Чем вызвана потребность расширения множества действительных чисел. Методические особенности расширения числовых множеств в курсе алгебры

РАСШИРЕНИЯ ЧИСЛОВЫХ МНОЖЕСТВ: ИСТОРИЧЕСКИЙ АСПЕКТ

Пермский государственный педагогический университет, математический факультет , *****@***ru

В работе представлена история расширения числовых множеств: от натуральных до гиперкомплексных чисел. Показаны условия происхождения новых множеств.

Понятие числа появилось впервые еще в доисторические времена в связи с практической деятельностью человека. При этом натуральные числа возникли из потребностей счета на самых ранних ступенях развития человеческого общества. Наименьшим из натуральных чисел является единица, наибольшего натурального числа не существует. При их сложении и умножении получается натуральное число, но не всегда выполнима операция вычитания, поэтому появляется необходимость рассмотрения целых отрицательных чисел.

Известно, что операция деления также не всегда выполнима на множестве натуральных чисел. Она приводит к новому расширению понятия числа: появлению дробей и рациональных чисел.

Действительные числа появились в процессе дальнейшего расширения понятия числа. Необходимость такого расширения была обусловлена как практическими применениями математики при выражении значения любой величины с помощью вполне определенного числа, так и внутренними потребностями самой математики. Эти потребности были связаны со стремлением расширить область применения ряда операций над числами (извлечение корня, вычисление логарифмов, решение уравнений и т. д.).

Дальнейшее расширение понятия числа связано с введением комплексных чисел. Необходимость введения таких чисел обусловлена развитием теории алгебраических уравнений. При нахождении решений квадратных уравнений, в некоторых случаях (например, x 2 + 1 = 0) приходилось рассматривать корень квадратный из отрицательного числа. Это привело к необходимости рассмотрения и изучения выражений вида a + bi , где a и b – действительные числа, а i – мнимая единица, квадрат которой равен –1 (i 2 = –1) .

Впервые мнимые величины появились в 1545 году в известном труде Джероламо Кардано «Великое искусство, или об алгебраических правилах», который счёл их непригодными к употреблению. Пользу мнимых величин, в частности, при решении кубического уравнения, в так называемом неприводимом случае (когда вещественные корни многочлена выражаются через кубические корни из мнимых величин), впервые оценил Рафаэле Бомбелли в 1572 году. Он же впервые представил некоторые простейшие правила действий с комплексными числами.

Выражения вида Бытие" href="/text/category/bitie/" rel="bookmark">бытием и небытием, которую мы называем мнимым корнем из отрицательной единицы» .

Долгое время было неясно, все ли операции над комплексными числами приводят к комплексным результатам, или, например, извлечение корня может привести к открытию какого-то нового типа чисел. Задача о выражении корней степени n из данного числа была решена в 1707 году в работах Абрахама де Муавра и в 1722 году в работах Роджера Котса.

Символ предложил в 1777 году Леонард Эйлер, взявший для этого первую букву латинского слова imaginarius . Он же распространил все стандартные функции, включая логарифм, на комплексную область. Леонард Эйлер также высказал в 1751 году мысль об алгебраической замкнутости поля комплексных чисел. К такому же выводу в 1747 году пришел Жан Лерон Д’Аламбер, но первое строгое доказательство этого факта, представленное в 1799 году, принадлежит Карлу Фридриху Гауссу. Гаусс и ввёл в широкое употребление термин «комплексное число» в 1831 году, хотя этот термин ранее использовал в том же смысле французский математик Лазар Карно в 1803 году.

Обобщением комплексных чисел являются гиперкомплексные числа, получаемые присоединением к множеству вещественных чисел нескольких комплексных единиц i 1, i 2, … , i n. Такие числа имеют вид z = a 0 + a 1i 1 + a 2i 2 + … + anin , где a 0, a 1, … , an – вещественные числа .

Одним из примеров гиперкомплексных чисел являются кватернионы. Кватернионы – это четверки чисел (a , b , c , d ), которые удобно записывать в виде q = a + bi + cj + dk , где a , b , c , d – произвольные действительные числа, а i , j , k – новые числа, являющиеся аналогом мнимой единицы в комплексных числах .

Развитие комплексного анализа в XIX веке стимулировало у математиков интерес к следующей задаче: найти новый вид чисел, аналогичный по свойствам комплексным, но содержащий не одну, а две мнимые единицы. Предполагалось, что такая модель будет полезна при решении пространственных задач математической физики. Однако работа в этом направлении оказалась безуспешной.

Новый вид чисел был обнаружен ирландским математиком Уильямом Гамильтоном в 1843 году, и он содержал не две, как ожидалось, а три мнимые единицы. Гамильтон назвал эти числа кватернионами. Позднее, в 1877 году Фердинард Георг Фробениус строго доказал теорему, согласно которой расширить комплексное поле до поля или тела с двумя мнимыми единицами невозможно.

