3 тела вращения. Тела и поверхности вращения

Цилиндром (точнее, круговым цилиндром) называется тело, которое состоит из двух кругов, совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов. Круги называются основаниями

цилиндра, а отрезки, соединяющие соответствующие точки окружностей кругов, - образующими цилиндра. На рисунке 156 изображен цилиндр. Круги с центрами О и являются его основаниями, его образующие.

Можно доказать, что основания цилиндра равны и лежат в параллельных плоскостях, что у цилиндра образующие - параллельны и равны. Поверхность цилиндра состоит из оснований и боковой поверхности. Боковая поверхность составлена из образующих.

Цилиндр называется прямым, если его образующие перпендикулярны плоскостям оснований. На рисунке 155, б изображен наклонный цилиндр, а на рисунке 155, а - прямой.

В дальнейшем мы будем рассматривать только прямой цилиндр, называя его для краткости просто цилиндром. Его можно рассматривать как тело, полученное при вращении прямоугольника вокруг одной из сторон как оси (рис. 156).

Радиусом цилиндра называется радиус его основания. Высотой цилиндра назаывается расстояние между плоскостями оснований. Осью цилиндра называется прямая, проходящая через центры оснований. Она параллельна образующим. Сечение цилиндра плоскостью, проходящей через ось цилиндра, называется осевым сечением. Плоскость, проходящая через образующую прямого цилиндра и перпендикулярная осевому сечению, проведенному через эту образующую, называется касательной плоскостью цилиндра.

На рисунке 157 сечение проходит через ось цилиндра ОО и т. е. является осевым сечением.

Плоскость, перпендикулярная оси цилиндра» пересекает его боковую поверхность по окружности, равной окружности основания.

Призмой, вписанной в цилиндр, называется такая призма, основания которой - равные многоугольники, вписанные в основания цилиндра. Ее боковые ребра являются образующими цилиндра. Призма называется описанной около цилиндра, если ее основания - равные многоугольники, описанные около оснований цилиндра. Плоскости ее граней касаются боковой поверхности цилиндра.

На рисунке 158 изображена призма вписанная в цилиндр. На рисунке 159 призма описана около цилиндра.

Пример. В цилиндр вписать правильную четырехугольную призму.

Решение. 1) Впишем в основание цилиндра квадрат ABCD (рис. 158).

2) Проведем образующие

3) Через соседние пары этих образующих проведем плоскости, которые пересекают верхнее основание по хордам

4) Призма искомая (по определениям правильной и вписанной призмы).

53. Конус.

Конусом (точнее, круговым конусом) называется тело, которое состоит из круга - основания конуса, точки, не лежащей в плоскости этого круга, - вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания. Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими конуса. Поверхность конуса состоит из основания и боковой поверхности. На рисунке 160, а изображен круговой конус. S - вершина конуса, круг с центром в точке О - основание конуса, SA, SB и SC - образующие конуса.

Конус называется прямым, если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания. На рисунке 160, б изображен наклонный конус, а на рисунке 160, а - прямой. В дальнейшем мы будем рассматривать только прямой конус, называя его для краткости просто конусом. Прямой круговой конус можно рассматривать как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси (рис. 161).

Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого конуса называется прямая, содержащая его высоту.

Сечение конуса плоскостью, проходящей через его ось, называется осевым сечением. Плоскость, проходящая через образующую конуса и перпендикулярная осевому сечению, проведенному через эту образующую, называется касательной плоскостью конуса.

На рисунке 162 изображено сечение конуса, проходящее через его ось - осевое сечение конуса.

Плоскость, перпендикулярная оси конуса, пересекает конус по кругу, а боковую поверхность - по окружности с центром на оси конуса.

Плоскость, перпендикулярная осн конуса, отсекает от него меньший конус. Оставшаяся часть называется усеченным конусом (рис. 163).

Пирамидой, вписанной в конус, называется такая пирамида, основание которой есть многоугольник, вписанный в окружность основания конуса, а вершиной является вершина конуса. Боковые ребра пирамиды, вписанной в конус, являются образующими конуса. Пирамида называется описанной около конуса, если ее основанием является многоугольник, описанный около основания конуса, а вершина совпадает с вершиной конуса. Плоскости боковых граней описанной пирамиды являются касательными плоскостями конуса.

