Как делать действия с дробями. Действия с дробями: правила, примеры, решения

Умножение и деление дробей.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Эта операция гораздо приятнее сложения-вычитания ! Потому что проще. Напоминаю: чтобы умножить дробь на дробь, нужно перемножить числители (это будет числитель результата) и знаменатели (это будет знаменатель). То есть:

Например:

Всё предельно просто . И, пожалуйста, не ищите общий знаменатель! Не надо его здесь…

Чтобы разделить дробь на дробь, нужно перевернуть вторую (это важно!) дробь и их перемножить, т.е.:

Например:

Если попалось умножение или деление с целыми числами и дробями - ничего страшного. Как и при сложении, делаем из целого числа дробь с единицей в знаменателе - и вперёд! Например:

В старших классах часто приходится иметь дело с трехэтажными (а то и четырехэтажными!) дробями. Например:

Как эту дробь привести к приличному виду? Да очень просто! Использовать деление через две точки:

Но не забывайте о порядке деления! В отличие от умножения, здесь это очень важно! Конечно, 4:2, или 2:4 мы не спутаем. А вот в трёхэтажной дроби легко ошибиться. Обратите внимание, например:

В первом случае (выражение слева):

Во втором (выражение справа):

Чувствуете разницу? 4 и 1/9!

А чем задается порядок деления? Или скобками, или (как здесь) длиной горизонтальных черточек. Развивайте глазомер. А если нет ни скобок, ни черточек, типа:

то делим-умножаем по порядочку, слева направо !

И еще очень простой и важный приём. В действиях со степенями он вам ох как пригодится! Поделим единицу на любую дробь, например, на 13/15:

Дробь перевернулась! И так бывает всегда. При делении 1 на любую дробь, в результате получаем ту же дробь, только перевернутую.

Вот и все действия с дробями. Вещь достаточно простая, но ошибок даёт более, чем достаточно. Примите к сведению практические советы, и их (ошибок) будет меньше!

Практические советы:

1. Самое главное при работе с дробными выражениями - аккуратность и внимательность! Это не общие слова, не благие пожелания! Это суровая необходимость! Все вычисления на ЕГЭ делайте как полноценное задание, сосредоточенно и чётко. Лучше написать две лишние строчки в черновике, чем накосячить при расчёте в уме.

2. В примерах с разными видами дробей - переходим к обыкновенным дробям.

3. Все дроби сокращаем до упора.

4. Многоэтажные дробные выражения сводим к обыкновенным, используя деление через две точки (следим за порядком деления!).

5. Единицу на дробь делим в уме, просто переворачивая дробь.

Вот вам задания, которые нужно обязательно прорешать. Ответы даны после всех заданий. Используйте материалы этой темы и практические советы. Прикиньте, сколько примеров вы смогли решить правильно. С первого раза! Без калькулятора! И сделайте верные выводы...

Помните – правильный ответ, полученный со второго (тем более – третьего) раза – не считается! Такова суровая жизнь.

Итак, решаем в режиме экзамена ! Это уже подготовка к ЕГЭ, между прочим. Решаем пример, проверяем, решаем следующий. Решили все - проверили снова с первого по последний. И только потом смотрим ответы.

Вычислить:

Порешали?

Ищем ответы, которые совпадают с вашими. Я специально их в беспорядке записал, подальше от соблазна, так сказать... Вот они, ответы, через точку с запятой записаны.

0; 17/22; 3/4; 2/5; 1; 25.

А теперь делаем выводы. Если всё получилось - рад за вас! Элементарные вычисления с дробями - не ваша проблема! Можно заняться более серьёзными вещами. Если нет...

Значит, у вас одна из двух проблем. Или обе сразу.) Нехватка знаний и (или) невнимательность. Но... Это решаемые проблемы.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.


Итак, если числовое выражение составлено из чисел и знаков +, −, · и:, то по порядку слева направо нужно сначала выполнить умножение и деление, а затем – сложение и вычитание, что позволит найти искомое значение выражения.

Приведем решение примеров для пояснения.

Пример.

Вычислите значение выражения 14−2·15:6−3 .

Решение.

Чтобы найти значение выражения, нужно выполнить все указанные в нем действия в соответствии с принятым порядком выполнения этих действий. Вначале по порядку слева направо выполняем умножение и деление, получаем 14−2·15:6−3=14−30:6−3=14−5−3 . Теперь также по порядку слева направо выполняем оставшиеся действия: 14−5−3=9−3=6 . Так мы нашли значение исходного выражения, оно равно 6 .

Ответ:

14−2·15:6−3=6 .

Пример.

Найдите значение выражения .

Решение.

В данном примере нам сначала нужно выполнить умножение 2·(−7) и деление с умножением в выражении . Вспомнив, как выполняется , находим 2·(−7)=−14 . А для выполнения действий в выражении сначала , после чего , и выполняем : .