Несмотря на некоммутативность новых чисел, эта модель довольно быстро принесла практическую пользу. Джеймс Клерк Максвелл использовал компактную кватернионную запись для формулировки уравнений электромагнитного поля. Позднее на основе алгебры кватернионов был создан трёхмерный векторный анализ.

Сегодня кватернионы также приносят практическую пользу: они широко используются в 3D графике, компьютерном моделировании и при программировании компьютерных игр .

Библиографический список

1. Комплексные числа // Квант. 1983. №2.

2. Клайн М. Математика. Утрата определённости. М.: Мир, 1984. С. 139

3. Кантор И .Л., Гиперкомплексные числа. М.: Наука, 1973.

4. , Кватернионы // Квант. 1983. №9.

5. Бурбаки Н. Архитектура математики. Очерки по истории математики. М.: Иностранная литература, 1963. С. 68

6. Martin John Baker Use of quaternions to represent transformations in 3D // URL: http://www. /maths/algebra/realNormedAlgebra/quaternions/index. htm (дата обращения 30.10.2011)

NUMERICAL SETS EXPANSION: HISTORICAL ASPECT

Kosyakova Yekaterina Pavlovna

Perm State Pedagogical University, mathematical faculty

Numerical sets expansion history is depicted in the article: beginning from natural till hupercomplex numbers. New sets origins are shown.

Чтобы множество Q+ положительных рациональных чисел являлось расширением множества N натуральных чисел, необходимо выполнение ряда условий.

Первое условие - это существование между N и Q+ отношения включения. Докажем, что N Q+.

Пусть длина отрезка х при единичном отрезке е выражается натуральным числом т. Разобьем единичный отрезок на п равных частей. Тогда n -ая часть единичного отрезка будет укладываться в отрезке х точно раз, т. е. длина отрезка х будет выражена дробью. Значит, длина отрезка х выражается и натуральным числом т, и положительным рациональным числом. Но это должно п быть одно и то же число.

Так, например, натуральное число 6 можно представить в виде следующих дробей: , и т. д.

Отношение между множествами N и Q+ представлено на рисунке 28.

Числа, которые дополняют множество натуральных чисел до множества положительных рациональных, называются дробными.

Второе условие, которое должно быть выполнено при расширении множества натуральных чисел, - это согласованность операций, т. е. результаты арифметических действий, произведенных по правилам, существующим для натуральных чисел, должны совпадать с результатами действий над ними, но выполненных по правилам, сформулированным для положительных рациональных чисел. Нетрудно убедиться в том, что и это условие выполняется.

Пусть а и b - натуральные числа, - их сумма, полученная по правилам сложения в N. Вычислим сумму чисел а и b по правилу сложения в Q+.

Так как, то

Третье условие, которое должно быть выполнено при расширении множества натуральных чисел - это выполнимость в Q+ операции, не всегда осуществимой в N. И это условие соблюдено: деление, которое не всегда выполняется в множестве N, в множестве Q+ выполняется всегда.

Сделаем еще несколько дополнений, раскрывающих взаимосвязи между натуральными и положительными рациональными числами.

1. Черту в записи дроби можно рассматривать как знак деления.

Действительно, возьмем два натуральных числа т и п и найдем их частное по правилу (4) деления положительных рациональных чисел:

Обратно, если дана дробь, то ее можно рассматривать как частное натуральных чисел т и п .

2. Любую неправильную дробь можно представить либо в виде натурального числа, либо в виде смешанной дроби.

Пусть - неправильная дробь. Тогда т > п. Если т кратно п, то в этом случае дробь является записью натурального числа. Если число т не кратно п, то разделим т на п с остатком: , где. Подставим вместо т в запись и применим правило (1) сложения положительных рациональных чисел:

Так как , то дробь - правильная. Следовательно, неправильная дробь оказалась представленной в виде суммы натурального числа q и правильной дроби. Это действие называется выделением целой части из неправильной дроби. Например,.

Сумму натурального числа и правильной дроби принято записывать без знака сложения: т. е. вместо пишут и называют такую запись смешанной дробью.

Справедливо также утверждение: всякую смешанную дробь можно записать в виде неправильной дроби. Например:

Основными математическими объектами с незапамятных времен являются числа, множества и элементы множества, их свойства. Число - абстракция, используемая для количественной характеристики объектов. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа изменялось и обогащалось и превратилось в важнейшее математическое понятие. Письменными знаками (символами) для записи чисел служат цифры . Современная математика оперирует несколько другими математическими понятиями. Если внимательно проанализировать их суть, то они, в общем-то, являются эквивалентными или изоморфными понятиям «число», «множество», «отображение», «свойство».

В теоретико-множественном смысле числа являются классом множеств с определенными свойствами. Эти свойства выражаются через тип упорядоченности, размерность, топологические и метрические свойства основанных на них множеств. Основное свойство чисел - это их мощность, которая может быть конечной, счетной или континуальной. Соответственно, числа могут быть представителями любого класса множеств с подходящей мощностью. Даже множества с мощностью больше континуума можно представить как множество всех функций, определенных на числовом множестве. В этом проявляется универсальность понятия «число».

