты. Этот метод можно ассоциировать с многополосным фильтром. Отсюда взята теория «критических полос», которую мы обсуждали ранее:

Но это не единственный подход! Второй способ – это определение высоты тона по гармоникам: если найти минимальную частотную разницу между ними, то она всегда равна фундаментальной частоте – [(n +1) f 0 — (nf 0)]= f 0, где n – номера гармоник. А также вместе с ним используется и третий метод: нахождение общего сомножителя от деления всех гармоник на последовательные числа и, толкаясь от него, определяется высота звука. Эксперименты полностью подтвердили обоснованность этих способов: слуховая система, находя максимумы гармоник, проводит над ними вычислительные операции и если даже вырезать основной тон или расставить гармоники в нечетной последовательнос ти, при котором метод 1 и 2 не помогут, то человек определяет высоту звука 3 методом.

Но как оказалось – это не все возможности мозга! Были проведены хитрые эксперименты, которые удивили ученых. Дело заключается в том, что три метода работаю только с первыми 6-7 гармониками. Когда в каждую «критическую полосу» попадает по одной гармонике звукового спектра мозг спокойно «определяет» их. Но стоит, каким либо гармониками находиться настолько близко друг к другу, что в одну область слухового фильтра попадает их несколько, то мозг их распознает хуже или вообще не определяет: это относиться к звукам с гармониками выше седьмой. Вот здесь вступает четвертый метод – метод «времени»: мозг начинает анализировать время поступления сигналов с органа Корти с фазой колебания всей базилярной мембраны. Этот эффект получил название «запирание фазы». Дело заключается в том, что при колебании мембраны, когда она движется в сторону волосковых клеток, те соприкасаются с ней, образуя нервный импульс.
При движении обратно, ни какого электрического потенциала не появляется. Появляется взаимосвязь – время между импульсами в любом отдельном волокне будет равно целому числу 1, 2, 3 и так далее, умноженному на период в основной звуковой волне f = nT . Как это помогает в работе в купе вместе с критическими полосами? Очень просто: мы знаем, что когда две гармоники находятся настолько близко, что попадают в одну «частотную область», то между ними возникает эффект «биения» (которую музыканты слышат при настройке инструмента) – это просто одно колебание со средней частотой, равной разности частот. При этом период у них будет T =1/ f 0. Таким образом, все периоды выше шестой гармоники одинаковы или имеют разряд в цело число, то есть значение n / f 0. Далее мозг просто высчитывает частоту основного тона.

Звук в музыке начнем изучать с самого простого и доступного — с тех звуков, которые нас окружают. По своей физической природе звук это колебания упругого тела, которые образуют в воздухе звуковые волны. Достигнув уха, воздушная звуковая волна воздействует на барабанную перепонку, от которой колебания передаются во внутреннее ухо и далее на слуховой нерв. Так мы слышим звуки.

Если пока не все понятно, не беда. Потому что уроки музыки не про то как мы слышим. Наша задача разобраться что мы слышим и выделить из всего разнообразия слышимого звуки в музыке.

Все звуки можно разделить на музыкальные и шумовые. В музыкальных звуках человеческое ухо может выделить определенную частоту, которая звучит громче других. В шумовых звуках содержится множество разных частот, их которых мы не можем на слух выделить по громкости какую-то отдельную частоту. В шуме сливаются звуки разной частоты с примерно одинаковой или плавающей громкостью.

Послушайте шумовые и музыкальные звуки:

  • шумовые звуки

Некоторые шумовые звуки применяются в музыке. Из трех представленных шумовых звуков первые два это звуки музыкальных инструментов. Сначала звучит большой барабан, затем треугольник.

Третий шумовой звук это, так называемый, «белый шум». В нем очень много составляющих, которые изменяются случайным образом. На картинке белый шум выглядел бы так:

Шумовые звуки изучать не будем, а приступим сразу к звукам музыкальным.