Подставляем полученные значения в исходное выражение: .

А как быть, когда под знаком корня находится числовое выражение? Чтобы получить значение такого корня, нужно сначала найти значение подкоренного выражения, придерживаясь принятого порядка выполнений действий. Например, .

В числовых выражениях корни следует воспринимать как некоторые числа, и корни целесообразно сразу заменить их значениями, после чего находить значение полученного выражения без корней, выполняя действия в принятой последовательности.

Пример.

Найдите значение выражения с корнями .

Решение.

Сначала найдем значение корня . Для этого, во-первых, вычислим значение подкоренного выражения, имеем −2·3−1+60:4=−6−1+15=8 . А во-вторых, находим значение корня .

Теперь вычислим значение второго корня из исходного выражения: .

Наконец, мы можем найти значение исходного выражения, заменив корни их значениями: .

Ответ:

Достаточно часто, чтобы стало возможно найти значение выражения с корнями, предварительно приходится проводить его преобразование. Покажем решение примера.

Пример.

Каково значение выражения .

Решение.

Мы не имеем возможности заменить корень из трех его точным значением, что не позволяет нам вычислить значение этого выражения описанным выше способом. Однако мы можем вычислить значение этого выражение, выполнив несложные преобразования. Применим формулу разности квадратов : . Учитывая , получаем . Таким образом, значение исходного выражения равно 1 .

Ответ:

.

Со степенями

Если основание и показатель степени являются числами, то их значение вычисляется по определению степени, например, 3 2 =3·3=9 или 8 −1 =1/8 . Встречаются также записи, когда основание и/или показатель степени являются некоторыми выражениями. В этих случаях нужно найти значение выражения в основании, значение выражения в показателе, после чего вычислить значение самой степени.

Пример.

Найдите значение выражения со степенями вида 2 3·4−10 +16·(1−1/2) 3,5−2·1/4 .

Решение.

В исходном выражении две степени 2 3·4−10 и (1−1/2) 3,5−2·1/4 . Их значения нужно вычислить до выполнения остальных действий.

Начнем со степени 2 3·4−10 . В ее показателе находится числовое выражение, вычислим его значение: 3·4−10=12−10=2 . Теперь можно найти значение самой степени: 2 3·4−10 =2 2 =4 .

В основании и показателе степени (1−1/2) 3,5−2·1/4 находятся выражения, вычисляем их значения, чтобы потом найти значение степени. Имеем (1−1/2) 3,5−2·1/4 =(1/2) 3 =1/8 .

Теперь возвращаемся к исходному выражению, заменяем в нем степени их значениями, и находим нужное нам значение выражения: 2 3·4−10 +16·(1−1/2) 3,5−2·1/4 = 4+16·1/8=4+2=6 .

Ответ:

2 3·4−10 +16·(1−1/2) 3,5−2·1/4 =6 .

Стоит заметить, что более распространены случаи, когда целесообразно провести предварительное упрощение выражения со степенями на базе .

Пример.

Найдите значение выражения .

Решение.

Судя по показателям степеней, находящихся в данном выражении, точные значения степеней получить не удастся. Попробуем упростить исходное выражение, может быть это поможет найти его значение. Имеем

Ответ:

.

Степени в выражениях зачастую идут рука об руку с логарифмами, но о нахождении значений выражений с логарифмами мы поговорим в одном из .

Находим значение выражения с дробями

Числовые выражения в своей записи могут содержать дроби . Когда требуется найти значение подобного выражения, дроби, отличные от обыкновенных дробей, следует заменить их значениями перед выполнением остальных действий.

В числителе и знаменателе дробей (которые отличны от обыкновенных дробей) могут находиться как некоторые числа, так и выражения. Чтобы вычислить значение такой дроби нужно вычислить значение выражения в числителе, вычислить значение выражения в знаменателе, после чего вычислить значение самой дроби. Такой порядок объясняется тем, что дробь a/b , где a и b – некоторые выражения, по сути представляет собой частное вида (a):(b) , так как .

Рассмотрим решение примера.

Пример.

Найдите значение выражения с дробями .

Решение.

В исходном числовом выражении три дроби и . Чтобы найти значение исходного выражения, нам сначала нужно эти дроби, заменить их значениями. Сделаем это.

В числителе и знаменателе дроби находятся числа. Чтобы найти значение такой дроби, заменяем дробную черту знаком деления, и выполняем это действие: .

В числителе дроби находится выражение 7−2·3 , его значение найти легко: 7−2·3=7−6=1 . Таким образом, . Можно переходить к нахождению значения третьей дроби.

Третья дробь в числителе и знаменателе содержит числовые выражения, поэтому, сначала нужно вычислить их значения, а это позволит найти значение самой дроби. Имеем .

Осталось подставить найденные значения в исходное выражение, и выполнить оставшиеся действия: .

