Зависимость объема идеального газа от температуры. Экспериментальное определение зависимости объема газа от температуры

В отношении жидкостей имеет смысл говорить лишь об объёмном расширении. У жидкостей оно значительно больше, чем у твёрдых тел. Как показывает опыт, зависимость объёма жидкости от температуры выражается такой же формулой, как и для твёрдых тел.

Если при 0° С жидкость занимает объём V 0 , то при температуре t её объём V t будет:

V t = V 0 (1 + ?t)

Для измерения коэффициента расширения жидкости применяется стеклянный сосуд термометрической формы, объём которого известен. Шарик с трубкой наполняют доверху жидкостью и нагревают весь прибор до определённой температуры; при этом часть жидкости выливается из сосуда. Затем сосуд с жидкостью охлаждают в тающем льду до 0°. При этом жидкость заполнит уже не весь сосуд, и незаполненный объём покажет, насколько жидкость расширилась при нагревании. Зная коэффициент расширения стекла, можно довольно точно вычислить и коэффициент расширения жидкости.

Коэффициенты расширения некоторых жидкостей

Эфир – 0,00166

Спирт – 0,00110

Керосин – 0,00100

Вода (от 20° С и выше) – 0,00020

Вода (от 5 и до 8° С) – 0,00002

Тепловое расширение

Из таблицы коэффициентов линейного расширения в статье линейное расширение твердых тел видно, что коэффициенты расширения твёрдых тел очень малы. Однако самые незначительные изменения размеров тел при изменении температуры вызывают появление огромных сил.

Опыт показывает, что даже для небольшого удлинения твёрдого тела требуются огромные внешние силы. Так, чтобы увеличить длину стального стержня сечением в 1 см 2 приблизительно на 0,0005 его первоначальной длины, необходимо приложить силу в 1000 кГ. Но такой же величины расширение этого стержня получается при нагревании его на 50 град. Ясно поэтому, что, расширяясь при нагревании (или сжимаясь при охлаждении) на 50 град, стержень будет оказывать давление около 1000 кГ/см 2 на те тела, которые будут препятствовать его расширению (сжатию).

Огромные силы, возникающие при расширении и сжатии твёрдых тел, учитываются в технике. Например, один из концов моста не закрепляют неподвижно, а устанавливают на катках; железнодорожные рельсы не укладывают вплотную, а оставляют между ними просвет; паропроводы подвешивают на крюках, а между отдельными трубами устанавливают компенсаторы, изгибающиеся при удлинении труб паропровода. По этой же причине котёл паровоза закрепляется только на одном конце, другой же его конец может свободно перемещаться.

Линейное расширение твёрдых тел

Твёрдое тело при данной температуре имеет определённую форму и определённые линейные размеры. Увеличение линейных размеров тела при нагревании называется тепловым линейным расширением.

Измерения показывают, что одно и то же тело расширяется при различных температурах по-разному: при высоких температурах обычно сильнее, чем при низких. Но это различие в расширении столь невелико, что при сравнительно небольших изменениях температуры им можно пренебречь и считать, что изменение размеров тела пропорционально изменению температуры.

Объёмное расширение твёрдых тел

При тепловом расширении твёрдого тела с увеличением линейных размеров тела увеличивается и его объём. Аналогично коэффициенту линейного расширения для характеристики объёмного расширения можно ввести коэффициент объёмного расширения. Опыт показывает, что так же, как и в случае линейного расширения, можно без большой ошибки принять, что приращение объёма тела пропорционально повышению температуры.

Обозначив объём тела при 0° С через V 0 , объём при температуре t° через V t , а коэффициент объёмного расширения через α, найдём:

α = V t – V 0: V 0 t (1)

При V 0 = 1 ед. объема и t = 1 o С величина α равна V t – V 0 , т. е. коэффициент объёмного расширения численно равен приросту объёма тела при нагревании на 1 град, если при 0°С объём был равен единице объёма.

По формуле (1), зная объём тела при температуре 0° С, можно вычислить объём его при любой температуре t°:

V t = V 0 (1 + αt)

Установим соотношение между коэффициентами объёмного и линейного расширения.

Закон сохранения и превращения энергии

Рассмотрим более подробно описанный выше опыт Джоуля. В этом опыте потенциальная энергия падающих грузов превращалась в кинетическую энергию вращающихся лопаток; благодаря работе против сил трения кинетическая энергия лопаток превращалась во внутреннюю энергию воды. Мы сталкиваемся здесь со случаем превращения одного вида энергии в другой. Потенциальная энергия падающих грузов превращается во внутреннюю энергию воды, количество теплоты Q служит мерой превращённой энергии. Таким образом, количество энергии сохраняется при её превращениях в другие виды энергии.