  • музыкальные звуки:

Если выделить из музыкального звука самую громкую составляющую и нарисовать её, то получим примерно такую картинку:


В реальном звуке картинка была бы посложнее, но, все-таки, главное то, что в музыкальном звуке присутствует самый громкий звук с одной (определенной) частотой. Из таких звуков можно составлять мелодии.

Уроки музыки. Итак, в музыкальных звуках можно выделить определенную частоту. О чем речь? Представим туго натянутую струну. Ударим по ней молоточком. Струна начнет колебания:

Частота, с которой колеблется струна, определяет частоту слышимого звука.
Измеряется частота в герцах: один герц (1 Гц) равен одному колебанию в секунду. Человек способен слышать звук в диапазоне от 16 Гц до 20 тысяч Гц (кГц) при передаче колебаний по воздуху. С возрастом слух ухудшается и звуковой диапазон сужается. Верхняя граница слышимых взрослым человеком звуков примерно 14 тысяч Гц. К тому же наиболее точно и ясно человек слышит ещё более узкий диапазон звуков: примерно от 16 до 4.200 Гц. В этом диапазоне звучат и музыкальные инструменты.

Звук в музыке. Высота звука.

В зависимости от частоты звука мы различаем звуки низкие и высокие. Вообще-то, здесь могли бы применить любые прилагательные, например, жирные и тощие. Однако, обозначение звуков по высоте выбрано не случайно. Оказывается так очень удобно рисовать музыкальные звуки на бумаге. Об этом рассказано на странице «нотная запись».

Чем меньше частота звука, тем более низким он кажется. Так, звук с частотой 200 колебаний в секунду (200 Гц) кажется низким:

Звуки большей частоты кажутся высокими.
Звук с частотой 4000 колебаний в секунду (4000 Гц) кажется высоким:

Высота это одна из характеристик звука в музыке. Каждый звук в музыке имеет свою высоту (частоту) и свое название. Звуки в музыке по высоте подбиралась опытным путем на протяжении столетий. У разных народов существуют разные системы музыкальных звуков и их названий. Мы будем рассматривать только европейскую систему, которая наиболее распространена в мире и используется в России. О звукоряде европейской системы будет рассказано на следующей странице, а сейчас перейдем к ещё одной характеристике звука.

Звук в музыке. Длительность звука.

Длительность характеризует количество времени, в течение которого длится звук.

Например, звук с частотой 440 Гц в течение 6 секунд:

Тот же звук в течение 2 секунд:

Надеюсь с длительностью всё понятно. Уточню, что в музыке длительность измеряется не секундами и не минутами. Длительность в музыке измеряется ритмическими единицами, которые могут быть выражены счетом, например, раз, два, три, четыре. Про это подробно рассказано на странице о темпе, метре и ритме музыки.

Звук в музыке. Амплитуда звука.

Амплитуда, это размах колебания источника звука (например, струны). Чем больше размах колебаний, тем, говорят, больше их амплитуда. В прямой зависимости от амплитуды звука находится его громкость — чем больше амплитуда, тем больше громкость. Меньше амплитуда — меньше громкость. Кроме амплитуды на громкость влияет расстояние для источника звука — чем ближе источник звука, тем (при одинаковой амплитуде) громче он звучит. Ещё на громкость звука оказывает влияние особенность человеческого слуха — так при одинаковой амплитуде и расстоянии до источника звука, громче всего будут слышны звуки в среднем регистре.

Вот два примера, один и тот же тон. Погромче и потише:

На громкость звука оказывает влияние и такой фактор как вид колебаний. Колебания могут быть затухающими (удар по струне гитары). В этом случае вместе с угасанием колебаний будет затихать и звук струны. Могут быть и незатухающие колебания — в этом случае колебания поддерживаются искусственно, например, движением смычка по струне или пением. Для незатухающих колебаний громкость можно изменять (уменьшать, увеличивать или оставлять неизменной) в зависимости от художественных целей и задач.