Ответ:

.

Часто при нахождении значений выражений с дробями приходится выполнять упрощение дробных выражений , базирующееся на выполнении действий с дробями и на сокращении дробей.

Пример.

Найдите значение выражения .

Решение.

Корень из пяти нацело не извлекается, поэтому для нахождения значения исходного выражения для начала упростим его. Для этого избавимся от иррациональности в знаменателе первой дроби: . После этого исходное выражение примет вид . После вычитания дробей пропадут корни, что нам позволит найти значение изначально заданного выражения: .

Ответ:

.

С логарифмами

Если числовое выражение содержит , и если есть возможность избавиться от них, то это делается перед выполнением остальных действий. Например, при нахождении значения выражения log 2 4+2·3 , логарифм log 2 4 заменяется его значением 2 , после чего выполняются остальные действия в обычном порядке, то есть, log 2 4+2·3=2+2·3=2+6=8 .

Когда под знаком логарифма и/или в его основании находятся числовые выражения, то сначала находятся их значения, после чего вычисляется значение логарифма. Для примера рассмотрим выражение с логарифмом вида . В основании логарифма и под его знаком находятся числовые выражения, находим их значения: . Теперь находим логарифм, после чего завершаем вычисления: .

Если же логарифмы не вычисляются точно, то найти значение исходного выражения может помочь предварительное его упрощение с использованием . При этом нужно хорошо владеть материалом статьи преобразование логарифмических выражений .

Пример.

Найдите значение выражения с логарифмами .

Решение.

Начнем с вычисления log 2 (log 2 256) . Так как 256=2 8 , то log 2 256=8 , следовательно, log 2 (log 2 256)=log 2 8=log 2 2 3 =3 .

Логарифмы log 6 2 и log 6 3 можно сгруппировать. Сумма логарифмов log 6 2+log 6 3 равна логарифму произведения log 6 (2·3) , таким образом, log 6 2+log 6 3=log 6 (2·3)=log 6 6=1 .

Теперь разберемся с дробью . Для начала основание логарифма в знаменателе перепишем в виде обыкновенной дроби как 1/5 , после чего воспользуемся свойствами логарифмов, что позволит нам получить значение дроби:
.

Осталось лишь подставить полученные результаты в исходное выражение и закончить нахождение его значения:

Ответ:

Как найти значение тригонометрического выражения?

Когда числовое выражение содержит или и т.п., то их значения вычисляются перед выполнением остальных действий. Если под знаком тригонометрических функций стоят числовые выражения, то сначала вычисляются их значения, после чего находятся значения тригонометрических функций.

Пример.

Найдите значение выражения .

Решение.

Обратившись к статье , получаем и cosπ=−1 . Подставляем эти значения в исходное выражение, оно принимает вид . Чтобы найти его значение, сначала нужно выполнить возведение в степень, после чего закончить вычисления: .

Ответ:

.

Стоит отметить, что вычисление значений выражений с синусами, косинусами и т.п. зачастую требует предварительного преобразования тригонометрического выражения .

Пример.

Чему равно значение тригонометрического выражения .

Решение.

Преобразуем исходное выражение, используя , в данном случае нам потребуются формула косинуса двойного угла и формула косинуса суммы:

Проделанные преобразования помогли нам найти значение выражения.

Ответ:

.

Общий случай

В общем случае числовое выражение может содержать и корни, и степени, и дроби, и какие-либо функции, и скобки. Нахождение значений таких выражений состоит в выполнении следующих действий:

  • сначала корни, степени, дроби и т.п. заменяются их значениями,
  • дальше действия в скобках,
  • и по порядку слева направо выполняется оставшиеся действия - умножение и деление, а за ними – сложение и вычитание.

Перечисленные действия выполняются до получения конечного результата.

Пример.

Найдите значение выражения .

Решение.

Вид данного выражения довольно сложен. В этом выражении мы видим дробь, корни, степени, синус и логарифм. Как же найти его значение?

Продвигаясь по записи слева на право, мы натыкаемся на дробь вида . Мы знаем, что при работе с дробями сложного вида, нам нужно отдельно вычислить значение числителя, отдельно – знаменателя, и, наконец, найти значение дроби.

В числителе мы имеем корень вида . Чтобы определить его значение, сначала надо вычислить значение подкоренного выражения . Здесь есть синус. Найти его значение мы сможем лишь после вычисления значения выражения . Это мы можем сделать: . Тогда , откуда и .

Со знаменателем все просто: .

Таким образом, .

После подстановки этого результата в исходное выражение, оно примет вид . В полученном выражении содержится степень . Чтобы найти ее значение, сначала придется найти значение показателя, имеем .

Итак, .

Ответ:

.