На рисунке 164 изображена пирамида, вписанная в конус, а на рисунке 165 изображен конус, вписанный в пирамиду, т. е. пирамида, описанная около конуса.

54. Шар.

Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем

данного, от данной точки. Эта точка называется центром шара, а данное расстояние - радиусом шара. На рисунке 166 изображен шар с центром в точке радиусом В. Заметим, что точки принадлежат данному шару. Граница шара называется шаровой поверхностью или сферой. На рисунке 166 точки А, В и D принадлежат сфере, а, например, точка М ей не принадлежит. Таким образом, точками сфер» являются все точки шара, которые удалены от центра на расстояние, равное радиусу. Любой отрезок, соединяющий центр шара о точкой шаровой поверхности также называется радиусом. Отрезок, соединяющий две течки шаровой поверхности и проходящий через центр шара, называется диаметром. Концы любого диаметра называются диаметрально противоположными точками шара.

Шар, так же, как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его два метра как оси (рис. 167).

Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Если шар с центром О и радиусом R пересечен плоскостью то в сечении по Т. 3.5 получается круг радиуса . центром К. Радиус сечения шара плоскостью можно вычислить по формуле

Из формулы видно, что плоскости, равноудаленные от центра, пересекают шар равным кругам. Радкус сечения тем] больше, чем ближе секущая плоскость к центру шара, т. е.чем меньше расстояние ОК. Наибольший радиус имеет сечение плоскостью, проходящей через центр шара. Радиус этого» круга равен радиусу шара.

Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью называется большим кругом, а сечение сферы - большой окружностью. На рисунке 168 плоскость а является диаметральной плоскостью, круг радиуса К является большим кругом шара, а соответствующая окружность - большой окружностью.

Любая диаметральная плоскость шара является его плоскостью симметрии. Центр шара является его центром симметрии.

Плоскость, проходящая через точку А шаровой поверхности и перпендикулярная радиусу, проведенному в точку А, называется касательной плоскостью. Точка А называется точкой касания (рис. 169).

Касательная плоскость имеет с шаром только одну общую точку - точку касания.

Прямая, проходящая через точку А шаровой поверхности перпендикулярно к радиусу, проведенному в эту точку, называется касательной (рис. 169).

Через любую точку шаровой поверхности проходит бесконечно много касательных, причем все они лежат в касательной плоскости шара.

Шаровым сегментом называется часть шара, отсекаемая от него плоскостью. Шаровым слоем называется часть шара, расположенная

между двумя параллельными плоскостями, пересекающими шар (рис. 170).

Шаровой сектор получается из шарового сегмента и коиуса следующим образом. Если шаровой сегмент меньше полушара, то шаровой сегмент дополняется конусом, у которого вершина в центре шара, а основанием является основание сегмента. Если же сегмент больше полушара, то указанный конус из него удаляется (рис. 171).

Примеры тел вращения

  • Шар - образован полукругом, вращающимся вокруг диаметра разреза
  • Цилиндр - образован прямоугольником, вращающимся вокруг одной из сторон

За площадь боковой поверхности цилиндра принимается площадь его развертки: Sбок = 2πrh.

  • Конус - образован прямоугольным треугольником, вращающимся вокруг одного из катетов

За площадь боковой поверхности конуса принимается площадь ее развертки: Sбок = πrl Площадь полной поверхности конуса: Sкон = πr(l+ r)

При вращении контуров фигур возникает поверхность вращения (например, сфера , образованная окружностью), в то время как при вращении заполненных контуров возникают тела (как шар, образованный кругом).

Объём и площадь поверхности тел вращения

  • Первая теорема Гульдина-Паппа гласит:
  • Вторая теорема Гульдина-Паппа гласит:

Литература

А.В. Погорелов. «Геометрия. 10-11 класс» §21.Тела вращения. - 2011

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Тела вращения" в других словарях:

    деталь с закрытым уступом – тела вращения - Часть детали, поверхность которой ограничена с обеих сторон поверхностями вращения, имеющими больший диаметр. Наличие закрытых уступов не влияет на определение ступенчатости наружной поверхности. Проточки для выхода инструмента не считается… …

    оболочка, имеющая форму тела вращения - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN shell of revolution … Справочник технического переводчика

    тонкого тела теория Энциклопедия «Авиация»