Звук в музыке. Тембр звука.

Во всех последних примерах использовался звук от звукового генератора с частотой 440 Гц. Эта частота в примерах выбрана не случайно. 440 Гц — частота ноты ля первой октавы. Про октавы рассказано на странице звукоряда, а тут важно отметить следующее — хотя, у ноты ля реальных музыкальных инструментов такая же частота, как была установлена у генератора, но звучит нота ля и генератор по разному. Более того, у разных музыкальных инструментов нота ля звучит тоже не совсем одинаково. Именно поэтому мы безошибочно можем сказать, какой инструмент звучит:

это звуковой генератор:

а это фортепиано:

это скрипка:

а это флейта:

Почему же одна и та же нота звучит по-разному, хотя, высота звука одинакова? Дело в том, что когда звучит реальный музыкальный инструмент у него на основную частоту ноты накладываются дополнительные колебания. Когда звучит, например, струна генерируются сразу несколько колебаний:

  • основной тон (самый громкий) во всю длину струны и
  • обертоны — ряд колебаний в половину, в треть, в четверть и так далее струны. Амплитуда (громкость) обертонных колебаний уменьшается в ростом ступени «деления» струны.

К тому же, к основному тону и обертонам добавляются ещё и звуки колебаний частей корпуса музыкального инструмента. Всё это придает звуку особенную индивидуальную окраску, которую называют тембр звука. Тембр позволяет отличить на слух разные музыкальные инструменты.

Тембр присущ звукам не только музыкальных инструментов, но и человеческому голосу тоже. Поэтому мы легко отличаем голоса разных людей.

Человеческое ухо лучше всего воспринимает самый громкий (основной) тон в музыкальном звуке. Частичные тоны (обертоны) не воспринимаются как отдельные звуки, придают основному звуку определенный колорит сливаясь с ним. Обертоны, входящие в состав сложного звука называют гармониками или гармоническими составляющими. Распределение громкости между гармониками у разных инструментов не всегда такое линейное как в теории. Например у гобоя (духовой музыкальный инструмент) вторая гармоника громче основного тона, а третья громче второй и только у последующих гармоник громкость снижается.

На электронных музыкальных инструментах (синтезаторах), изменяя соотношения гармоник в сложном звуке, можно составить любую громкость обертонов и подобрать их так, чтобы имитировать звучание любых музыкальных инструментов. Если выделить первую, третью и пятую гармоники — зазвучит кларнет 🙂

Итак, мы рассмотрели природу звука в музыке и его характеристики: высоту, амплитуду, длительность и тембр.

Если статья была полезна, поддержите проект — поделитесь этой страницей с друзьями:

Для обучения игре на духовых музыкальных инструментах мы рекомендуем программу «Свирелька», которую получить можно здесь.

С помощью данного видеурока вы сможете изучить тему «Источники звука. Звуковые колебания. Высота, тембр, громкость». На этом занятии вы узнаете, что такое звук. Также мы рассмотрим диапазоны звуковых колебаний, воспринимаемые человеческим слухом. Определим, что может быть источником звука и какие необходимы условия для его возникновения. Также изучим такие характеристики звука, как высота, тембр и громкость.

Тема урока посвящена источникам звука, звуковым колебаниям. Поговорим мы и о характеристиках звука - высоте, громкости и тембре. Прежде чем говорить о звуке, о звуковых волнах, давайте вспомним, что механические волны распространяются в упругих средах. Часть продольных механических волн, которая воспринимается человеческими органами слуха, называется звуком, звуковыми волнами. Звук - это воспринимаемые человеческими органами слуха механические волны, которые вызывают звуковые ощущения .

Опыты показывают, что человеческое ухо, органы слуха человека воспринимают колебания частотами от 16 Гц до 20000 Гц. Именно этот диапазон мы и называем звуковым. Конечно, существуют волны, частота которых меньше 16 Гц (инфразвук) и больше 20000 Гц (ультразвук). Но этот диапазон, эти разделы человеческим ухом не воспринимаются.