Если же нет возможности вычислить точные значения корней, степеней и т.п., то можно попробовать избавиться от них с помощью каких-либо преобразований, после чего вернуться к вычислению значения по указанной схеме.

Рациональные способы вычисления значений выражений

Вычисление значений числовых выражений требует последовательности и аккуратности. Да, необходимо придерживаться последовательности выполнения действий, записанной в предыдущих пунктах, но не нужно это делать слепо и механически. Этим мы хотим сказать, что часто можно рационализировать процесс нахождения значения выражения. Например, значительно ускорить и упростить нахождение значения выражения позволяют некоторые свойства действий с числами.

К примеру, мы знаем такое свойство умножения: если один из множителей в произведении равен нулю, то и значение произведения равно нулю. Используя это свойство, мы можем сразу сказать, что значение выражения 0·(2·3+893−3234:54·65−79·56·2,2)· (45·36−2·4+456:3·43) равно нулю. Если бы мы придерживались стандартного порядка выполнения действий, то сначала нам бы пришлось вычислять значения громоздких выражений в скобках, а это бы заняло массу времени, и в результате все равно получился бы нуль.

Также удобно пользоваться свойством вычитания равных чисел: если от числа отнять равное ему число, то в результате получится нуль. Это свойство можно рассматривать шире: разность двух одинаковых числовых выражений равна нулю. Например, не вычисляя значения выражений в скобках можно найти значение выражения (54·6−12·47362:3)−(54·6−12·47362:3) , оно равно нулю, так как исходное выражение представляет собой разность одинаковых выражений.

Рациональному вычислению значений выражений могут способствовать тождественные преобразования . Например, бывает полезна группировка слагаемых и множителей , не менее часто используется вынесение общего множителя за скобки . Так значение выражения 53·5+53·7−53·11+5 очень легко находится после вынесения множителя 53 за скобки: 53·(5+7−11)+5=53·1+5=53+5=58 . Непосредственное вычисление заняло бы намного больше времени.

В заключение этого пункта обратим внимание на рациональный подход к вычислению значений выражений с дробями – одинаковые множители в числителе и знаменателе дроби сокращаются. Например, сокращение одинаковых выражений в числителе и знаменателе дроби позволяет сразу найти ее значение, которое равно 1/2 .

Нахождение значения буквенного выражения и выражения с переменными

Значение буквенного выражения и выражения с переменными находится для конкретных заданных значений букв и переменных. То есть, речь идет о нахождении значения буквенного выражения для данных значений букв или о нахождении значения выражения с переменными для выбранных значений переменных.

Правило нахождения значения буквенного выражения или выражения с переменными для данных значений букв или выбранных значений переменных таково: в исходное выражение нужно подставить данные значения букв или переменных, и вычислить значение полученного числового выражения, оно и является искомым значением.

Пример.

Вычислите значение выражения 0,5·x−y при x=2,4 и y=5 .

Решение.

Чтобы найти требуемое значение выражения, сначала нужно подставить в исходное выражение данные значения переменных, после чего выполнить действия: 0,5·2,4−5=1,2−5=−3,8 .

Ответ:

−3,8 .

В заключение отметим, что иногда выполнение преобразований буквенных выражений и выражений с переменными позволяет получить их значения, независимо от значений букв и переменных. Например, выражение x+3−x можно упростить, после чего оно примет вид 3 . Отсюда можно сделать вывод, что значение выражения x+3−x равно 3 для любых значений переменной x из ее области допустимых значений (ОДЗ) . Еще пример: значение выражения равно 1 для всех положительных значений x , так областью допустимых значений переменной x в исходном выражении является множество положительных чисел, и на этой области имеет место равенство .

Список литературы.

  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.

В данном разделе рассматриваются действия с обыкновенными дробями. В случае, если необходимо провести математическую операцию со смешанными числами, то достаточно перевести смешанную дробь в необыкновенную, провести необходимые операции и, в случае необходимости, конечный результат снова представить в виде смешанного числа. Данная операция будет описана ниже.

Сокращение дроби

Математическая операция. Сокращение дроби

Чтобы сократить дробь \frac{m}{n} нужно найти наибольший общий делитель ее числителя и знаменателя: НОД(m,n), после чего поделить числитель и знаменатель дроби на это число. Если НОД(m,n)=1, то дробь сократить нельзя. Пример: \frac{20}{80}=\frac{20:20}{80:20}=\frac{1}{4}

Обычно сразу найти наибольший общий делитель представляется сложной задачей и на практике дробь сокращают в несколько этапов, пошагово выделяя у числителя и знаменателя очевидные общие множители. \frac{140}{315}=\frac{28\cdot5}{63\cdot5}=\frac{4\cdot7\cdot5}{9\cdot7\cdot5}=\frac{4}{9}

Приведение дробей к общему знаменателю

Математическая операция. Приведение дробей к общему знаменателю

Чтобы привести две дроби \frac{a}{b} и \frac{c}{d} к общему знаменателю нужно:

  • найти наименьшее общее кратное знаменателей: M=НОК(b,d);
  • умножить числитель и знаменатель первой дроби на M/b (после чего знаменатель дроби становится равным числу M);
  • умножить числитель и знаменатель второй дроби на M/d (после чего знаменатель дроби становится равным числу M).