Другое важное свойство чисел - это ее размерность. Есть несколько классов чисел с различающимися свойствами. Есть линейные (одномерные) числа - это натуральные N, положительные N + , целые Z, рациональные R и вещественные Q числа. Есть составные многомерные или гиперкомплексные числа - это комплексные числа C, кватернионы H, бикватернионы B , невырожденные квадратные матрицы M, числа Клиффорда K и другие. Тензор (в том числе и вектор) в обычном понимании не является числом.

Интересным видом чисел являются гипердействительные числа. Они появляются в нестандартном анализе, использующем понятия «бесконечно малые» и «бесконечно большие» чисел как расширение множества действительных до этих «бесконечных» чисел.

Попробуем определить, что такое «число». Точнее, виды чисел.

Самыми простыми числами являются целые, рациональные, вещественные и комплексные числа. Они коммутативны, ассоциативны и дистрибутивны.

Основными видами чисел, обладающими похожими свойствами, являются четыре вида чисел. Это действительные числа, комплексные, кватернионы и октавы. Коммутативность умножения для последних двух видов чисел не выполняется. Но они все обладают алгебрами без делителей нуля.

Дальнейшие расширения чисел могут не иметь и свойство ассоциативности. Дистрибутивность соблюдается.

Основные виды чисел

Натуральные числа , получаемые при естественном счёте; множество натуральных чисел обозначается N. Т.о. (иногда к множеству натуральных чисел также относят ноль, то есть N = {0, 1, 2, 3, …}). Натуральные числа замкнуты относительно сложения и умножения (но не вычитания или деления). Натуральные числа коммутативны и ассоциативны относительно сложения и умножения, а умножение натуральных чисел дистрибутивно относительно сложения.

Целые числа получаемые объединением натуральных чисел с множеством отрицательных чисел и нулём, обозначаются Z = {-2, -1, 0, 1, 2, …}. Целые числа замкнуты относительно сложения, вычитания и умножения (но не деления).

Рациональные числа - числа, представленные в виде дроби m /n (n ? 0), где m - целое число, а n - натуральное число. Для рациональных чисел определены все четыре «классические» арифметические действия: сложение, вычитание, умножение и деление (кроме деления на ноль). Для обозначения рациональных чисел используется знак Q.

Действительные (вещественные) числа представляют собой расширение множества рациональных чисел, замкнутое относительно некоторых (важных для математического анализа ) операций предельного перехода. Множество вещественных чисел обозначается R. Его можно рассматривать как пополнение поля рациональных чисел Q при помощи нормы , являющейся обычной абсолютной величиной . Кроме рациональных чисел, R включает множествоиррациональных чисел , не представимых в виде отношения целых. Кроме подразделения на рациональные и иррациональные, действительные числа также подразделяются на алгебраические и трансцендентные . При этом каждое трансцендентное число является иррациональным, каждое рациональное число - алгебраическим.

Комплексные числа , являющиеся расширением множества действительных чисел. Они могут быть записаны в виде z = x + iy , где i - т. н. мнимая единица , для которой выполняется равенство i 2 = -1. Комплексные числа используются при решении задач квантовой механики , гидродинамики, теории упругости и пр.

Для перечисленных множеств чисел справедливо следующее выражение: N ? Z ? Q ? R ? C.

Гипердействительные числа - это числа вида:

1) a + ?, где a - обычное число, a - бесконечно малое число;

2) ? = 1/? - бесконечно большое число.

Гипердействительные числа не являются числами в обычном понимании. Они применяются во многих разделах математики , особенно в дифференциальном и интегральном исчислениях, а также везде, где используются предельные числовые последовательности, даже при определении вещественных чисел.

Множество рациональных чисел является естественным обобщением множества целых чисел. Легко видеть, что если у рационального числа a = m /n знаменатель n = 1, то a = m является целым числом. В этой связи возникают некоторые обманчивые предположения. Во-первых, кажется, что рациональных чисел больше чем целых, на самом же деле и тех и других счётное число . Во-вторых, возникает предположение, что такими числами можно измерить абсолютно точно любое расстояние в пространстве. На самом деле, для этого используются вещественные числа , рациональных же чисел для этого недостаточно.

Виды дроби

Правильной называется дробь, у которой модуль числителя меньше модуля знаменателя. Дробь, не являющаяся правильной, называется неправильной.

Например, дроби 3/5, 7/8 и 1/2 - правильные дроби, в то время как 8/3, 9/5, 2/1и 1/1 - неправильные дроби. Всякое целое число можно представить в виде неправильной обыкновенной дроби со знаменателем 1.