Рис. 1. Диапазон слышимости человеческого уха

Как мы говорили, области инфразвука и ультразвука человеческими органами слуха не воспринимаются. Хотя могут восприниматься, например, некоторыми животными, насекомыми.

Что такое ? Источниками звука могут быть любые тела, которые совершают колебания со звуковой частотой (от 16 до 20000 Гц)

Рис. 2. Зажатая в тиски колеблющаяся линейка может быть источником звука

Обратимся к опыту и посмотрим, как образуется звуковая волна. Для этого нам потребуется металлическая линейка, которую мы зажмем в тиски. Теперь, воздействуя на линейку, мы сможем наблюдать колебания, но никакого звука не слышим. И тем не менее вокруг линейки создается механическая волна. Обратите внимание, когда линейка смещается в одну сторону, здесь образуется уплотнение воздуха. В другую сторону - тоже уплотнение. Между этими уплотнениями образуется разряжение воздуха. Продольная волна - это и есть звуковая волна, состоящая из уплотнений и разряжений воздуха . Частота колебаний линейки в данном случае меньше звуковой частоты, поэтому мы не слышим этой волны, этого звука. На основе опыта, который мы только что пронаблюдали, в конце XVIII века был создан прибор, который называется камертон.

Рис. 3. Распространение продольных звуковых волн от камертона

Как мы убедились, звук появляется в результате колебаний тела со звуковой частотой. Распространяются звуковые волны во все стороны. Между слуховым аппаратом человека и источником звуковых волн обязательно должна быть среда. Эта среда может газообразной быть, жидкой, твердой, но это обязательно должны быть частицы, способные передавать колебания. Процесс передачи звуковых волн должен обязательно происходить там, где есть вещество. Если вещества нет, никакого звука мы не услышим.

Для существования звука необходимы:

1. Источник звука

2. Среда

3. Слуховой аппарат

4. Частота 16-20000 Гц

5. Интенсивность

Теперь перейдем к обсуждению характеристик звука. Первая - это высота звука. Высота звука - характеристика, которая определяется частотой колебаний . Чем больше частота у тела, которое производит колебания, тем звук будет выше. Давайте вновь обратимся к линейке, зажатой в тиски. Как мы уже говорили, мы видели колебания, но не слышали звука. Если теперь длину линейки сделать меньше, то мы будем слышать звук, но увидеть колебания будет гораздо сложнее. Посмотрите на линейку. Если мы подействуем на нее сейчас, звука никакого мы не услышим, но зато наблюдаем колебания. Если укоротим линейку, мы услышим звук определенной высоты. Мы можем сделать длину линейки еще короче, тогда мы услышим звук еще большей высоты (частоты). То же самое мы можем пронаблюдать и с камертонами. Если мы возьмем большой камертон (он еще называется демонстрационный) и ударим по ножкам такого камертона, то можем пронаблюдать колебание, но звука не услышим. Если возьмем другой камертон, то, ударив по нему, услышим определенный звук. И следующий камертон, настоящий настроечный камертон, который используется для настройки музыкальных инструментов. Он издает звук, соответствующий ноте ля, или, как говорят еще, 440 Гц.

Следующая характеристика - тембр звука. Тембром называется окраска звука . Как можно проиллюстрировать эту характеристику? Тембр - это то, чем отличаются два одинаковых звука, исполненные различными музыкальными инструментами. Вы все знаете, что нот у нас всего семь. Если мы услышим одну и ту же ноту ля, взятую на скрипке и на фортепиано, то мы отличим их. Мы сразу сможем сказать, какой инструмент этот звук создал. Именно эту особенность - окраску звука - и характеризует тембр. Нужно сказать, что тембр зависит от того, какие воспроизводятся звуковые колебания, кроме основного тона. Дело в том, что произвольные звуковые колебания довольно сложные. Они состоят из набора отдельных колебаний, говорят спектра колебаний . Именно воспроизведение дополнительных колебаний (обертонов) и характеризует красоту звучания того или иного голоса или инструмента. Тембр является одним из основных и ярких проявлений звука.

Еще одна характеристика - громкость. Громкость звука зависит от амплитуды колебаний . Давайте посмотрим и убедимся, что громкость связана с амплитудой колебаний. Итак, возьмем камертон. Сделаем следующее: если ударить по камертону слабо, то амплитуда колебаний будет небольшая и звук будет тихий. Если теперь по камертону ударить сильнее, то и звук гораздо громче. Это связано с тем, что амплитуда колебаний будет гораздо больше. Восприятие звука - вещь субъективная, зависит от того, каков слуховой аппарат, каково самочувствие человека.

Список дополнительной литературы:

А так ли хорошо знаком вам звук? // Квант. — 1992. — № 8. — C. 40-41. Кикоин А.К. О музыкальных звуках и их источниках // Квант. — 1985. — № 9. — С. 26-28. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 3. - М., 1974.

Обратимся ещё раз к опыту, изображённому на рисунке 74. Как уже говорилось, свободная часть линейки создаёт звук только в том случае, если она колеблется с частотой, не меньшей чем 16 Гц. Переместим линейку в тисках вниз (укоротив тем самым верхнюю часть) и приведём её в колебательное движение. Заметим, что частота колебаний линейки увеличилась, а издаваемый ею звук стал выше. Продолжая периодически укорачивать колеблющуюся часть линейки, убедимся в том, что с увеличением частоты колебаний звук повышается.

Проверим этот вывод на другом опыте. Возьмём зубчатый диск (рис. 79, а), с помощью специального устройства приведём его во вращение и прикоснёмся к зубчатому краю тонкой картонной пластинкой (рис. 79, б). Под воздействием зубьев вращающегося диска пластинка начнёт совершать вынужденные колебания, в результате чего мы услышим звук. Увеличим скорость вращения диска, и пластинка станет колебаться чаще, а издаваемый ею звук будет выше.

Рис. 79. Исследование зависимости высоты звука от частоты колебаний источника

На основании описанного опыта можно заключить, что высота звука зависит от частоты колебаний: чем больше частота колебаний источника звука, тем выше издаваемый им звук.

Напомним, что ветви камертона совершают гармонические (синусоидальные) колебания, которые являются самым простым видом колебаний. Таким колебаниям присуща только одна строго определённая частота. Звук камертона является чистым тоном.

  • Чистым тоном называется звук источника, совершающего гармонические колебания одной частоты

Звуки от других источников (например, звуки различных музыкальных инструментов, голоса людей, звук сирены и многие другие) представляют собой совокупность гармонических колебаний разных частот, т. е. совокупность чистых тонов.

Самая низкая (т. е. самая малая) частота такого сложного звука называется основной частотой, а соответствующий ей звук определённой высоты - основным тоном (иногда его называют просто тоном). Высота сложного звука определяется именно высотой его основного тона.

Все остальные тоны сложного звука называются обертонами. Частоты всех обертонов данного звука в целое число раз больше частоты его основного тона (поэтому их называют также высшими гармоническими тонами).

Обертоны определяют тембр звука, т. е. такое его качество, которое позволяет нам отличать звуки одних источников от звуков других. Например, мы легко отличаем звук рояля от звука скрипки даже в том случае, если эти звуки имеют одинаковую высоту, т. е. одну и ту же частоту основного тона. Отличие же этих звуков обусловлено разным набором обертонов (совокупность обертонов различных источников может отличаться количеством обертонов, их амплитудами, сдвигом фаз между ними, спектром частот).

Таким образом, высота звука определяется частотой его основного тона: чем больше частота основного тона, тем выше звук.

Тембр звука определяется совокупностью его обертонов.