Тем самым мы преобразуем исходные дроби к дробям с одинаковыми знаменателями (которые будут равны числу M).

Например, дроби \frac{5}{6} и \frac{4}{9} имеют НОК(6,9) = 18. Тогда: \frac{5}{6}=\frac{5\cdot3}{6\cdot3}=\frac{15}{18};\quad\frac{4}{9}=\frac{4\cdot2}{9\cdot2}=\frac{8}{18} . Тем самым полученные дроби имеют общий знаменатель.

На практике нахождение наименьшего общего кратного (НОК) знаменателей является не всегда простой задачей. Поэтому в качестве общего знаменателя выбирается число, равное произведению знаменателей исходных дробей. Например, дроби \frac{5}{6} и \frac{4}{9} приводятся к общему знаменателю N=6\cdot9:

\frac{5}{6}=\frac{5\cdot9}{6\cdot9}=\frac{45}{54};\quad\frac{4}{9}=\frac{4\cdot6}{9\cdot6}=\frac{24}{54}

Сравнение дробей

Математическая операция. Сравнение дробей

Для сравнения двух обыкновенных дробей необходимо:

  • сравнить числители получившихся дробей; дробь с большим числителем будет больше.
Например, \frac{9}{14}

При сравнении дробей имеются несколько частных случаев:

  1. Из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше. Например, \frac{3}{15}
  2. Из двух дробей с одинаковыми числителями больше та дробь, знаменатель которой меньше. Например, \frac{4}{11}>\frac{4}{13}
  3. Та дробь, у которой одновременно больший числитель и меньший знаменатель , больше. Например, \frac{11}{3}>\frac{10}{8}

Внимание! Правило 1 действует для любых дробей, если их общий знаменатель является положительным числом. Правила 2 и 3 действуют для положительных дробей (у которых и числитель и знаменатель больше нуля).

Сложение и вычитание дробей

Математическая операция. Сложение и вычитание дробей

Чтобы сложить две дроби, нужно:

  • привести их к общему знаменателю;
  • сложить их числители, а знаменатель оставить без изменений.

Пример: \frac{7}{9}+\frac{4}{7}=\frac{7\cdot7}{9\cdot7}+\frac{4\cdot9}{7\cdot9}=\frac{49}{63}+\frac{36}{63}=\frac{49+36}{63}=\frac{85}{63}

Чтобы из одной дроби вычесть другую, нужно:

  • привести дроби к общему знаменателю;
  • из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменений.

Пример: \frac{4}{15}-\frac{3}{5}=\frac{4}{15}-\frac{3\cdot3}{5\cdot3}=\frac{4}{15}-\frac{9}{15}=\frac{4-9}{15}=\frac{-5}{15}=-\frac{5}{3\cdot5}=-\frac{1}{3}

Если исходные дроби изначально имеют общий знаменатель, то пункт 1 (приведение к общему знаменателю) пропускается.

Преобразование смешанного числа в неправильную дробь и обратно

Математическая операция. Преобразование смешанного числа в неправильную дробь и обратно

Чтобы преобразовать смешанную дробь в неправильную, достаточно просуммировать целую часть смешанной дроби с дробной частью. Результатом такой суммы станет неправильная дробь, числитель которой равен сумме произведения целой части на знаменатель дроби с числителем смешанной дроби, а знаменатель останется прежним. Например, 2\frac{6}{11}=2+\frac{6}{11}=\frac{2\cdot11}{11}+\frac{6}{11}=\frac{2\cdot11+6}{11}=\frac{28}{11}

Чтобы преобразовать неправильную дробь в смешанное число необходимо:

  • поделить числитель дроби на ее знаменатель;
  • остаток от деления записать в числитель, а знаменатель оставить прежним;
  • результат от деления записать в качестве целой части.

Например, дробь \frac{23}{4} . При делении 23:4=5,75, то есть целая часть 5, остаток от деления равен 23-5*4=3. Тогда смешанное число запишется: 5\frac{3}{4} . \frac{23}{4}=\frac{5\cdot4+3}{4}=5\frac{3}{4}

Преобразование десятичной дроби в обыкновенную

Математическая операция. Преобразование десятичной дроби в обыкновенную

Для того, чтобы обратить десятичную дробь в обыкновенную, надо:

  1. в качестве знаменателя взять n-ую степень десяти (здесь n – количество десятичных знаков);
  2. в качестве числителя взять число, стоящее после десятичной точки (если целая часть исходного числа не равна нулю, то брать в том числе и все стоящие впереди нули);
  3. отличная от нуля целая часть записывается в числителе в самом начале; нулевая целая часть опускается.