Дробь, записанная в виде целого числа и правильной дроби, называется смешанной дробью и понимается как сумма этого числа и дроби. Например, . В строгой математической литературе такую запись предпочитают не использовать из-за схожести обозначения смешанной дроби с обозначением произведения целого числа на дробь.

Несмотря на то, что рациональных чисел бесконечное множество и то, что мы можем записать только не бесконечно большие числа, можно считать, что мы можем записать любое рациональное число указанным выше способом, потому что любое рациональное число явно не бесконечное и запись ее будет содержать конечное число символов.

Высота дроби

Высота обыкновенной дроби - то модуль суммы числителя и знаменателя этой дроби. Высота рационального числа - это модуль суммы числителя и знаменателя несократимой обыкновенной дроби, соответствующей этому числу.

Например, высота дроби (-15/6) равна 15 + 6 = 21. Высота же соответствующего рационального числа равна 5 + 2 = 7, так как дробь сокращается на 3.

Как следствие, множество рациональных чисел является счетным множеством. Дробь рациональное число нерациональное число

Это множество обладает свойством непрерывности. Это означает, что между любыми неравными между собой числами можно найти третье число, не равное предыдущему. Более того, сечение рациональных чисел на две половинки может быть открытым по одной или обеим границам этого сечения.

Множество рациональных чисел является абелевой группой по операциям «сложение» и «умножение» по отдельности.

Множество рациональных чисел является полем по операциям «сложение» и «умножение».

Формальное определение

Формально рациональные числа определяются как множество классов эквивалентности пар {(m , n ) | m ? Z, n ? N} по отношению эквивалентности (m , n ) ~ (m ", n "), если m n " = m " n . При этом операции сложения и умножения определяются следующим образом:

  • (m 1 , n 1) + (m 2 , n 2) = (m 1 , n 2 + m 2 , n 1 , n 1 n 2),
  • (m 1 , n 1) (m 2 , n 2) = (m 1 m 2 , n 1 n 2).

Свойства рациональных чисел

Рациональные числа удовлетворяют шестнадцати основным свойствам , которые легко могут быть получены из свойств целых чисел .

  • 1. Упорядоченность. Для любых рациональных чисел a и b существует правило, позволяющее однозначно идентифицировать между ними одно и только одно из трёх отношений: «
  • ?a , b ? Q: a b ? b a ? a = b
  • 2. Транзитивность отношения порядка. Для любой тройки рациональных чисел a, b и c если a меньше b и b меньше c, то a меньше c, а если a равно b и b равно c, то a равно c.
  • ?x , y , z ? Q: (x y) ? (y z)> x z (транзитивность порядка);
  • 3. Операция сложения. Для любых рациональных чисел a и b существует так называемое правило суммирования, которое ставит им в соответствие некоторое рациональное число c. При этом само число c называется суммой чисел a и b и обозначается (a + b), а процесс отыскания такого числа называется суммированием. Правило суммирования имеет следующий вид: (m1/n1) + (m2/n2) = (m1 n2 + m2 n1)/(n1 n2).
  • ?a , b ? Q: ?(a + b ) ? Q
  • 4. Коммутативность сложения. От перемены мест рациональных слагаемых сумма не меняется.
  • (?x , y ? Q): (x + y ) = (y + x )
  • 5. Ассоциативность сложения. Порядок сложения трёх рациональных чисел не влияет на результат.
  • (?x , y , z ? Q): (x + y ) + z = x + (y + z )
  • 6. Наличие нуля. Существует рациональное число 0, которое сохраняет любое другое рациональное число при суммировании.
  • (?0? Q) (?x ? Q) : (x + 0 = x )
  • 7. Наличие противоположных чисел. Любое рациональное число имеет противоположное рациональное число, при суммировании с которым даёт 0.
  • (?x , y ? Q) ?(-x ? Q): (x + (-x ) = 0).
  • 8. Связь отношения порядка с операцией сложения. К левой и правой частям рационального неравенства можно прибавлять одно и то же рациональное число.
  • ?x , y , z ? Q: (x y) > (x + z ) y + z
  • 9. Операция умножения. Для любых рациональных чисел a и b существует так называемое правило умножения, которое ставит им в соответствие некоторое рациональное число c. При этом само число c называется произведением чисел a и b и обозначается (a · b), а процесс отыскания такого числа также называется умножением. Правило умножения имеет следующий вид:ma/na · mb/nb = ma · mb / na · na.
  • ?a , b ?Q: ?(a · b ) ? Q
  • 10. Коммутативность умножения. От перемены мест рациональных множителей произведение не меняется.
  • ?x , y ? Q: (x y ) = (y x );
  • 11. Ассоциативность умножения. Порядок перемножения трёх рациональных чисел не влияет на результат.
  • ?x , y , z ? Q: (x y ) z = x (y z );
  • 12. Наличие единицы. Существует рациональное число 1, которое сохраняет любое другое рациональное число при умножении.
  • ?1? Q{0}: ?x ? Q: x 1 = x ;
  • 13. Наличие обратных чисел. Любое рациональное число имеет обратное рациональное число, при умножении на которое даёт 1.
  • ?x ? Q{0}:?x - 1: x x - 1 = 1.
  • 14. Связь отношения порядка с операцией умножения. Левую и правую части рационального неравенства можно умножать на одно и то же положительное рациональное число.
  • ?x , y , z ? Q: (x y) ? (z > 0) > y z x z
  • 15. Дистрибутивность умножения относительно сложения. Операция умножения согласована с операцией сложения посредством распределительного закона:
    • (?x , y , z ? Q: (x + y ) z = x z + y z
  • 16. Аксиома Архимеда. Каково бы ни было рациональное число a, можно взять столько единиц, что их сумма превзойдёт a.

?a ? Q ?n ? N: > a

Дополнительные свойства

Все остальные свойства, присущие рациональным числам, не выделяют в основные, потому что они, вообще говоря, уже не опираются непосредственно на свойства целых чисел, а могут быть доказаны исходя из приведённых основных свойств или непосредственно по определению некоторого математического объекта. Таких дополнительных свойств очень много. Здесь имеет смысл привести лишь некоторые из них.

Второе отношение порядка «>» также транзитивно.

?x , y , z ? Q: (x > y ) ? (y > z )> x > z (транзитивность порядка);

Произведение любого рационального числа на ноль равно нулю.

?x ? Q: x · 0 = 0;

Отсутствие делителей нуля.

Рациональные неравенства одного знака можно почленно складывать.

?a , b , c , d ? Q: a > b ? c > d > a + c > b + d

Множество рациональных чисел Q является полем (а именно, полем частных кольца целых чисел Z) относительно операций сложения и умножения дробей.

Каждое рациональное число является алгебраическим .

Математика в силу своей специфики предоставляет большие возможности для учителя в плане развития мышления детей. Развивать мышление учащихся можно при изучении, практически, любой математической темы. Мы остановились на рассмотрении долей и дробей, и именно это обусловило выбор темы нашего исследования: «Развитие мышления младших школьников в процессе пропедевтической работы по изучению дробей».

в курсе алгебры девятилетней школы

Первое расширение понятия о числе, которое учащиеся усваивают после ознакомления с натуральными числами, - это добавление нуля. Сначала 0 - знак для обозначения отсутствия числа. Почему же нельзя делить на нуль?

Разделить - значит найти

Два случая: 1) , следовательно, надо найти. Это невозможно. 2) , следовательно, надо найти. Таких сколько угодно, что противоречит требованию однозначности каждой арифметической операции.

Изучение нового числового множества идет по единой схеме:

  • · необходимость новых чисел;
  • · введение новых чисел;
  • · сравнение (геометрическая интерпретация);
  • · действия над числами;
  • · законы.

Сначала расширение числовых множеств происходит, пока множество не станет числовым полем. Не каждая из числовых систем является числовым полем. Например, система натуральных чисел не является числовым полем; система целых чисел тоже не числовое поле. Система рациональных чисел - числовое поле.

Поле (П) - множество, содержащее не менее двух элементов, на котором заданы две бинарные алгебраические операции - умножение и сложение, обе ассоциативные и коммутативные. Они связаны законом дистрибутивности. Кроме того, в П существует нулевой элемент: для любого

и для каждого противоположного

Существует единичный элемент:

(Если в некоторой числовой системе все основные действия (сложение, вычитание, умножение и деление, кроме деления на нуль) выполнимы и однозначны относительно каждой пары чисел этой системы, такое множество называется числовым полем .) В системе рациональных чисел действия сложения, вычитания, умножения и деления (за исключением деления на нуль) выполнимы и однозначны относительно каждой пары чисел, т.е. определены так, что применение любого действия к паре рациональных чисел приводит к однозначно определенному рациональному числу. Этим же свойством обладает система действительных чисел.

Невыполнимость одного из основных действий приводит к расширению числового множества. В курсе математики 5-6 классов имеет место построение множества рациональных чисел. Следует отметить, что последовательность расширений не однозначна. Возможны варианты:

N , 0 Обыкновенные дроби Десятичные дроби Рациональные числа (введение отрицательных чисел)

N , 0 Десятичные дроби Обыкновенные дроби Рациональные числа (введение отрицательных чисел)

N , 0 Десятичные дроби Отрицательные числа Обыкновенные дроби Рациональные числа (целые и дробные, положительные и отрицательные)

N , 0 Целые числа Десятичные дроби (положительные) Обыкновенные дроби (положительные) Рациональные числа (введение отрицательных чисел)

У П.М. Эрдниева в "Математике 5-6":

N , 0 Дробные (обыкновенные и десятичные) Рациональные (введение отрицательных чисел)

Элементарное понятие о дробном числе дается уже в начальной школе как о нескольких долях единицы.

В основной школе дроби обычно вводятся методом целесообразных задач (С.И. Шохор-Троцкий), например, при рассмотрении следующей задачи: "1 кг сахарного песка стоит 15 рублей. Сколько стоят 4 кг песка? 5 кг? кг?" Ученики могут умножить 15 на 4, на 5, теперь им требуется найти от 15. Учащиеся могут разделить на 3 и умножить на 2. Поскольку одну и ту же задачу разумно решать одинаковым арифметическим действием, то они приходят к выводу, что эти два последовательных действия равнозначны умножению 15 на.

  • - умножение на целое число;
  • - умножение целого числа на смешанное число;
  • - умножение дроби на смешанное число;
  • - умножение на правильную дробь;
  • - умножение на дробь, в которой числитель равен знаменателю.

Для введения сложных случаев предлагается задача на вычисление площади прямоугольника.

Целесообразность введения отрицательных чисел может быть показана учащимся разными способами:

1. Через анализ ситуации, в которой действие вычитания невыполнимо.

Пример . Чебурашка, спасаясь от Шапокляк, проплыл вверх по реке км, но, оказавшись перед бродом, был вынужден плыть вниз по реке и проплыл км. Где он оказался по отношению к исходному месту входа в реку?

Ответом служит разность, но при действие невозможно.

  • 2. В связи с рассмотрением величин, которые имеют противоположный смысл.
  • 3. Как характеристика изменений (увеличений и уменьшений) величин.
  • 4. На основе графических представлений, отрицательные числа как отметки точек на оси.
  • 5. Через задачу об изменении уровня воды в реке в течение двух суток.

Пример . Во время сильного дождя уровень воды в реке за сутки поднялся на см, в течение следующих суток уровень воды в реке упал на см. Каким стал уровень воды в реке по истечении двух суток?

6. Как средство изображения расстояний на температурной шкале.

Появление нового числового множества сопровождается введением правил сравнения (равенства и неравенства) чисел и арифметических операций над ними. Средством обоснования правил сравнения нередко служит координатная прямая.

Получив числовое поле, дальнейшее расширение уже не может быть продиктовано невыполнением действий. Расширение понятия числа было вызвано геометрическими соображениями, а именно: отсутствием взаимно однозначного соответствия между множеством рациональных чисел и множеством точек числовой прямой. Для геометрии необходимо, чтобы каждая точка числовой прямой имела абсциссу, т.е. чтобы каждому отрезку при данной единице измерения соответствовало число, которое можно было бы принять за его длину. Эта цель достигается после того, как поле рациональных чисел (с помощью присоединения к нему системы иррациональных чисел) подвергается расширению до системы действительных чисел, которая является числовым полем.

К необходимости этого расширения приводит и невозможность извлечения корня из положительного числа, нахождения логарифма положительного числа при положительном основании.

В девятилетней школе стараются избежать вопросов, связанных с непрерывностью и бесконечностью, хотя полностью достичь этого нельзя. Не затрагивается вопрос о недостаточности рациональных чисел для решения алгебраических задач, для измерения (каждый отрезок имеет длину, каждая фигура - площадь), построения графиков (должны быть неразрывными). Интуитивные представления учащихся естественны, так как практически нельзя обнаружить существование несоизмеримых отрезков. Не надо строить строгую теорию, достаточно создать верные представления о сущности вопроса. бинарный алгебраический дробный

Если ввести иррациональные числа как неизвлекаемые корни, то у учащихся сформируется представление об иррациональных числах только как о неизвлекаемых корнях, поэтому целесообразно указать школьникам на несоизмеримость отрезков.

Периодичность бесконечной десятичной дроби, выражающей рациональное число, вытекает из деления натуральных чисел, так как при таком делении может получиться только конечное число различных остатков, непревосходящих делителя. Следовательно, при бесконечном делении какой-то остаток должен повториться, а за ним повторятся и соответствующие остатки числа частного - получится периодическая дробь.

В большинстве учебников иррациональное число рассматривается как бесконечная непериодическая десятичная дробь (как и в теории Вейерштрасса). В некоторых учебниках - как длина отрезка, несоизмеримого с единицей масштаба, а затем показывается, как находятся приближения этого числа в виде десятичных дробей.

Далее необходимо установить, что существует взаимно однозначное соответствие между множеством действительных чисел. Поскольку иррациональные числа вводятся для измерения отрезков, несоизмеримых с единицей длины, то сразу получается, что для каждого отрезка можно найти действительное число, выражающее его отношение к единице длины. Обратное положение есть аксиома непрерывности прямой. В большинстве не формулируется, а подчеркивается это взаимно однозначное соответствие. В некоторых учебниках (Д.К. Фаддеева и др.) используется подход Кантора: для всякой стягивающейся последовательности вложенных друг в друга промежутков на прямой существует точка, принадлежащая всем промежуткам последовательности. Отсюда и следует непрерывность множества действительных чисел.