Естественно поставить вопрос: сохраняется ли количество энергии при превращениях других видов энергии, например кинетической, электрической и т.д.? Допустим, что летит пуля массой m со скоростью v. Её кинетическая энергия равна mv 2 / 2 . Пуля попала в какой-либо предмет и застряла в нём. Кинетическая энергия пули превращается при этом во внутреннюю энергию пули и предмета, измеряемую количеством теплоты Q, которое вычисляется по известной формуле. Если кинетическая энергия при превращении во внутреннюю энергию не теряется, то должно иметь место равенство:

mv 2 / 2 = Q

где кинетическая энергия и количество теплоты выражены в одних единицах.

Опыт подтверждает это заключение. Количество энергии сохраняется.

Механический эквивалент теплоты

В начале XIX в. в промышленность и транспорт широко внедряются паровые двигатели. Одновременно изыскиваются возможности повышения их экономичности. В связи с этим перед физикой и техникой ставится вопрос большой практической важности: как при наименьшей, затрате топлива в машине совершить возможно больше работы.

Первый шаг в решении этой задачи сделал французский инженер Сади Карно в 1824 г., изучая вопрос о коэффициенте полезного действия паровых машин.

В 1842 г. немецкий учёный Роберт Майер теоретически определил, какое количество механической работы можно получить при затрате одной килокалории теплоты.

В основу своих расчётов Майер положил различие в теплоемкостях газа.

У газов различают две теплоёмкости: теплоёмкость при постоянном давлении (с р) и теплоёмкость при постоянном объёме (c v).

Теплоёмкость газа при постоянном давлении измеряется количеством теплоты, которое идёт на нагревание данной массы газа на 1 град без изменения его давления.

Теплоёмкость же при постоянном объёме численно равна количеству теплоты, идущей на нагревание данной массы газа на 1 град без изменения объёма, занимаемого газом.

Зависимость объёма тел от температуры

Частицы твёрдого тела занимают друг относительно друга определённые положения, но не остаются в покое, а совершают колебания . При нагревании тела увеличивается средняя скорость движения частиц. Средние расстояния между частицами при этом увеличиваются, поэтому увеличиваются линейные размеры тела, а следовательно, увеличивается и его объём.

При охлаждении линейные размеры тела сокращаются, и объём его уменьшается.

При нагревании, как известно, тела расширяются, а при охлаждении сжимаются. Качественная сторона этих явлений была уже рассмотрена в начальном курсе физики.

Японский физик Масакадзу Мацумото выдвинул теорию, которая объясняет, почему вода при нагревании от 0 до 4°C сжимается, вместо того чтобы расширяться. Согласно его модели, вода содержит микрообразования — «витриты», представляющие собой выпуклые пустотелые многогранники, в вершинах которых находятся молекулы воды, а ребрами служат водородные связи. При повышении температуры конкурируют между собой два явления: удлинение водородных связей между молекулами воды и деформация витритов, приводящая к уменьшению их полостей. В диапазоне температур от 0 до 3,98°C последнее явление доминирует над эффектом удлинения водородных связей, что в итоге и дает наблюдаемое сжатие воды. Экспериментального подтверждения модели Мацумото пока что нет — впрочем, как и других теорий, объясняющих сжатие воды.

В отличие от подавляющего большинства веществ, вода при нагревании способна уменьшать свой объем (рис. 1), то есть обладает отрицательным коэффициентом теплового расширения. Впрочем, речь идет не обо всём температурном интервале, где вода существует в жидком состоянии, а лишь об узком участке — от 0°C примерно до 4°C. При бо льших температурах вода, как и другие вещества, расширяется.

Между прочим, вода — не единственное вещество, имеющее свойство сжиматься при увеличении температуры (или расширяться при охлаждении). Подобным поведением могут «похвастать» еще висмут, галлий, кремний и сурьма. Тем не менее, в силу своей более сложной внутренней структуры, а также распространенности и важности в разнообразных процессах, именно вода приковывает внимание ученых (см. Продолжается изучение структуры воды , «Элементы», 09.10.2006).