    тонкого тела теория - Обтекание тонкого тела при отличном от нуля угле атаки. тонкого тела теория — теория пространственного безвихревого течения идеальной жидкости около тонких тел [тела, у которых поперечный размер l (толщина, размах) мал по сравнению с… … Энциклопедия «Авиация»

    Теория пространственного безвихревого течения идеальной жидкости около тонких тел (тела, у которых поперечный размер l (толщина, размах) мал по сравнению с продольным размером L: (τ) = l/LЭнциклопедия техники

    Угловая скорость (синяя стрелка) в одну единицу по часовой стрелке Угловая скорость (синяя стрелка) в полторы единицы по часовой стрелке Угловая скорость (синяя стрелка) в одну единицу против часовой стрелки Уг … Википедия

    Раздел физики, изучающий структуру и свойства твердых тел. Научные данные о микроструктуре твердых веществ и о физических и химических свойствах составляющих их атомов необходимы для разработки новых материалов и технических устройств. Физика… … Энциклопедия Кольера

    Движение тела в поле тяготения Земли с нач. скоростью, равной нулю. П. т. происходит под действием силы тяготения, зависящей от расстояния r до центра Земли, и силы сопротивления среды (воздуха или воды), к рая зависит от скорости v движения. На… … Физическая энциклопедия

    Прямая, неподвижная относительно вращающегося вокруг неё твердого тела. Для твердого тела, имеющего неподвижную точку (например, для детского волчка), прямая, проходящая через эту точку, поворотом вокруг которой тело перемещается из данного… … Энциклопедический словарь

    Движение тела в поле тяготения Земли с начальной скоростью, равной нулю. П. т. происходит под действием силы тяготения, зависящей от расстояния r до центра Земли, и силы сопротивления среды (воздуха или воды), которая зависит от скорости… … Большая советская энциклопедия

Книги

  • Комплект таблиц. Математика. Многогранники. Тела вращения. 11 таблиц + 64 карточки + методика , . Учебный альбом из 11 листов (формат 68 х 98 см): - Параллельное проектирование. - Изображение плоских фигур. - Поэтапное иллюстрирование доказательства теорем. - Взаимноерасположение прямых и…
  • Интегрирование уравнений равновесия упругого тела вращения при симметричном относительно его оси распределении объемных и поверхностных сил , Г.Д. Гродский. Воспроизведено в оригинальной авторской орфографии издания 1934 года (издательство`Известия академии наук СССР`). В…

«Объём тела вращения» - Задачи по теме «Объемы тел вращения». Найти объем полученного тела вращения.

«Равенство прямоугольных треугольников» - (По гипотенузе и острому углу). Свойства прямоугольных треугольников. Падающий луч и отражённый луч параллельны. Сформулируйте признак равенства прямоугольных треугольников по катету и острому углу. В основе чего лежит одно из свойств прямоугольного треугольника? Признаки равенства прямоугольных треугольников.

«Прямоугольный треугольник 7 класс» - Решение задач: Проверь себя: Самостоятельное решение задач с последующей самопроверкой. Заполните пропуски в решении задачи: Развивать навыки решения задач на применение свойств прямоугольного треугольника. Закрепить основные свойства прямоугольных треугольников. Теоретический опрос: Рассмотреть признак прямоугольного треугольника и свойство медианы прямоугольного треугольника.

«Объем прямоугольного параллелепипеда» - Объемная. Т е с т. Равны. (Геометрическая фигура). Ребрами. Сделайте вывод. Какие вершины принадлежат основанию? 4. У параллелепипеда 8 ребер. Кубом. 5. У куба все ребра равны. Могут быть разными или равными. (Плоская, объемная). Запишите формулу. Прямоугольник. 2. Любой прямоугольный параллелепипед является кубом.

«Признаки равенства прямоугольных треугольников» - Укажите верную запись 5 признака равенства прямоугольных треугольников. 2.Укажите НЕВЕРНОЕ продолжение утверждения. Прямоугольные треугольники равны По катету и противолежащему острому углу По катету и прямому углу По катету и гипотенузе По трем катетам. Укажите верную запись 2 признака равенства прямоугольных треугольников.

«Прямоугольный параллелепипед» - Параллелепипед, все грани которого квадраты, называется кубом. Слово встречалось у древнегреческих ученых Евклида и Герона. Длина Ширина Высота. Параллелепипед – шестигранник, все грани которого (основания) – параллелограммы. Прямоугольный параллелепипед. Параллелепипед имеет 8 вершин и 12 рёбер. Грани параллелепипеда, не имеющие общих вершин, называются противоположными.