Пример 1: 0.0089=\frac{89}{10000} (десятичных знаков 4, поэтому в знаменателе 10 4 =10000, поскольку целая часть равна 0, то в числителе записано число после десятичной точки без начальных нулей)

Пример 2: 31.0109=\frac{310109}{10000} (в числитель записываем число после десятичной точки со всеми нулями: "0109", а затем перед ним дописываем целую часть исходного числа "31")

Если целая часть десятичной дроби отлична от нуля, то её можно перевести в смешанную дробь. Для этого переводим число в обыкновенную дробь как если бы целая часть равнялась нулю (пункты 1 и 2), а целую часть просто переписываем перед дробью - это будет целая часть смешанного числа. Пример:

3.014=3\frac{14}{100}

Чтобы перевести обыкновенную дробь в десятичную, достаточно просто произвести деление числителя на знаменатель. Иногда получится бесконечная десятичная дробь. В этом случае необходимо произвести округление до нужного десятичного знака. Примеры:

\frac{401}{5}=80.2;\quad \frac{2}{3}\approx0.6667

Умножение и деление дробей

Математическая операция. Умножение и деление дробей

Чтобы перемножить две обыкновенные дроби, надо перемножить числители и знаменатели дробей.

\frac{5}{9}\cdot\frac{7}{2}=\frac{5\cdot7}{9\cdot2}=\frac{35}{18}

Чтобы разделить одну обыкновенную дробь на другую, надо умножить первую дробь на дробь, обратную второй (обратная дробь - дробь, в которой поменяны местами числитель и знаменатель).

\frac{5}{9}:\frac{7}{2}=\frac{5}{9}\cdot\frac{2}{7}=\frac{5\cdot2}{9\cdot7}=\frac{10}{63}

В случае, если одна из дробей является натуральным числом, то указанные выше правила умножения и деления остаются в силе. Просто нужно учитывать, что целое число это та же дробь, знаменатель которой равен единице. Например: 3:\frac{3}{7}=\frac{3}{1}:\frac{3}{7}=\frac{3}{1}\cdot\frac{7}{3}=\frac{3\cdot7}{1\cdot3}=\frac{7}{1}=7

Дробь - число, которое состоит из целого числа долей единицы и представляется в виде: a/b

Числитель дроби (a) - число, находящееся над чертой дроби и показывающее количество долей, на которые была поделена единица.

Знаменатель дроби (b) - число, находящееся под чертой дроби и показывающее на сколько долей поделили единицу.

2. Приведение дробей к общему знаменателю

3. Арифметические действия над обыкновенными дробями

3.1. Сложение обыкновенных дробей

3.2. Вычитание обыкновенных дробей

3.3. Умножение обыкновенных дробей

3.4. Деление обыкновенных дробей

4. Взаимно обратные числа

5. Десятичные дроби

6. Арифметические действия над десятичными дробями

6.1. Сложение десятичных дробей

6.2. Вычитание десятичных дробей

6.3. Умножение десятичных дробей

6.4. Деление десятичных дробей

#1. Основное свойство дроби

Если числитель и знаменатель дроби умножить или разделить на одно и то же число, не равное нулю, то получится дробь, равная данной.

3/7=3*3/7*3=9/21, то есть 3/7=9/21

a/b=a*m/b*m - так выглядит основное свойство дроби.

Другими словами, мы получим дробь, равную данной, умножив или разделив числитель и знаменатель исходной дроби на одно и то же натуральное число.

Если ad=bc , то две дроби a/b =c /d считаются равными.

Например, дроби 3/5 и 9/15 будут равными, так как 3*15=5*9, то есть 45=45

Сокращение дроби - это процесс замены дроби, при котором новая дробь получается равной исходной, но с меньшим числителем и знаменателем.

Сокращать дроби принято, опираясь на основное свойство дроби.

Например, 45/60=15/ ​20 =9/12=3/4 ​ (числитель и знаменатель делится на число 3, на 5 и на 15 ).

Несократимая дробь - это дробь вида 3/4 ​ , где числитель и знаменатель являются взаимно простыми числами. Основная цель сокращения дроби - сделать дробь несократимой.

2. Приведение дробей к общему знаменателю

Чтобы привести две дроби к общему знаменателю, надо:

1) разложить знаменатель каждой дроби на простые множители;

2) умножить числитель и знаменатель первой дроби на недостающие

множители из разложения второго знаменателя;

3) умножить числитель и знаменатель второй дроби на недостающие множители из первого разложения.

Примеры: приведите дроби к общему знаменателю .

Разложим знаменатели на простые множители: 18=3∙3∙2, 15=3∙5

Умножили числитель и знаменатель дроби на недостающий множитель 5 из второго разложения.

числитель и знаменатель дроби на недостающие множители 3 и 2 из первого разложения.

= , 90 – общий знаменатель дробей .

3. Арифметические действия над обыкновенными дробями

3.1. Сложение обыкновенных дробей

а) При одинаковых знаменателях числитель первой дроби складывают с числителем второй дроби, оставляя знаменатель прежним. Как видно на примере:

a/b+c/b=(a+c)/b ​ ;

б) При разных знаменателях дроби сначала приводят к общему знаменателю, а затем выполняют сложение числителей по правилу а) :

7/3+1/4=7*4/12+1*3/12=(28+3)/12=31/12

3.2. Вычитание обыкновенных дробей

а) При одинаковых знаменателях из числителя первой дроби вычитают числитель второй дроби, оставляя знаменатель прежним:

a/b-c/b=(a-c)/b ​ ;

б) Если же знаменатели дробей различны, то сначала дроби приводят к общему знаменателю, а затем повторяют действия как в пункте а) .

3.3. Умножение обыкновенных дробей

Умножение дробей подчиняется следующему правилу:

a/b*c/d=a*c/b*d,

то есть перемножают отдельно числители и знаменатели.

Например:

3/5*4/8=3*4/5*8=12/40.

3.4. Деление обыкновенных дробей

Деление дробей производят следующим способом:

a/b:c/d=a*d/b*c,

то есть дробь a/b умножается на дробь, обратную данной, то есть умножается на d/c.

Пример: 7/2:1/8=7/2*8/1=56/2=28

4. Взаимно обратные числа

Если a*b=1, то число b является обратным числом для числа a .

Пример: для числа 9 обратным является 1/9 , так как 9*1/9= 1 , для числа 5 - обратное число 1/5 , так как 5* 1/5 = 1 .

5. Десятичные дроби

Десятичной дробью называется правильная дробь, знаменатель которой равен 10, 1000, 10 000, …, 10^n 1 0 , 1 0 0 0 , 1 0 0 0 0 , . . . , 1 0 n .

Например: 6/10=0,6; 44/1000=0,044 .

Таким же способом пишутся неправильные со знаменателем 10^n или смешанные числа.

Например: 51/10=5,1; 763/100=7,63

В виде десятичной дроби представляется любая обыкновенная дробь со знаменателем, который является делителем некой степени числа 10 .

менателем, который является делителем некой степени числа 10 .

Пример: 5 - делитель числа 100 , поэтому дробь 1/5=1 *20/5*20=20/100=0,2 0 = 0 , 2 .

6. Арифметические действия над десятичными дробями

6.1. Сложение десятичных дробей

Для сложения двух десятичных дробей, нужно их расположить так, чтобы друг под другом оказались одинаковые разряды и запятая под запятой, а затем выполнить сложение дробей как обычных чисел.

6.2. Вычитание десятичных дробей

Выполняется аналогично сложению.

6.3. Умножение десятичных дробей

При умножении десятичных чисел достаточно перемножить заданные числа, не обращая внимания на запятые (как натуральные числа), а в полученном ответе запятой справа отделяется столько цифр, сколько их стоит после запятой в обоих множителях суммарно.

Давайте выполним умножение 2,7 на 1,3 . Имеем 27 \cdot 13=351 2 7 ⋅ 1 3 = 3 5 1 . Отделяем справа две цифры запятой (у первого и второго числа - одна цифра после запятой; 1+1=2 1 + 1 = 2 ). В итоге получаем 2,7 \cdot 1,3=3,51 2 , 7 ⋅ 1 , 3 = 3 , 5 1 .

Если в полученном результате получается меньше цифр, чем надо отделить запятой, то впереди пишут недостающие нули, например:

Для умножения на 10 , 100 , 1000 , надо в десятичной дроби перенести запятую на 1 , 2 , 3 цифры вправо (в случае необходимости справа приписывается определенное число нулей).

Например: 1,47 \cdot 10 000 = 14 700 1 , 4 7 ⋅ 1 0 0 0 0 = 1 4 7 0 0 .

6.4. Деление десятичных дробей

Деление десятичной дроби на натуральное число производят также, как и деление натурального числа на натуральное. Запятая в частном ставится после того, как закончено деление целой части.

Если целая часть делимого меньше делителя, то в ответе получается нуль целых, например:

Рассмотрим деление десятичной дроби на десятичную. Пусть нужно разделить 2,576 на 1,12 . Первым делом, умножим делимое и делитель дроби на 100 , то есть перенесем запятую вправо в делимом и делителе на столько знаков, сколько их стоит в делителе после запятой (в данном примере на две). Затем нужно выполнить деление дроби 257,6 на натуральное число 112 , то есть задача сводится к уже рассмотренному случаю:

Бывает так, что не всегда получается конечная десятичная дробь при делении одного числа на другое. В результате получается бесконечная десятичная дробь. В таких случаях переходят к обыкновенным дробям.

Например, 2,8: 0,09= 28/10: 9/100= 28*100/10*9=2800/90=280/9 = 31 1/9 .

Числителем, а то, на которое делят - знаменателем.

Чтобы записать дробь, напишите сначала ее числитель, затем проведите под этим числом горизонтальную черту, а под чертой напишите знаменатель. Горизонтальная , разделяющая числитель и знаменатель, называется дробной чертой. Иногда ее изображают в виде наклонной «/» или «∕». При этом, числитель записывается слева от черты, а знаменатель справа. Так, например, дробь «две третьих» запишется как 2/3. Для наглядности числитель обычно пишут в верхней части строки, а знаменатель - в нижней, то есть вместо 2/3 можно встретить: ⅔.

Чтобы рассчитать произведение дробей, умножьте сначала числитель одной дроби на числитель другой. Запишите результат в числитель новой дроби . После этого перемножьте и знаменатели. Итоговое значение укажите в новой дроби . Например, 1/3 ? 1/5 = 1/15 (1 ? 1 = 1; 3 ? 5 = 15).

Чтобы поделить одну дробь на другую, умножьте сначала числитель первой на знаменатель второй. То же произведите и со второй дробью (делителем). Или перед выполнением всех действий сначала «переверните» делитель, если вам так удобнее: на месте числителя должен оказаться знаменатель. После этого умножьте знаменатель делимого на новый знаменатель делителя и перемножьте числители. Например, 1/3: 1/5 = 5/3 = 1 2/3 (1 ? 5 = 5; 3 ? 1 = 3).

Источники:

  • Основные задачи на дроби

Дробные числа позволяют выражать в разном виде точное значение величины. С дробями можно выполнять те же математические операции, что и с целыми числами: вычитание, сложение, умножение и деление. Чтобы научиться решать дроби , надо помнить о некоторых их особенностях. Они зависят от вида дроби , наличия целой части, общего знаменателя. Некоторые арифметические действия после выполнения требуют сокращения дробной части результата.

Вам понадобится

  • - калькулятор

Инструкция

Внимательно посмотрите на числа. Если среди дробей есть десятичные и непрвильные, иногда удобнее вначале выполнить действия с десятичными, а затем перевести их в неправильный вид. Можете перевести дроби в такой вид изначально, записав значение после запятой в числитель и поставив 10 в знаменатель. При необходимости сократите дробь, разделив числа выше и ниже на один делитель. Дроби, в которых выделяется целая часть, приведите к неправильному виду, умножив её на знаменатель и прибавив к результату числитель. Данное значения станет новым числителем дроби . Чтобы выделить целую часть из первоначально неправильной дроби , надо поделить числитель на знаменатель. Целый результат записать от дроби . А остаток от деления станет новым числителем, знаменатель дроби при этом не меняется. Для дробей с целой частью возможно выполнение действий отдельно сначала для целой, а затем для дробной частей. Например, сумма 1 2/3 и 2 ¾ может быть вычислена :
- Переведение дробей в неправильный вид:
- 1 2/3 + 2 ¾ = 5/3 + 11/4 = 20/12 + 33/12 = 53/12 = 4 5/12;
- Суммирование отдельно целых и дробных частей слагаемых:
- 1 2/3 + 2 ¾ = (1+2) + (2/3 + ¾) = 3 +(8/12 + 9/12) = 3 + 17/12 = 3 + 1 5/12 = 4 5/12.

Перепишите их через разделитель «:» и продолжите обычное деление.

Для получения конечного результата полученную дробь сократите, разделив числитель и знаменатель на одно целое число, наибольшее возможное в данном случае. При этом выше и ниже черты должны быть целые числа.

Обратите внимание

Не выполняйте арифметические действия с дробями, знаменатели которых отличаются. Подберите такое число, чтобы при умножении на него числителя и знаменателя каждой дроби в результате знаменатели обеих дробей были равны.

Полезный совет

При записи дробных чисел делимое пишется над чертой. Эта величина обозначается как числитель дроби. Под чертой записывается делитель, или знаменатель, дроби. Например, полтора килограмма риса в виде дроби запишется следующим образом: 1 ½ кг риса. Если знаменатель дроби равен 10, такую дробь называют десятичной. При этом числитель (делимое) пишется справа от целой части через запятую: 1,5 кг риса. Для удобства вычислений такую дробь всегда можно записать в неправильном виде: 1 2/10 кг картофеля. Для упрощения можно сократить значения числителя и знаменателя, поделив их на одно целое число. В данном примере возможно деление на 2. В результате получится 1 1/5 кг картофеля. Удостоверьтесь, что числа, с которыми вы собираетесь выполнять арифметические действия, представлены в одном виде.