Некоторое время назад общепринятой теорией, отвечающей на вопрос, почему вода увеличивает свой объем при понижении температуры (рис. 1), была модель смеси двух компонент — «нормальной» и «льдоподобной». Впервые эта теория была предложена в XIX веке Гарольдом Витингом и позднее была развита и усовершенствована многими учеными. Сравнительно недавно в рамках обнаруженного полиморфизма воды теория Витинга была переосмыслена. Отныне считается, что в переохлажденной воде существует два типа льдообразных нанодоменов: области, похожие на аморфный лед высокой и низкой плотности. Нагревание переохлажденной воды приводит к плавлению этих наноструктур и к появлению двух видов воды: с большей и меньшей плотностью. Хитрая температурная конкуренция между двумя «сортами» образовавшейся воды и порождает немонотонную зависимость плотности от температуры. Однако пока эта теория не подтверждена экспериментально.

С приведенным объяснением нужно быть осторожным. Не случайно здесь говорится лишь о структурах, которые напоминают аморфный лед. Дело в том, что наноскопические области аморфного льда и его макроскопические аналоги обладают разными физическими параметрами.

Японский физик Масакадзу Мацумото решил найти объяснение обсуждаемого здесь эффекта «с нуля», отбросив теорию двухкомпонентной смеси. Используя компьютерное моделирование, он рассмотрел физические свойства воды в широком диапазоне температур — от 200 до 360 К при нулевом давлении, чтобы в молекулярном масштабе выяснить истинные причины расширения воды при ее охлаждении. Его статья в журнале Physical Review Letters так и называется: Why Does Water Expand When It Cools? («Почему вода при охлаждении расширяется?»).

Изначально автор статьи задался вопросом: что влияет на коэффициент теплового расширения воды? Мацумото считает, что для этого достаточно выяснить влияние всего трех факторов: 1) изменения длины водородных связей между молекулами воды, 2) топологического индекса — числа связей на одну молекулу воды и 3) отклонения величины угла между связями от равновесного значения (углового искажения).

Перед тем как рассказать о результатах, полученных японским физиком, сделаем важные замечания и разъяснения по поводу вышеупомянутых трех факторов. Прежде всего, привычная химическая формула воды H 2 O соответствует лишь парообразному ее состоянию. В жидкой форме молекулы воды посредством водородной связи объединяются в группы (H 2 O) x , где x — количество молекул. Наиболее энергетически выгодно объединение из пяти молекул воды (x = 5) с четырьмя водородными связями, в котором связи образуют равновесный , так называемый тетраэдральный угол , равный 109,47 градуса (см. рис. 2).

Проанализировав зависимость длины водородной связи между молекулами воды от температуры, Мацумото пришел к ожидаемому выводу: рост температуры рождает линейное удлинение водородных связей. А это, в свою очередь, приводит к увеличению объема воды, то есть к ее расширению. Сей факт противоречит наблюдаемым результатам, поэтому далее он рассмотрел влияние второго фактора. Как коэффициент теплового расширения зависит от топологического индекса?

Компьютерное моделирование дало следующий результат. При низких температурах наибольший объем воды в процентном отношении занимают кластеры воды, у которых на одну молекулу приходится 4 водородных связи (топологический индекс равен 4). Повышение температуры вызывает уменьшение количества ассоциатов с индексом 4, но при этом начинает возрастать число кластеров с индексами 3 и 5. Проведя численные расчеты, Мацумото обнаружил, что локальный объем кластеров с топологическим индексом 4 с повышением температуры практически не меняется, а изменение суммарного объема ассоциатов с индексами 3 и 5 при любой температуре взаимно компенсирует друг друга. Следовательно, изменение температуры не меняет общий объем воды, а значит, и топологический индекс никакого воздействия на сжатие воды при ее нагревании не оказывает.

Остается выяснить влияние углового искажения водородных связей. И вот здесь начинается самое интересное и важное. Как было сказано выше, молекулы воды стремятся объединиться так, чтобы угол между водородными связями был тетраэдральным. Однако тепловые колебания молекул воды и взаимодействия с другими молекулами, не входящими в кластер, не дают им этого сделать, отклоняя величину угла водородной связи от равновесного значения 109,47 градуса. Чтобы как-то количественно охарактеризовать этот процесс угловой деформации, Мацумото с коллегами, основываясь на своей предыдущей работе Topological building blocks of hydrogen bond network in water , опубликованной в 2007 году в Journal of Chemical Physics , выдвинули гипотезу о существовании в воде трехмерных микроструктур, напоминающих выпуклые полые многогранники. Позднее, в следующих публикациях, такие микроструктуры они назвали витритами (рис. 3). В них вершинами являются молекулы воды, роль ребер играют водородные связи, а угол между водородными связями — это угол между ребрами в витрите.