Задание 16 ЕГЭ 2015.Тела вращения.

Иванова Е.Н.

МБОУ СОШ №8 г. Каменск-Шахтинский


Отрезок AB c , параллельной этому отрезку и отстоящей от него на расстояние, равное 2. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью вращения является боковая поверхность цилиндра, радиус основания которого равен 2, образующая равна 1. Площадь этой поверхности равна 4 .


Отрезок AB длины 1 вращается вокруг прямой c , перпендикулярной этому отрезку и отстоящей от ближайшего его конца A на расстояние, равное 2 (прямые AB и с лежат в одной плоскости). Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является кольцо, внутренний радиус которого равен 2, а внешний – 3. Площадь этого кольца равна 5 .


Отрезок AB c , перпендикулярной этому отрезку и проходящей через его середину. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является круг радиуса 1. Его площадь равна.


Отрезок AB длины 2 вращается вокруг прямой c A . Найдите площадь поверхности вращения.


Отрезок AB c , перпендикулярной этому отрезку и проходящей через точку C , делящей этот отрезок в отношении 1:2. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является круг радиуса 2. Его площадь равна 4 .


Отрезок AB длины 2 вращается вокруг прямой c , проходящей через точку A и образующей с этим отрезком угол 30 о. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является боковая поверхность конуса, образующая которого равна 2, радиус основания равен 1. Ее площадь равна 2 .


Отрезок AB длины 3 вращается вокруг прямой c , проходящей через точку A и отстоящей от точки B на расстояние, равное 2. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является боковая поверхность конуса, образующая которого равна 3, радиус основания равен 2. Ее площадь равна 6 .


Отрезок AB длины 2 вращается вокруг прямой c , проходящей через середину этого отрезка и образующей с ним угол 30 о. Найдите площадь поверхности вращения.

Ответ. Искомая поверхность составлена из двух боковых поверхностей конусов, образующие которых равны 1, а радиусы оснований – 0,5. Ее площадь равна.


Отрезок AB длины 3 вращается вокруг прямой c , проходящей через точку C , делящей этот отрезок в отношении 1:2 и образующей с ним угол 30 о. Найдите площадь поверхности вращения.

Ответ. Искомая поверхность составлена из двух боковых поверхностей конусов, образующие которых равны 2 и 1, а радиусы оснований равны соответственно 1 и 0,5. Ее площадь равна 2,5 .


Отрезок AB длины 3 вращается вокруг прямой c , лежащей с ним в одной плоскости и отстоящей от концов A и B соответственно на расстояния 1 и 2. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является боковая поверхность усеченного конуса, образующая которого равна 3, радиусы оснований равны 1 и 2. Ее площадь равна 9 .


Отрезок AB длины 2 вращается вокруг прямой c , лежащей с ним в одной плоскости, отстоящей от ближайшего конца A на расстояние, равное 1, и образующей с этим отрезком угол 30 о. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является боковая поверхность усеченного конуса, образующая которого равна 2, радиусы оснований равны 1 и 2. Ее площадь равна 6 .


Найдите площадь боковой поверхности цилиндра, полученного вращением единичного квадрата ABCD вокруг прямой AD .

Ответ. Искомый цилиндр изображен на рисунке. Радиус его основания и образующая равны 1. Площадь боковой поверхности этого цилиндра равна 2 .


Найдите площадь поверхности вращения прямоугольника ABCD со сторонами AB = 4, BC = 3 вокруг прямой AB и CD .

Ответ. Искомым телом является цилиндр, радиус основания которого равен 2, а образующая равна 3. Его площадь поверхности равна 20 .


Найдите площадь поверхности тела, полученного вращением единичного квадрата ABCD вокруг прямой AC .

Ответ. Искомым телом вращения является объединение двух конусов, радиусы оснований которого и высоты равны. Его площадь поверхности равна.


Найдите площадь поверхности тела, полученного вращением прямоугольного треугольника ABC с катетами AC = BC = 1 вокруг прямой AC .

Ответ. Искомый конус изображен на рисунке. Радиус его основания равен 1, а образующая равна. Площадь поверхности этого конуса равна.


Найдите площадь полной поверхности тела, полученного вращением равностороннего треугольника ABC со стороной 1 вокруг прямой, содержащей биссектрису CD этого треугольника.

Ответ. Искомый конус изображен на рисунке. Радиус его основания равен 0,5, а образующая равна 1. Площадь полной поверхности этого конуса равна 3 /4.


Найдите площадь поверхности вращения равностороннего треугольника ABC со стороной 1 вокруг прямой AB .

Ответ. Искомое тело вращения составлено из двух конусов с общим основанием, радиус которого равен, а высоты – 0,5. Его площадь поверхности равна.


Найдите объем тела вращения равнобедренной трапеции ABCD с боковыми сторонами AD и BC , равными 1, и основаниями AB и CD , равными соответственно 2 и 1, вокруг прямой AB .

Ответ. Искомым телом вращения является цилиндр с радиусом основания и высотой 1, на основаниях которого достроены конусы, высотой 0,5. Его объем равен.


Найдите объем тела вращения прямоугольной трапеции ABCD с основаниями AB и CD , равными соответственно 2 и 1, меньшей боковой стороной, равной 1, вокруг прямой AB .

Ответ. Искомым телом вращения является цилиндр с радиусом основания и высотой, равными 1, на основании которого достроен конус, высотой 1. Его объем равен.


Найдите объем тела вращения правильного шестиугольника ABCDEF со стороной 1 вокруг прямой AD .

Ответ. Искомое тело вращения состоит из цилиндра, радиус основания которого равен, а высота равна 1 и двух конусов с основаниями радиуса и высотой 0,5. Его объем равен.


ABCDEF , изображенного на рисунке и составленного из трех единичных квадратов, вокруг прямой AF .

Ответ. Искомое тело вращения состоит из двух цилиндров с основаниями радиусов 2 и 1, высотой 1. Его объем равен 5 .


Найдите объем тела вращения многоугольника ABCDEFGH , изображенного на рисунке и составленного из четырех единичных квадратов, вокруг прямой c , проходящей через середины сторон AB и EF .

Ответ. Искомое тело вращения составлено из двух цилиндров высотой 1 и радиусами оснований 1,5 и 0,5. Его объем равен 2,5 .


Найдите объем тела вращения многоугольника ABCDEFGH , изображенного на рисунке и составленного из пяти единичных квадратов, вокруг прямой c , проходящей через середины сторон AB и EF .

Ответ. 1. Искомое тело вращения является цилиндром с радиусом основания 1,5 и высотой 2, из которого вырезан цилиндр с радиусом основания 0,5 и высотой 1. Его объем равен 4,25 .


Найдите объем тела вращения единичного куба ABCDA 1 B 1 C 1 D 1 вокруг прямой AA 1 .

Ответ. Искомым телом вращения является цилиндр, радиус основания которого равен, а высота равна 1. Его объем равен 2 .


Найдите объем тела вращения правильной треугольной призмы ABCA 1 B 1 C AA 1 .

Ответ. Искомым телом вращения является цилиндр, радиус основания и высота которого равны 1. Его объем равен.


Найдите объем тела вращения правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 , все ребра которой равны 1, вокруг прямой AA 1 .

Ответ. Искомым телом вращения является цилиндр, радиус основания которого равен 2, а высота равна 1. Его объем равен 4 .


Найдите объем тела вращения правильной четырехугольной пирамиды SABCD , все ребра которой равны 1, вокруг прямой с , содержащей высоту SH этой пирамиды.

Ответ. Искомым телом вращения является конус, радиус основания и высота которого равны.

Его объем равен.


Найдите объем тела вращения единичного тетраэдра ABCD вокруг ребра AB .

Ответ. 1. Искомое тело вращения составлено из двух конусов с общим основанием радиуса и высотой 0,5. Его объем равен 0,25 .


Найдите объем тела вращения единичного правильного октаэдра S’ABCDS” вокруг прямой S"S” .

Ответ. Искомое тело вращения состоит из двух конусов с общим основанием радиуса и высотами, равными. Его объем равен.


Все двугранные углы многогранника, изображенного на рисунке, прямые. Найдите объем тела вращения этого многогранника вокруг прямой AD .

Ответ. Искомым телом вращения является цилиндр, радиус основания которого равен, а высота равна 2. Его объем равен 10 .

Определение 3. Тело вращения – это тело, полученное вращением плоской фигуры вокруг оси, не пересекающей фигуру и лежащей с ней в одной плоскости.

Ось вращения может и пересекать фигуру, если это ось симметрии фигуры.

Теорема 2.
, осью
и отрезками прямых
и

вращается вокруг оси
. Тогда объём получающегося тела вращения можно вычислить по формуле

(2)

Доказательство. Для такого тела сечение с абсциссой – это круг радиуса
, значит
и формула (1) даёт требуемый результат.

Если фигура ограничена графиками двух непрерывных функций
и
, и отрезками прямых
и
, причём
и
, то при вращении вокруг оси абсцисс получим тело, объём которого

Пример 3. Вычислить объём тора, полученного вращением круга, ограниченного окружностью

вокруг оси абсцисс.

Решение. Указанный круг снизу ограничен графиком функции
, а сверху –
. Разность квадратов этих функций:

Искомый объём

(графиком подынтегральной функции является верхняя полуокружность, поэтому написанный выше интеграл – это площадь полукруга).

Пример 4. Параболический сегмент с основанием
, и высотой, вращается вокруг основания. Вычислить объём получающегося тела («лимон» Кавальери).

Решение. Параболу расположим как показано на рисунке. Тогда её уравнение
, причем
. Найдём значение параметра:
. Итак, искомый объём:

Теорема 3. Пусть криволинейная трапеция, ограниченная графиком непрерывной неотрицательной функции
, осью
и отрезками прямых
и
, причём
, вращается вокруг оси
. Тогда объём получающегося тела вращения может быть найден по формуле

(3)

Идея доказательства. Разбиваем отрезок
точками

, на части и проводим прямые
. Вся трапеция разложится на полоски, которые можно считать приближенно прямоугольниками с основанием
и высотой
.

Получающийся при вращении такого прямоугольника цилиндр разрежем по образующей и развернём. Получим «почти» параллелепипед с размерами:
,
и
. Его объём
. Итак, для объёма тела вращения будем иметь приближенноё равенство

Для получения точного равенства надо перейти к пределу при
. Написанная выше сумма есть интегральная сумма для функции
, следовательно, в пределе получим интеграл из формулы (3). Теорема доказана.

Замечание 1. В теоремах 2 и 3 условие
можно опустить: формула (2) вообще нечувствительна к знаку
, а в формуле (3) достаточно
заменить на
.

Пример 5. Параболический сегмент (основание
, высота) вращается вокруг высоты. Найти объём получающегося тела.

Решение. Расположим параболу как показано на рисунке. И хотя ось вращения пересекает фигуру, она – ось – является осью симметрии. Поэтому надо рассматривать лишь правую половину сегмента. Уравнение параболы
, причем
, значит
. Имеем для объёма:

Замечание 2. Если криволинейная граница криволинейной трапеции задана параметрическими уравнениями
,
,
и
,
то можно использовать формулы (2) и (3) с заменойна
и
на
при измененииt от
до.

Пример 6. Фигура ограничена первой аркой циклоиды
,
,
, и осью абсцисс. Найти объём тела, полученного вращением этой фигуры вокруг: 1) оси
; 2) оси
.

Решение. 1) Общая формула
В нашем случае:

2) Общая формула
Для нашей фигуры:

Предлагаем студентам самостоятельно провести все вычисления.

Замечание 3. Пусть криволинейный сектор, ограниченный непре-рывной линией
и лучами
,

, вращается вокруг полярной оси. Объём получающегося тела можно вычислить по формуле.

Пример 7. Часть фигуры, ограниченной кардиоидой
, лежащая вне окружности
, вращается вокруг полярной оси. Найти объём тела, которое при этом получается.

Решение. Обе линии, а значит и фигура, которую они ограничивают, симметричны относительно полярной оси. Поэтому необходимо рассматривать лишь ту часть, для которой
. Кривые пересекаются при
и

при
. Далее, фигуру можно рассматривать как разность двух секторов, а значит и объём вычислять как разность двух интегралов. Имеем:

Задачи для самостоятельного решения.

1. Круговой сегмент, основание которого
, высота , вращается вокруг основания. Найти объём тела вращения.

2. Найти объём параболоида вращения, основание которого , а высота равна.

3. Фигура, ограниченная астроидой
,
вращает-ся вокруг оси абсцисс. Найти объём тела, которое получается при этом.

4. Фигура, ограниченная линиями
и
вращается вокруг оси абсцисс. Найти объём тела вращения.