Чтобы выяснить, от чего зависит громкость звука, вернёмся к опыту, изображённому на рисунке 76. К одной ветви камертона подводят вплотную маленький висящий на нити шарик, а по другой слегка ударяют молоточком. Обе ветви камертона приходят в колебательное движение. Слышен негромкий звук. Шарик отскакивает от колеблющейся ветви на небольшое расстояние. Затем камертон глушат и снова ударяют по нему, но гораздо сильнее, чем в первый раз. Теперь камертон звучит громче, а шарик отскакивает на большее расстояние, что свидетельствует о большей амплитуде колебаний ветвей.

Этот и многие другие опыты позволяют сделать вывод о том, что громкость звука зависит от амплитуды колебаний: чем больше амплитуда колебаний, тем громче звук.

В рассмотренном опыте частоты колебаний обоих звуков - тихого и громкого - одинаковы, так как их источником является один и тот же камертон. Но если сравнить звуки разных частот, то кроме амплитуды колебаний пришлось бы учитывать ещё один фактор, влияющий на громкость. Дело в том, что чувствительность человеческого уха к звукам разной частоты различна. При одинаковых амплитудах как более громкие воспринимаются звуки, частоты, которых лежат в пределах от 1000 до 5000 Гц. Поэтому, например, высокий женский голос с частотой 1000 Гц будет для нашего уха громче низкого мужского с частотой 200 Гц, даже если амплитуды колебаний голосовых связок в обоих случаях одинаковы. Громкость звука зависит также от его длительности и от индивидуальных особенностей слушателя.

  • При равных амплитудах женский голос, имеющий большую частоту, чем мужской, воспринимается как более громкий

Громкость звука - это субъективное качество слухового ощущения, позволяющее располагать все звуки по шкале от тихих до громких.

Единица громкости звука называется сон. В практических задачах громкость звука принято характеризовать уровнем звукового давления, измеряемым в белах (Б) или децибелах (дБ), составляющих десятую часть бела.

Например, звуку, возникающему при листании газеты, соответствует уровень звукового давления порядка 20 дБ, звуку звонка будильника - примерно 80 дБ, двигателя самолёта - порядка 130 дБ (такой громкий звук вызывает у человека болевое ощущение).

Систематическое воздействие на человека громких звуков, особенно шумов (совокупности звуков разной громкости, высоты тона, тембра), неблагоприятно отражается на его здоровье.

В шумных районах у многих людей появляются симптомы шумовой болезни: повышенная нервная возбудимость, быстрая утомляемость, повышенное артериальное давление. Поэтому в больших городах приходится принимать специальные меры для уменьшения шумов, например запрещать звуковые сигналы автомобилей.

Вопросы

  • С какой целью проводились опыты, изображённые на рисунках 74 и 79? Какой был сделан вывод по результатам этих опытов?
  • Как на опыте удостовериться в том, что из двух камертонов более высокий звук издаёт тот, у которого больше собственная частота? (Частоты на камертонах не указаны.)
  • От чего зависит высота звука?
  • Как изменится громкость звука, если уменьшить амплитуду колебаний его источника?
  • Звук какой частоты - 500 Гц или 3000 Гц - человеческое ухо воспримет как более громкий при одинаковых амплитудах колебаний источников этих звуков?
  • От чего зависит громкость звука?
  • Как отражается на здоровье человека систематическое действие громких звуков?

Упражнение 29

  • Какое насекомое чаще машет крыльями в полёте - шмель, комар или муха? Почему вы так думаете?
  • Зубья вращающейся циркулярной пилы создают в воздухе звуковую волну. Как изменится высота звука, издаваемого пилой при её холостом ходе, если на ней начать распиливать толстую доску из плотной древесины? Почему?
  • Известно, что чем туже натянута струна на гитаре, тем более высокий звук она издаёт. Как изменится высота звучания гитарных струн при значительном повышении температуры окружающего воздуха? Ответ поясните.