Согласно теории Мацумото, существует огромное разнообразие форм витритов, которые, как мозаичные элементы, составляют большую часть структуры воды и которые при этом равномерно заполняют весь ее объем.

Молекулы воды стремятся создать в витритах тетраэдральные углы, поскольку витриты должны обладать минимально возможной энергией. Однако из-за тепловых движений и локальных взаимодействий с другими витритами некоторые микроструктуры не обладают геометрией с тетраэдральными углами (или углами, близкими к этому значению). Они принимают такие структурно неравновесные конфигурации (не являющиеся для них самыми выгодными с энергетической точки зрения), которые позволяют всему «семейству» витритов в целом получить наименьшее значение энергии среди возможных. Такие витриты, то есть витриты, которые как бы приносят себя в жертву «общим энергетическим интересам», называются фрустрированными. Если у нефрустрированных витритов объем полости максимален при данной температуре, то фрустрированные витриты, напротив, обладают минимально возможным объемом.

Компьютерное моделирование, проведенное Мацумото, показало, что средний объем полостей витритов с ростом температуры линейным образом уменьшается. При этом фрустрированные витриты значительно уменьшают свой объем, тогда как объем полости нефрустрированных витритов почти не меняется.

Итак, сжатие воды при увеличении температуры вызвано двумя конкурирующими эффектами — удлинением водородных связей, которое приводит к увеличению объема воды, и уменьшением объема полостей фрустрированных витритов. На температурном отрезке от от 0 до 4°C последнее явление, как показали расчеты, преобладает , что в итоге и приводит к наблюдаемому сжатию воды при повышении температуры.

Осталось дождаться экспериментального подтверждения существования витритов и такого их поведения. Но это, увы, очень непростая задача.

Убедиться в справедливости закона Гей-Люссака можно с помощью уже известного нам прибора (см. рис. 3.7). Для этого, заметив показания манометра, следует измерить температуру газа в гофрированном сосуде и объем сосуда. Затем нужно нагреть газ, поместив сосуд в горячую воду, и, вращая винт, добиться того, чтобы показания манометра остались прежними. Снова измерить температуру и объем газа. После этого опять изменить температуру, добиться первоначального значения давления и измерить температуру и объем газа в третий раз.

Изобары

Используя найденные значения объема газа при различных температурах и одном и том же давлении, можно построить график зависимости V от t . Эта зависимость изобразится прямой линией - изобарой, как и должно быть согласно формуле (3.6.4).

Различным давлениям соответствуют разные изобары (рис. 3.10). Так как с ростом давления объем газа при постоянной температуре уменьшается (закон Бойля-Мариотта), то изобара, соответствующая более высокому давлению р 2 , лежит ниже изобары, соответствующей более низкому давлению p 1

Идеальный газ

Если продолжить изобары в область низких температур, где измерения не проводились, то все прямые пересекают ось температуры в точке, соответствующей объему, равному нулю (пунктирные прямые на рис. 3.10). Но это не означает, что объем газа действительно обращается в нуль. Ведь все газы при сильном охлаждении превращаются в жидкости, а к жидкостям ни закон Гей-Люссака, ни закон Бойля-Мариотта неприменимы.

Реальные газы подчиняются основным газовым законам лишь приближенно и тем менее точно, чем больше плотность газа и ниже его температура. Газ, который в точности подчиняется газовым законам, называют идеальным.

Газовая шкала температур

Тот факт, что численное значение температурного коэффициента объемного расширения в предельном случае малых плотностей одинаково для всех газов, позволяет установить температурную шкалу, не зависящую от вещества, - идеальную газовую шкалу температур.

Приняв за основу шкалу Цельсия, можно определить температуру из соотношения (3.6.1)

(3.6.5)

где V 0 - объем газа при 0 °С, а V - его объем при температуре t .

Таким образом, с помощью формулы (3.6.5) осуществляется определение температуры, не зависящее от вещества термометра.

Дано определение идеального газа как газа, в точности подчиняющегося законам Бойля-Мариотта и Гей-Люссака. Введена идеальная газовая шкала температур, не зависящая от вещества.