Можно не доказывать непрерывность множества, но необходимо выяснить различие в структуре множеств рациональных и действительных чисел. Множество рациональных чисел плотно (между любыми двумя рациональными числами существует сколько угодно рациональных чисел), но не непрерывно. Множество разрывов имеет большую мощность. Н.Н. Лузин предложил такое сравнение: если представить, что рациональные точки не пропускают солнечные лучи, и поставить прямую на пути лучей, то нам покажется, что солнце пробивается почти сплошь. У С.И. Туманова: рациональные числа окрашены в черный цвет, а иррациональные - в красный. Тогда прямая представлялась бы сплошь красной.

Из всех теорий иррациональных чисел более доступной считалась теория Кантора - Мере, рассматривающая стягивающиеся последовательности вложенных в друг друга сегментов. Поэтому во многих учебниках результат действий над иррациональными числами рассматривается как число, заключенное между всеми приближенными результатами, взятыми по избытку, и всеми приближенными значениями, взятыми по недостатку. Такое определение не создает у учащихся представления о результате действий над иррациональными числами и вообще об иррациональном числе. В экспериментах В.К. Матушка (контрольная работа среди лучших учеников) школьники считают иррациональные числа неточными, колеблющимися, приближенными. Многие считают, что числа, нельзя сложить. Причина и в неудачной терминологии: "точный" корень, "неточный" корень. Он советует использовать термины "приближенное значение корня" и "точное значение корня".

Действия с иррациональными числами лучше начинать с геометрического изображения суммы. Известно, что можно точно построить отрезки, имеющие такую длину.

Следует обратить внимание учащихся, что в результате действий над иррациональными числами могут получиться как рациональные, так и иррациональные. Для этого нужно предложить примеры на сложение непериодических дробей.

Дальнейшего расширения числовой системы потребовала алгебраическая задача извлечения четной степени (квадратного корня) из отрицательного числа. Поле действительных чисел расширено до системы комплексных чисел присоединением к нему множества мнимых чисел.


Положительные рациональные числа.

Наименьшее общее кратное и наибольший общий делитель.

Признаки делимости.

Теоретико-множественный смысл разности.

Теоретико-множественный смысл суммы.

ВОПРОСЫ К КОЛЛОКВИУМУ

1. Из истории возникновения понятия натурального числа.

2. Порядковые и количественные натуральные числа. Счет.

3. Теоретико-множественный смысл количественного натурального числа и нуля.

4. Теоретико-множественный смысл отношения «меньше», «равно»

6. Законы сложения.

8. Отношения «больше на» и «меньше на».

9. Правила вычитания числа из суммы и суммы из числа.

10. Из истории возникновения и развития способов записи натуральных чисел и нуля.

11. Понятие системы счисления.

12. Позиционные и непозиционные системы счисления.

13. Запись и названия чисел в десятичной системе счисления.

14. Сложение в десятичной системе счисления.

15. Умножение в десятичной системе счисления

16. Упорядоченность множества натуральных чисел.

17. Вычитание в десятичной системе счисления.

18. Деление в десятичной системе счисления.

19. Множество целых неотрицательных чисел.

20. Отношение делимости и его свойства.

23. Простые числа. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел.

24. Понятие дроби.

27. Запись положительных рациональных чисел в виде десятичных дробей.

28. Действительные числа.


МОДУЛЬ 4. ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ВЕЛИЧИНЫ

Известно, что числа возникли из потребности счета и измерения, но если для счета достаточно натуральных чисел, то для измерения величин нужны и другие числа. Однако в качестве результата измерения величин будем рассматривать только натуральные числа. Определив смысл натурального числа как меры величины, мы выясним, какой смысл имеют арифметические действия над такими числами. Эти знания нужны учителю начальных классов не только для обоснования выбора действий при решении задач с величинами, но и для понимания еще одного подхода к трактовке натурального числа, существующего в начальном обучении математике.

Натуральное число мы будем рассматривать в связи с измерений положительных скалярных величин - длин, площадей, масс, времени др., поэтому прежде, чем говорить о взаимосвязи величин и натуральных чисел, напомним некоторые факты, связанные с величиной и измерением, тем более что понятие величины, наряду с числом, является основным в начальном курсе математики.

В последние годы наметилась тенденция к включению значительного по объему геометрического материала в начальный курс математики. Но для того, чтобы учитель мог познакомить учащихся с различными геометрическими фигурами (как плоскости, так и пространства), мог научить их правильно изображать геометрические фигуры, ему нужна соответствующая математическая подготовка. Безусловно, нужны знания об истории возникновения и развития геометрии, так как ученик в процессе развития геометрических представлений проходит, в свернутом виде, основные этапы создания геометрической науки. Учитель должен быть знаком с ведущими идеями курса геометрии, знать основные свойства геометрических фигур, уметь их построить.



В освоении этого материала учителю поможет материал данного модуля. В нем с учетом подготовки, полученной студентами в школьном курсе математики, представлен геометрический материал, необходимый для обучения младших школьников элементам геометрии.

Студент должен уметь:

Иллюстрировать примерами из учебников математики для начальной школы к определению натурального числа и действий над числами, как результата измерения величин;

Решать элементарные задачи на построение с помощью циркуля и линейки в объеме, определенном содержанием обучения;

Решать несложные задачи на доказательство и вычисление числовых значений геометрических фигур;

Изображать на плоскости призму, прямоугольный параллелепипед, пирамиду, цилиндр, конус, шар, используя правила проектирования.

С дошкольного возраста ребенок оперирует натуральными числами, то производя счет предметов, то пересчитывая множество пальцев на руках. Основным понятием при введении понятия множества натуральных чисел N является отношение , которое определяется следующими аксиомами Пеано.

Аксиома 1 . В множестве N существует элемент, непосредственно не следующий ни за каким элементом этого множества, который называется единицей и обозначается символом 1.

Аксиома 2. Для каждого элемента п множества N, существует единственный элемент (п+1) , непосредственно следующий за п .

Аксиома 3. Для каждого элемента п из N существует не более одного элемента (п-1) , за которым непосредственно следует п.

Аксиома 4. Любое подмножество Р множества N совпадает с N , если для него выполняются свойства: 1) 1 содержится в Р ; 2) из того, что п содержится в Р , следует, что и (п+1) содержится в Р .

На основании аксиом Пеано сформулируем определение множества натуральных чисел.

Определение. Множество N, элементы которого удовлетворяют аксиомам 1-4, т.е. находятся в отношении «непосредственно следовать за» , называется множеством натуральных чисел, а его элементы – натуральными числами.

Расширением множества натуральных чисел N является множество целых чисел Z, которое является объединением натуральных чисел, числа нуль и чисел противоположных натуральным числам.

Расширением множества целых чисел является множество рациональных чисел Q, представляющее собой объединение целых и дробных чисел. Множество всех чисел представимых в виде несократимой дроби m/n , где m может быть любым целым числом, (не исключая нуля), т.е. m Î Z, а n – натуральное число, т.е. n Î N, составляют множество рациональных чисел. Любое рациональное число можно записать в виде бесконечной десятичной периодической дроби, и наоборот, любая бесконечная десятичная периодическая дробь представляет собой рациональное число.

Существуют числа, которые нельзя представить в виде несократимой дроби, т.е. не принадлежат множеству рациональных чисел. Такие числа составляют множество иррациональных чисел I , их можно представить в виде бесконечной десятичной непериодической дроби. Например, длина диагонали квадрата со стороной 1 должна выражаться некоторым положительным числом r 2 =1 2 +1 2 (по теореме Пифагора), т.е. таким, что r 2 =2. Число r не может быть целым, 1 2 = 1, 2 2 = 4 и т.д. Число r не может быть и дробным: если r = m/n - несократимая дробь, где n¹1, то r 2 =m 2 /n 2 тоже будет несократимой дробью, где n 2 ¹ 1; значит, m 2 /n 2 не является целым числом, а потому не может равняться 2. Поэтому длина диагонали квадрата выражается иррациональным числом, оно обозначается . Аналогично, не существует рационального числа, квадрат которого равен 5, 7, 10. Соответствующие иррациональные числа обозначаются , , . Противоположные им числа также иррациональны, они обозначаются - ,- ,- .



Множество иррациональных чисел бесконечно. Например, число p, выражающее отношение длины окружности к диаметру, нельзя представить в виде обыкновенной дроби – это иррациональное число.

Множество, элементами которого являются рациональные и иррациональные числа называется множеством действительных чисел и обозначается буквой R. Каждому действительному числу соответствует единственная точка координатной прямой. Каждая точка координатной прямой соответствует единственному действительному числу. Множество действительных чисел называют также числовой прямой.

Нами рассмотрен процесс расширения понятия числа от натуральных к действительным, который был связан с потребностями практики и с нуждами самой математики. Необходимость выполнения деления привела от натуральных чисел к понятию дробных положительных чисел; затем операция вычитания привела к понятиям отрицательных чисел и нуля; далее, необходимость извлечения корней из положительных чисел – к понятию иррационального числа. Множество, на котором выполнимы все эти операции, есть множество действительных чисел, однако не все операции выполнимы на данном множестве. Например, нет возможности извлечь корень квадратный из отрицательного числа или решить квадратное уравнение х 2 + х + 1 = 0. Значит, есть потребность в расширении множества действительных чисел.



Введем число i , такое, что i 2 = - 1. Это число позволит извлекать корни из отрицательных чисел. Итак, расширением множества действительных чисел есть множество комплексных чисел , которое обозначается буквой С . Подробно, с множеством комплексных чисел, мы познакомимся позже.

Будем пользоваться обозначениями:

N - множество натуральных чисел;

Z - множество целых чисел;

Q - множество рациональных чисел,

R - множество действительных чисел

С - множество комплексных чисел.