§ 3.7. Абсолютная температура

Не все в мире относительно. Так, существует абсолютный нуль температуры. Есть и абсолютная шкала температур. Сейчас вы узнаете об этом

При увеличении температуры объем газа неограниченно возрастает. Не существует никакого предела для роста температуры*. Напротив, низкие температуры имеют предел.

* Наибольшие температуры на Земле - сотни миллионов градусов - получены при взрывах термоядерных бомб. Еще более высокие температуры характерны для внутренних областей некоторых звезд.

Согласно закону Гей-Люссака (3.6.4), при понижении температуры объем стремится к нулю. Так как объем не может быть отрицательным, то температура не может быть меньше определенного значения (отрицательного по шкале Цельсия).

    Установите поршень на V=50ml.

    Откачайте ручным насосом газ из ёмкости. По показаниям манометра определите изменения давления р(примерно 500 mbar ; измерения проводятся по черной шкале).

    Откройте вентиль и определите время t , за которое газ пройдет через капилляр.

    Измерьте длину капиляра l с помощью штангенциркуля, объем внутренней полости капиляра указан на капиляре.

    Вычислите радиус капиляра R , используя формулу объема цилиндра.

6. По формуле вычислите вязкость газа.

    Опыт повторите не менее пяти раз. Результаты занесите в таблицу.

Упражнение №2.

1. Наберите газ (гелий или углекислый газ по указанию преподавателя) в камеру.

2. Поршень газового шприца установите на ноль.

3. Подсоедините камеру с газом к газовому шприцу.

4. Запустите газ в и по положению поршня определите объем газа.

5. Выполните пункты 2-7 упражнения №1.

2131. Зависимость объёма газа от температуры при постоянном давлении (закон гей-люссака)

Введение

Количественное исследование зависимости объема газа от температуры при неизменном давлении было произведено в 1802 г. французским физиком и химиком Жозефом Луи Гей-Люссаком (1778-1850). Опыты показали, что приращение объема газа пропорционально приращению температуры. Поэтому тепловое расширение газа можно, так же как и для других тел, охарактеризовать при помощи температурного коэффициента объемного расширения. Экспериментально установлено, что температурный коэффициент объемного расширения у всех газов одинаков (точнее, почти одинаков) и равняется:


. (1)

Коэффициент объемного расширения измеряется в градусы Цельсия С -1 . За начальный объемV 0 примем объем при температуреt 0 = 0  C. В таком случае приращение температуры газа равно температуреt = t отсчитанной по шкале Цельсия. Тогда, температурный коэффициент объемного расширения:

, и
.

Следует, однако, иметь в виду, что закон Гей-Люссака не оправдывается, когда газ сильно сжат или настолько охлажден, что он приближается к состоянию сжижения. Подставим значение температурного коэффициента объемного расширения в формулу температурной зависимости объема газа:


. (2)

Величину (273+ t ) можно рассматривать как значение температуры, отсчитанное по новой температурной шкале, единица которой такая же, как и у шкалы Цельсия, а за нуль принята точка, лежащая на 273  ниже точки, принятой за нуль шкалы Цельсия, т. е. точки таяния льда. Нуль этой новой шкалы называют абсолютным нулем. Эту новую шкалу называют термодинамической шкалой температур, гдеT t +273 .

Тогда, при постоянном давлении справедлив закон Гей-Люссака:

. (3)

Рис.1. Схема эксперимента.

Цель работы

Проверка закона Гей-Люссака

Решаемые задачи

    Определение зависимости объёма газа от температуры при постоянном давлении

    Определение абсолютной шкалы температур путем экстраполяции в сторону низких температур

Техника безопасности

    Внимание: в работе используется стекло;

    Будьте предельно аккуратны при работе с газовым термометром; стеклянным сосудом и мерным стаканом

    Будьте предельно внимательны при работе с горячей водой.

Экспериментальная установка

Для проверки закон Гей-Люссака используется газовый термометр. Он состоит из стеклянного капилляра с капелькой ртути, открытого с одного конца. Термометр помещают в воду с температурой около 90 ºС и эта система постепенно охлаждается. Открытый конец газового термометра находится при атмосферном давлении, и давление столба воздуха в термометре остается постоянным на протяжении всего эксперимента. Объём столба воздуха определяется по высоте столба газа под капелькой ртути и сечения капилляра по формуле:

    Откройте заглушку газового термометра, подключите к термометру ручной вакуумный насос.

    Поверните осторожно термометр как показано слева на рис. 2 и откачайте воздух из него с помощью насоса так, чтобы капелька ртути оказалась в точке a) (см. рис.2).

    После того как капелька ртути собралась в точке a)поверните термометр отверстием наверх и спустите нагнетенный воздух ручкойb) на насосе (см. рис.2) осторожно, чтобы ртуть не разделилась на несколько капелек.

    Отсоедините насос от термометра. Отверстие термометра должно оставаться открытым.

    Нагрейте воду в стеклянном сосуде на плитке до 90°С.

    Налейте горячую воду в стеклянный сосуд.

    Поместите в сосуд газовый термометр, закрепив его на штативе.

    Поместите термопару в воду.

    Измерьте высоту столба воздуха под капелькой ртути при изменении температуры.

    Постройте график измеренной зависимости объема столба воздуха от температуры, откладывая по оси абсцисс – температуру в градусах Цельсия.

    Продолжите график до пересечения с осью абсцисс. Определите температуру пересечения, объясните полученные результаты.

    По тангенсу угла наклона определите коэффициент объемного расширения газа.

    Рассчитайте зависимость объема от температуры при постоянном давлении по закону Гей-Люссака и постройте график. Сравните теоретические и экспериментальные зависимости.

Зависимость объема фиксированной массы идеального газа от температуры при постоянном давлении

Анимация

Описание

Закон идеального газа, согласно которому объем данной массы газа при постоянном давлении меняется линейно в зависимости от изменения температуры:

V t = V 0 (1+a t ),

где V 0 - объем газа при 00 С;

V t - объем газа при температуре t, измеренной по шкале Цельсия;

a - термический коэффициент объемного расширения.

a» 1/273(° С )-1

Закон Гей-Люссака может быть записан в виде:

V=V 0 a T ,

где Т - абсолютная температура, выраженная в К (Кельвинах);

V 0 - объем газа при Т = 273 К .

Очевидно, закон Гей-Люссака неприменим вблизи абсолютного нуля температуры.

Зависимость объема газа от температуры при постоянном давлении представлена на рис. 1.

Изобары идеального газа

Рис. 1

Поскольку закон Гей-Люссака справедлив для идеальных газов, реальные газы подчиняются ему в достаточно разреженном равновесном состоянии, когда давление и температура далеки от критических значений, при которых начинается cжижение.

Для большинства газов при комнатной температуре давление может изменяться от 10-6 до 102 атм.

Закон носит эмпирический характер, т.к. был получен путем обобщения результатов физических экспериментов.

Закон был опубликован в 1802 г. Жозефом Луи Гей-Люссаком (1778-1850). При этом Гей-Люссак настоял на том, чтобы он носил имя Жака Александра Цезара Шарля (1746-1823), который открыл этот закон в 1787 году, но не опубликовал его.

Временные характеристики

Время инициации (log to от -10 до -8);

Время существования (log tc от -10 до 15);

Время деградации (log td от -10 до -8);

Время оптимального проявления (log tk от -8 до -8).

Диаграмма:

Технические реализации эффекта

Газовый термометр постоянного давления

Техническая реализация - газовый термометр постоянного давления. Предложен в 1851 г. Уильямом Томсоном (лордом Кельвином) для реализации абсолютной шкалы температур. В качестве рабочего тела был выбран воздух, но может быть пригоден любой другой газ, вдали от точки ожижения.

Применение эффекта

Газовый термометр постоянного давления используют в лабораторной практике для градуировки термометров по шкале Кельвина.

Кроме того, на том же принципе основано устройство термоскопа (рис. 2) - малого тела, служащее для констатации одинаковости или различия температур двух или нескольких тел.

Принципиальные схемы термоскопа

Рис. 2

Термоскоп представляет собой полый стеклянный шар малого объема, соединенный с тонкой стеклянной трубкой, в которой имеется пробка из жидкости (ртути).

При соприкосновении шарика термоскопа с исследуемым телом меняется объем содержащегося внутри него воздуха. Изменение объема воздуха констатируется с помощью жидкостного манометра или по перемещению столбика ртути в трубке, соединенной с шариками.

Литература

1. Сивухин Д.В. Общий курс физики.- М.: Наука, 1979.- Т.2. Термодинамика и молекулярная физика.- С.18-28.

2. Липман Г. Великие эксперименты в физике; Пер. с англ.- М.: Мир, 1972.- С.45-58.

Ключевые слова

  • идеальный газ
  • объем
  • температура
  • давление

Разделы естественных наук: