Нейромедиаторы. Биохимия депрессии

Нейромедиаторы — это праздник, который всегда с тобой. Мы постоянно слышим о том, что именно они дарят чувства радости и удовольствия, но мало знаем о том, как они работают. В первой части небольшого образовательного курса рассказывает о трех самых известных нейромедиаторах, без которых наша жизнь была бы просто отвратительной.

Как работают нейромедиаторы

Нервные клетки сообщаются между собой с помощью отростков — аксонов и дендритов. Между ними зазор — так называемая синаптическая щель. Именно здесь и происходит взаимодействие нейронов.

Медиаторы синтезируются в клетке и доставляются в окончание аксона — к пресинаптической мембране. Там под действием электрических импульсов они попадают в синаптическую щель и активируют рецепторы следующего нейрона. После активации рецепторов нейромедиатор возвращается обратно в клетку (происходит так называемый обратный захват) или разрушается.

Сами нейромедиаторы не являются белками, поэтому не существует «гена дофамина» или «гена адреналина». Белки выполняют всю вспомогательную работу: белки-ферменты синтезируют вещество нейромедиатора, белки-транспортеры отвечают за доставку, белки-рецепторы активируют нервную клетку. За правильную работу одного нейромедиатора могут отвечать несколько белков — а значит, несколько разных генов.

Дофамин

За счет активации нейронов в разных областях мозга дофамин играет несколько ролей. Во-первых, он отвечает за двигательную активность и дарит радость движения. Во-вторых, дает ощущение почти детского восторга от изучения нового — и стремление поиска новизны. В-третьих, дофамин выполняет важную функцию вознаграждения и подкрепления мотивации: как только мы делаем что-то полезное для жизни человеческого вида, нейроны выдают нам приз — чувство удовлетворенности (иногда его называют удовольствием). На базовом уровне мы получаем награду за простые человеческие радости — еду и секс, но в целом варианты достижения удовлетворения зависят от вкусов каждого — кому-то «морковка» достанется за дописанный код, кому-то — за вот эту статью.

Система вознаграждения связана с обучением: человек получает удовольствие, а в его мозгу формируются новые причинно-следственные ассоциации. И потом, когда удовольствие пройдет и встанет вопрос, как его получить снова, возникнет простое решение — написать еще одну статью.

Дофамин выглядит как отличный стимулятор для работы и учебы, а также идеальный наркотик — именно с действием дофамина связано большинство наркотиков (амфетамин, кокаин), вот только есть серьезные побочные эффекты. «Передозировка» дофамина ведет к шизофрении (мозг работает настолько активно, что это начинает проявляться в слуховых и зрительных галлюцинациях), а недостаток — к депрессивному расстройству или развитию болезни Паркинсона.

У дофамина пять рецепторов, пронумерованные от D1 до D5. Четвертый рецептор отвечает за поиск новизны. Его кодирует ген DRD4, от длины которого зависит интенсивность восприятия дофамина. Чем меньше количество повторов, тем проще человеку достичь пика удовольствия. Таким людям скорее всего будет достаточно вкусного ужина и хорошего фильма.

Чем больше количество повторов — а их может быть до десяти — тем сложнее получить удовольствие. Таким людям приходится постараться, чтобы получить вознаграждение: отправиться в кругосветное путешествие, покорить вершину горы, сделать сальто на мотоцикле или поставить на красное всё состояние в Лас-Вегасе. Такой генотип связывают с дальностью миграции древних людей из Африки по Евразии. Есть и печальная статистика: у осужденных в тюрьмах по тяжким преступлениям чаще встречается «неудовлетворительный» вариант DRD4.

Норадреналин

Норадреналин — это нейромедиатор бодрствования и принятия быстрых решений. Он активизируется при стрессе и в экстремальных ситуациях, участвует в реакции «бей или беги». Норадреналин вызывает прилив энергии, снижает чувство страха, повышает уровень агрессии. На соматическом уровне под действием норадреналина учащается сердцебиение и повышается давление.

Норадреналин — любимый медиатор серферов, сноубордистов, мотоциклистов и других любителей экстремальных видов спорта, а также их коллег в казино и игровых клубах — мозг не делает разницы между реальными событиями и воображаемыми, поэтому безопасного для жизни риска проиграть свое состояние в карты достаточно для активации норадреналина.

Высокий уровень норадреналина приводит к снижению зрения и аналитических способностей, а недостаток — к скуке и апатии.

Ген SLC6A2 кодирует белок-транспортер норадреналина. Он обеспечивает обратный захват норадреналина в пресинаптическую мембрану. От его работы зависит, как долго норадреналин будет действовать в организме человека, после того, как он успешно справился с опасной ситуацией. Мутации в этом гене могут вызывать синдром дефицита внимания (СДВГ).

Серотонин

Мы привыкли слышать о нем как о «гормоне счастья», при этом серотонин — никакой не гормон, и со «счастьем» всё не так однозначно. Серотонин — это нейромедиатор, который не столько приносит положительные эмоции, сколько снижает восприимчивость к отрицательным. Он оказывает поддержку «соседним» нейромедиаторам — норадреналину и дофамину; серотонин задействован в двигательной активности, снижает общий болевой фон, помогает организму в борьбе против воспаления. Также серотонин повышает точность передачи активных сигналов в мозге и помогает сконцентрироваться.

Переизбыток серотонина (например, при употреблении ЛСД) увеличивает «громкость» вторичных сигналов в мозге, и возникают галлюцинации. Недостаток серотонина и нарушение баланса между позитивными и негативными эмоциями — основная причина депрессии.

Ген 5-HTTLPR кодирует белок‑транспортер серотонина. Последовательность гена содержит участок повторов, количество которых может различаться. Чем длиннее цепочка, тем проще человеку сохранять позитивный настрой и переключаться с негативных эмоций. Чем короче — тем выше вероятность, что отрицательный опыт будет травмирующим. С количеством повторов также ассоциированы синдром внезапной детской смертности, агрессивное поведение при развитии болезни Альцгеймера и склонность к депрессии.

Разрушение нейромедиаторов

Действие нейромедиаторов похоже на праздник, будто все вышли радостной толпой на улицу смотреть салют. Но праздник не может (и не должен) длиться вечно, и неоновые розы в ночном небе должны уступить привычным созвездиям и утренней заре.
Для это в организме есть функция обратного захвата медиатора — когда вещество возвращается из синаптической щели обратно в пресинаптическую мембрану аксона и действие нейромедиатора прекращается. Но иногда обратного захвата недостаточно, и нужны более действенные меры — разрушение молекулы нейромедиатора. Эти функции также выполняют белки.

Ген COMT кодирует фермент катехол‑О-метилтрансферазу, который разрушает норадреналин и дофамин. От работы белка зависит, насколько хорошо вы будете справляться со стрессовыми ситуациями. Обладатели активной формы гена COMT— воины по природе — получают пониженный уровень дофамина в лобной доле головного мозга, которая отвечает за обработку информации и приятные ощущения. Такие люди лучше приспосабливаются к стрессовым ситуациям, они открыты к общению, у них лучше память. Но из‑за низкого уровня дофамина они получают меньше удовольствия от жизни, более склонны к депрессии, у них хуже развиты моторные функции. Малоактивный вариант гена COMT меняет ситуацию на противоположную. Обладатели неактивной мутации обладают хорошей мелкой моторикой, более креативны, но плохо переносят боль, и стоит им попасть в стрессовую ситуацию, как они погружаются в раздражительность, импульсивность и тревожность. Также мутации гена COMT связаны с парскинсонизмом и гипертонией.

Ген фермента моноаминоксидазы А MAOA отвечает за дезактивацию моноаминов — нейромедиаторов с одной аминогруппой, к которым относятся адреналин, норадреналин, серотонин, мелатонин, гистамин, дофамин. Чем лучше работает ген MAOA, тем быстрее нейтрализуется «затуманивание рассудка», вызванной стрессовой ситуацией и тем быстрее человек способен принимать взвешенные решения.

Иногда даже ген MAOA называют «геном преступника»: определенные мутации гена способствуют возникновению патологической агрессии. Из‑за того что ген находится в X-хромосоме, и у девочек две копии этого гена, а у мальчиков только одна, среди мужчин статистически больше «прирожденных преступников».

Не будем сваливать всё на генетику — даже в отношении «яростного» гена MAOA всё непросто.

Все внутренние ткани и органы тела человека, «подчиненные» вегетативной нервной системе (ВНС), снабжены нервами (иннервированы), т. е. функциями организма управляют нервные клетки. Они как датчики собирают информацию о состоянии организма и передают ее в соответствующие центры, а от них корректирующие воздействия идут к периферии. Любое нарушение вегетативной регуляции приводит к сбоям в работе внутренних органов.

Передача информации, или управление, осуществляется с помощью специальных химических веществ-посредников, которые называются медиаторами (от лат. mediator - посредник) или нейромедиаторами. По своей химической природе медиаторы относятся к различным группам: биогенным аминам, аминокислотам, нейропептидам и т. д. В настоящее время изучено более 50 соединений, относящихся к медиаторам.

Ниже приведена краткая характеристика основных из них.

Виды нейромедиаторов

Ацетилхолин
Ацетилхолин - биологически активное вещество, широко распространенное в природе. В органах и тканях вызывает эффекты, характерные для возбуждения парасимпатических элементов ВНС (снижение артериального давления, замедление сердцебиений, усиление перистальтики желудка и кишечника, сужение зрачков и т. д.).

Норадреналин
Норадреналин - предшественник адреналина. По действию на сердце, кровеносные сосуды, гладкие мышцы, а также на углеводный обмен обладает свойствами гормона и близок к своему производному - адреналину. В медицинской практике его применяют при снижении артериального давления, коллапсе, шоке, кровопотере и т. д.

Адреналин
Адреналин - гормон мозгового слоя надпочечников, поступая в кровь, увеличивает потребление кислорода органами и тканями, участвует в мобилизации гликогена, расщепление которого приводит к нарастанию уровня сахара в крови, стимулирует обмен веществ (белковый, углеводный, жировой, минеральный), повышает артериальное давление (главным образом вследствие сужения мелких периферических сосудов), учащает и усиливает сердцебиение, ускоряет ритм дыхания, замедляет перистальтику кишечника и т. д. При эмоциональных переживаниях, усиленной мышечной работе, удушье, охлаждении, понижении уровня сахара в крови содержание его в крови резко повышается. При ряде заболеваний внутренних органов, нервной системы, желез внутренней секреции и других уровень адреналина в организме увеличивается или уменьшается, что осложняет течение болезни.

Дофамин
Дофамин - также предшественник норадреналина. Под его влиянием увеличивается сопротивление периферических сосудов (менее сильно, чем под влиянием норадреналина) и повышается систолическое артериальное давление, усиливаются сердечные сокращения, возрастает сердечный выброс.

Гистамин
Гистамин - тканевый гормон, обладающий сильным биологическим действием. Содержится в больших количествах в неактивной, связанной форме в различных органах и тканях животных и человека (легкие, печень, кожа), а также в тромбоцитах и лейкоцитах. Образуется в организме из гистидина и для детского организма является незаменимой аминокислотой, поскольку в нем не синтезируется. При дефиците гистидина снижается образование гемоглобина в костном мозге. Гистамин высвобождается при анафилактическом шоке, воспалительных и аллергических реакциях. Вызывает расширение капилляров и повышение их проницаемости, сужение крупных сосудов, сокращение гладкой мускулатуры, резко увеличивает секрецию соляной кислоты в желудке. Высвобождение его из связанного состояния при аллергических реакциях приводит к покраснению кожи, зуду, жжению, образованию волдырей.

Серотонин
Серотонин - продукт распада аминокислоты триптофана, содержится во всех тканях, преимущественно пищеварительного тракта и центральной нервной системы (ЦНС), а также в тромбоцитах. Оказывает сильное влияние на тонус сосудов, что связано с периферическим сосудосуживающим действием, повышает агрегацию тромбоцитов, при этом укорачивается время кровотечения. Участвует в регуляции функций пищеварительной, выделительной, эндокринной систем (регулирует моторику желудочно-кишечного тракта, выделение слизи, вызывает спазм поврежденных сосудов и т. п.).

Недостаток серотонина приводит к неврологическим расстройствам, перееданию, ухудшению сна, аллергическим реакциям. Нарушения в обмене серотонина - одна из причин возникновения инфаркта миокарда, язвенной болезни, некоторых психических заболеваний и других форм патологии; имеются данные о взаимосвязи уровня серотонина и проявлений симптомов мигрени . К снижению уровня серотонина ведет длительное употребление алкоголя. В природе содержится в некоторых растительных продуктах: бананах, ананасах, сливах, финиках, диком рисе и др.

Гамма-аминомасляная кислота
Гамма-аминомасляная кислота (ГАМК) - наиболее распространенный тормозной нейромедиатор в ЦНС, который способен модифицировать свойства постсинаптической мембраны таким образом, что способность клетки генерировать возбуждение частично или полностью подавляется. Улучшает динамику нервных процессов в головном мозге, повышает продуктивность мышления, улучшает память, оказывает умеренное психостимулирующее, антигипоксическое и противосудорожное действие. Способствует восстановлению речевых и двигательных функций после нарушения мозгового кровообращения. Оказывает умеренное гипотензивное действие и ослабляет выраженность обусловленных гипертонией симптомов (головокружение, бессонница). У больных сахарным диабетом снижает уровень глюкозы в крови, при нормальном уровне сахара в крови нередко вызывает его повышение.

Глутаминовая кислота
Глутаминовая кислота в организмах присутствует в составе белков, ряда низкомолекулярных веществ и в свободном виде. Играет важную роль в азотистом обмене (связывает и выводит токсичный для организма аммиак). Регулирует метаболизм и стимулирует окислительно-восстановительные процессы в головном мозге, изменяя функциональное состояние нервной и эндокринной систем.

Глицин
Глицин входит в состав многих белков и биологически активных соединений, является нейромедиатором тормозного типа действия и регулятором метаболических процессов в головном мозге . Нормализует состояние нервной системы в период гипервозбуждения, переутомления и при интоксикации, обладает антистрессорным действием, улучшает умственную и физическую работоспособность, повышает мышечный тонус, способствует концентрации внимания и восстанавливает память.

Мелатонин
Мелатонин вырабатывается эпифизом при участии доноров серотонина и триптофана, главной его функцией является руководство суточным ритмом организма человека. Избыток света снижает, а уменьшение освещенности повышает синтез и секрецию мелатонина. На ночные часы приходится 70% выработки мелатонина. Активность его синтеза увеличивается с 8 часов вечера, а пик максимальной концентрации приходится на 3 часа утра, после чего его количество начинает снижаться. Именно благодаря этому гормону человек может заснуть и спать крепким сном. В достаточном количестве мелатонин вырабатывается лишь до возраста 25-30 лет, а затем его продукция уменьшается, что неуклонно ведет к старению. Мелатонин влияет на деятельность эндокринных желез, например, регулирует менструальный цикл у женщин, а также стимулирует сексуальную жизнь и замедляет процессы старения. Кроме того, он участвует в регуляции артериального давления, функций пищеварительного тракта, работы клеток головного мозга и др.

Эндорфины
Эндорфины - их называют «собственными наркотиками организма» или «гормонами удовольствия». К настоящему времени в мозге человека идентифицировано 18 разновидностей опиатоподобных веществ. Они выполняют множество разных функций в организме, наиболее важная из них - регуляция болевых ощущений. Они влияют на эмоциональные реакции, вызывая чувство удовольствия, регулируют состояние голода, участвуют в процессах памяти, в реакции организма на стресс-факторы, на алкоголь. Недостаточность эндорфинов отмечается при всех хронических заболеваниях, последствиях стресса, депрессии, синдроме хронической усталости.

Ангиотензин
Ангиотензин участвует в регуляции уровня артериального давления, функции почек и водно-солевого обмена, вызывает сокращение матки и стимулирует секрецию ряда гормонов (альдостерон, вазопрессин и др.).

Вазопрессин
Вазопрессин выделяется задней долей гипофиза . Поддерживает на определенном уровне обратное всасывание воды в почечных канальцах, т. е. уменьшает количество выделяющейся мочи (антидиуретический эффект). При недостатке вазопрессина резко повышается выделение мочи, что может привести к несахарному диабету. Таким образом, вазопрессин - один из факторов, определяющих относительное постоянство водно-солевого обмена в организме. Он вызывает также сужение сосудов и повышение артериального давления.

В начале XX века физиологи считали, что сигналы от клетки к клетке передаются
через синапс (зона контакта между нервными клетками) с помощью электрических
импульсов. Однако исследования немецкого физиолога О. Леви, русского ученого
А. Ф. Самойлова и английского исследователя Г. Дейла показали, что из окончаний
нервных клеток (нейронов) выделяются химические вещества, которые передают
информацию к постсинаптической клетке, - нейромедиаторы. Удивительно, что
схему эксперимента, приведшего Леви к открытию первого нейромедиатора - ацетилхолина,
он увидел во всех деталях во сне. К середине 30-х годов химическая передача
нервного импульса получила уже столько подтверждений, что в 1936 году двум
из ее первооткрывателей - О. Леви и Г. Дейлу - была присуждена Нобелевская премия.

Термин для обозначения зон контакта между нервными клетками ввел английский
нейрофизиолог Ч. Шеррингтон. В 1890-х годах при подготовке раздела о нервной
системе для руководства по физиологии он столкнулся с необходимостью как-то о
бозначить соединение между нейронами и предложил редактору руководства
М. Фостеру термин «синдесм». Однако приятель Фостера, знаток Эврипида
и специалист по древнегреческой литературе Верелл, посоветовал использовать
слово «синапс» - термин, ставший теперь общепринятым в медицине.
В 1952 году Шеррингтону (вместе с Э. Эдрианом) также была присуждена
Нобелевская премия за исследования функций нервных клеток.

Вместо заключения

Зная механизм передачи информации в ВНС, можно определить, как и в каких участках этой передачи необходимо действовать, чтобы вызвать определенные эффекты. Можно использовать вещества, которые имитируют или блокируют работу нейромедиаторов, угнетают действие разрушающих их ферментов или препятствуют высвобождению медиаторов из пресинаптических пузырьков. С помощью таких лекарств можно влиять на многие органы: регулировать деятельность сердечной мышцы, желудка, бронхов, стенок сосудов и т. д. Выбор препарата для лекарственной терапии зависит от избирательности его действия, желаемой продолжительности эффекта и предпочтительного пути введения.

Слово «нейромедиатор» плотно вошло в медицинскую тематику. Сейчас врачи иногда рекомендуют пациентам, желающим улучшить память или повысить внимание, приём подобных препаратов.

Насколько они важны для жизнедеятельности человека, чем грозит дисбаланс «посредников» между нейронами и как именно работают эти загадочные вещества – обо всём этом расскажет данная статья.

Нейромедиаторы являются особыми химическими соединениями, жизненно необходимыми для работы и нервных клеток. Они образуются в пресинаптических окончаниях нервных клеток и хранятся там же в особых резервуарах на окончании аксона – синаптических пузырьках. Переносятся из одного синапса к другому – так можно описать процесс работы.

Учёным было весьма непросто определить, какое же именно вещество является «посредником» в передаче нервных сигналов – точное число их пока не установлено, но учёным удалось установить около ста соединений, выполняющих эту роль. Они разработали систему из нескольких категорий, по которым можно определить, является ли то или иное соединение нейромедиатором. В частности, они не являются белками, но белки выполняют чрезвычайно важную роль – они синтезируют медиатор, они же транспортируют его, а белки-рецепторы при контакте с ним запускают цепочку восприятия информации.

Но не одни нейромедиаторы исполняют роль химического переносчика информации. Также выделяется и другой сорт веществ-посредников: нейромодуляторы. Они влияют на интенсивность и продолжительность действия первых, укорачивая или пролонгируя срок действия. Среди самых известных таких веществ известны нейропептиды, такие как эндорфины. Однако они обладают двойной ролью, т.е. могут подменять собой нейромедиаторы и выполнять их функции.
Данные вещества бывают нескольких видов, о чём будет подробно рассказано позже.

Функции нейромедиаторов и принцип их действия

Нейромедиаторы обеспечивают взаимодействие нервных клеток между собой и передают информацию между ними. Как же всё это работает? Молекула «нейронного посредника» высвобождается из синапса под действием нервного импульса. Проходя сквозь синаптическую щель, он связывается с белком-рецептором, что, в свою очередь, запускает дальнейшие этапы передачи. Расстояние составляет менее микрометра.

Достаточно интересно то, что характер действия такого трансмиттера основан на реакции постсинаптической мембраны, т.е. ускоряющий или замедляющий эффект обоснован «приёмником» молекулы, а не ею самой. А поскольку информации химическим путём приходит много, столь же важно прерывать поток информации, чтобы не образовывалось «застоя».

Существует два варианта: вещество-передатчик может либо поглотиться нейроном, либо разрушиться особым ферментом, если первого действия недостаточно. Причём в последнем случае время разрушения у разных типов медиаторов различается, так что некоторые действуют дольше или короче. Кодируют разрушающие нейромедиаторы белки, как и сами эти вещества, соответствующие гены в ДНК.

Классификация нейромедиаторов

Наиболее удобной для разделения нейромедиаторов по категориям является нейрохимическая карта. Ниже перечислены наиболее известные вещества-посредники и их место в этой классификации:

  • Самым известным нейротрансмиттером является дофамин. Он более известен как вещество, отвечающее за усиление чувства удовлетворения.
    Дофамин наиболее интенсивно вырабатывается при половом контакте с противоположным полом.
    Также учёные предполагают, что дофамин имеет большое влияние на процесс принятия решений, особенно связанных с мыслями о вознаграждении (в частности, именно воздействием дофамина многие наркотики обязаны своим дурманящим действием). Нет нужды говорить о формировании новых причинно-следственных связей в ходе размышлений. Это вещество имеет пять рецепторов на приёмном участке, куда попадает его молекула. Также он выполняет мотивирующую функцию. При сочетании с другими медиаторами он помогает добиваться желаемого.
    Соответствие в классификации – моноаминовая нейромедиаторная система. Основное местонахождение в мозгу – экстрапирамидная, мезолимбическая и височная области.
  • – это слово прекрасно знакомо нам в значении гормона бодрствования и успокоения, которое является более «разумным» вариантом первого. Но он исполняет ту же самую роль: как и адреналин, норадреналин выделяется во время стресса или экстремальных безвыходных ситуаций, и вызывает прилив сил, повышение уровня агрессии и притупление страха. Избыток же его притупляет интеллектуальные способности наравне со зрением.
    Соответствие в классификации – моноаминовая нейромедиаторная система. Основные местонахождения в мозгу – диэнцефальная область, средний мозг, гипоталамус, кора, мозжечок, спинной мозг и симпатические нейроны.
  • Адреналин – прекрасно знаком всем, выбрасывается в кровь при стрессовых ситуациях. Положительно влияет на силу и выносливость, зато угнетает способность ясно мыслить.
    Относится к моноаминной группе в классификации, сосредоточен в ядре и продолговатом мозгу.
  • Ацетилхолин известен как вещество, улучшающее память. Это ещё один «посредник», который ответственен за восприятие информации. Благодаря нему информация «закрепляется» в мозгу, в памяти.
    Этот нейромедиатор имеет собственную подгруппу в классификации – холинергическую. Его можно найти в вегетативной нервной системе, в мышечных нервных волокнах, в постганглиональных нейронах, в гиппокампе и коре головного мозга.
  • Серотонин часто называют «гормоном счастья», хотя это не гормон и счастья сам по себе он не вызывает. Хотя он снижает восприимчивость нейрона к отрицательным эмоциям и может работать вместе с предыдущими двумя, помогая преодолеть болезни и понижая болевой уровень организма. Недостаток серотонина вызывает нарушения сна и склонность к перееданию, может быть вызван избыточным употреблением алкогольных напитков. Его повышенная концентрация может привести к усилению эффекта всех трёх вышеописанных гормонов вплоть до появления галлюцинаций.
    Соответствие в классификации – моноаминовая нейромедиаторная система. Основное местонахождение в мозгу – средний мозг, спинной мозг и прочие стволовые структуры.
  • Гистамин – он в основном содержится в несвязанной форме. Как и норадреналин, он высвобождается при травмах, стрессах и прочих сильных напряжениях организма – включая всевозможные отравления и аллергии. В свободном виде он вызывает спазмы мышц, расширяет капилляры, понижая давление, провоцируя отёки, и также способствует выработке адреналина. Имеет три белка-рецептора, реагирующих на себя. Гистамин имеет индивидуальную категорию в классификации. В основном сосредоточен в гипоталамусе, но присутствует и в других отделах головного мозга.
  • Группа эндорфинов насчитывает порядка восемнадцати соединений, которые наравне с серотонином контролируют чувство удовольствия. Но ещё они отвечают за регуляцию болевых ощущений и чувство голода. Также подтверждено их участие в процессе формирования памяти, нехватка в случае хронических болезней и выделение в стрессовых ситуациях. Наиболее известный источник – шоколад. Эндорфины относятся к категории нейропептидов. Их можно найти во всех отделах мозга.
  • Мелатонин является крайне важным «мостом» между нейронами. В его функциональные обязанности входит поддержка ежедневных биоритмов человека и обеспечение сна. Синтезируется в больших количествах в темноте – поэтому человек может нормально спать ночью. Кроме того, мелатонин регулирует сексуальную жизнь человека в целом и менструальный цикл женщин в частности. Категория – моноамины (синтез в эпифизе).
  • Глутамат – возбуждающий нейромедиатор. Он является антиподом мелатонина и ГАМК, не даёт уснуть при интенсивном напряжении, высвобождается в стрессовых ситуациях. При его воздействии информация воспринимается лучше и быстрее. В сочетании с дофамином и некоторыми другими рецепторами практически гарантирует интересный процесс обучения. Категория – моноамины, явных центров концентрации в ЦНС нет.

Особенности регуляции уровня нейромедиаторов

Всего должно быть в меру – это правило заложено в самой основе любого живого существа. Должен быть баланс, и у нашего организма есть несколько способов регулировать восприятие и секрецию нейромедиаторов – и, следовательно, их влияния на нейроны.

Для примера можно взять катехол-О-метилтрансферазу – это вещество разрушает первые два медиатора из списка выше. От его быстродействия зависят такие факторы, как стрессоустойчивость.

В одном случае люди с нормальным выделением фермента быстрее приспосабливаются к стрессовым ситуациям. Но с другой стороны они сами более склонны к депрессиям и не столь ярко живут, им сложнее получить удовольствие. Если же дофамина больше, то стрессоустойчивость ниже, но сами стрессы случаются реже. И ещё такие люди более креативны.

Ещё один пример: фермент моноаминоксидаза нейтрализует моноамины. К ним относятся норадреналин, дофамин, серо- и мелатонин на пару с гистамином. Чем его больше, тем проще человеку не теряться в жизненных ситуациях и игнорировать избыток эмоций при стрессовых ситуациях. А иногда выходит так, что в ходе мутации и психических травм у человека может проснуться патологическая агрессия.

В целом же регуляция осуществляется при помощи тонкого баланса между нейромедиаторами и подавляющими их ферментами. Это оказывает влияние на характер и отдельные психологические особенности человека.


Введение

Нейротрансмиттеры (НТ) - это химические передатчики сигналов между нейронами и от нейронов на эффекторные (исполнительные) клетки. Именно НТ создают возможность объединения отдельных нейронов в целостный головной мозг и позволяют ему успешно выполнять все его многообразные и жизненно необходимые функции.

Нейротрансмиттеры делят на нейромедиаторы - прямые передатчики нервного импульса, дающие пусковые эффекты (изменение активности нейрона, сокращение мышцы, секрецию железы), и нейромодуляторы - вещества, модифицирующие эффект нейромедиаторов. Соотношение концентраций и активности нейромедиаторов определяет функциональное состояние большинства постсинаптических клеток. Нейромодуляторы обычно действуют более локально - в определённых зонах мозга.


Общая характеристика нейротрансмиттеров

Большинство НТ синтезируются в нейронах. Затем они транспортируются в особые везикулы (пузырьки) в обмен на накопленные там ионы Н + (аккумуляция протонов в везикулах осуществляется особой Н + –АТФазой за счёт энергии АТФ). Эти везикулы расположены в нервном окончании (рис. 1 , А), НТ хранятся в них в очень высоких концентрациях (до 100–500 мМ). Когда распространяющийся по нерву потенциал действия приходит в зону везикул, он открывает потенциалзависимые Са 2+ -каналы, ионы Са 2+ входят в нервные клетки (Б), что приводит к выбросу из них НТ в синапс (В). Синапс - это щель шириной 10–50 нм между двумя нейронами или нейроном и другой клеткой. Встречаются, но гораздо реже (не у млекопитающих) электрические синапсы шириной всего 2 нм. В головном и спинном мозге нейроны образуют синапсы с большим количеством других нейронов, а в периферической нервной системе - с эффекторными клетками. Первая клетка (это всегда нейрон) называется пресинаптической, вторая - постсинаптической. Очевидно, что нейромедиатор образуется и выделяется в синапс пресинаптическим нейроном; нейромодулятор, вероятно, может образовываться и глией - другим типом клеток нервной системы, выполняющим защитные, поддерживающие и трофические функции; глия может также участвовать в инактивировании НТ. Различают возбуждающие и ингибирующие, или тормозящие, НТ (табл. 1 ), эффекты первых преобладают в состоянии бодрствования животных и высокой функциональной активности мозга, вторых - в покое и особенно во время спокойного сна без сновидений. По химической структуре НТ можно разделить на пять классов: 1) аминокислоты, 2) амины и их производные, 3) нейропептиды, 4) нуклеозиды и нуклеотиды, 5) стероиды. Последние два класса пока представлены единичными веществами.

Все НТ диффундируют через синапс и на наружной стороне плазматической мембраны постсинаптической клетки связываются со своими специфическими рецепторами. Образование НТ-рецепторного комплекса изменяет функциональное состояние клетки. Следовательно, эффект НТ не требует его проникновения через мембрану - внутрь клетки поступает не сам НТ, а сигнал, возникающий при связывании НТ с рецептором. Восприятие, преобразование, усиление и передачу сигнала внутрь клетки и затем внутрь её органелл осуществляют сигнал-трансдукторные системы (СТС). Рецепторами нейромедиаторов являются регуляторные субъединицы быстрых ионных (Na + - или Сl –) каналов - это ионотропные рецепторы. Эффекты нейромодуляторов реализуются намного более сложными СТС, включающими рецепторы, ГТФ-зависимые G-белки, мембранные ферменты, Са 2+ - или К + -каналы, вторые посредники и их белковые рецепторы (чаще всего протеинкиназы) - это метаботропные рецепторы. Разные механизмы реализации сигналов определяют временные различия: нейромедиаторы действуют за время нервного импульса - миллисекунды (быстрые ответы клеток), модуляторы - за секунды или минуты, такие эффекты называют медленными. Действие НТ в синапсе чаще всего прекращается его быстрой инактивацией путём Na + -зависимого обратного захвата пресинаптическим нейроном или глией (аминокислоты, моноамины) с последующим входом в пресинаптические везикулы в обмен на накопленные там ионы Н + . Известна также инактивация путём ферментного метаболизма прямо в синапсе (ацетилхолин разрушается ацетилхолинэстеразой постсинаптической мембраны) или диффузии за пределы синапса (катехоламины).


Таблица 1 . Структура низкомолекулярных нейтротрансмиттеров


Нейромедиаторы

Главные медиаторы головного мозга - аминокислоты. К возбуждающим относятся глутамат и аспартат. При освобождении в синапс (см. рис. 1 , В) они через ионотропные рецепторы (регуляторные субъединицы каналов) открывают быстрые натриевые каналы (рис. 2 , А). Это приводит к быстрому входу в постсинаптический нейрон ионов Na + (в межклеточной жидкости концентрация Na + намного больше, чем внутри клетки).

Это деполяризует плазматическую мембрану (изменяет отрицательный заряд на её внутренней поверхности на положительный) и в результате вызывает возбуждение нейрона. Возбуждающие аминокислоты необходимы для всех основных функций головного мозга, включая поддерживание его тонуса, бодрствования, психологической и физической активности, регуляцию поведения, обучение, память, восприятие чувствительных и болевых импульсов. Но всё хорошо в меру. Существуют тяжёлые болезни, вызванные слишком большим освобождением глутамата в синапс. Это характерно для эпилепсии. Избыток глутамата в синапсе приводит к перевозбуждению мозга вплоть до развития тяжёлого судорожного приступа. При ишемии (нарушении кровоснабжения) головного мозга в синапс выделяется так много глутамата, что он вызывает чрезмерное накопление ионов Са 2+ в постсинаптическом нейроне и его повреждение (нейротоксическое действие) - возникает инсульт („удар“). Человек может стать инвалидом из-за ухудшения интеллекта, нарушения речи или плохой работы конечностей.

Ещё один возбуждающий медиатор - ацетилхолин, активирующий ионотропные N-холинорецепторы с открытием тех же быстрых натриевых каналов. Через эти рецепторы ацетилхолин участвует в функциях базальных (подкорковых) ганглиев головного мозга, связанных с регуляцией двигательной активности и мышечного тонуса. Кроме того, в периферической нервной системе ацетилхолин через N-холинорецепторы стимулирует вегетативные ганглии и вызывает сокращение скелетных мышц.

Главный ингибирующий нейромедиатор головного мозга - гамма-аминомасляная кислота (ГАМК). Очень интересно, что она образуется из главного возбуждающего медиатора глутамата путём его декарбоксилирования. Связывание ГАМК с ионотропными ГАМК А -рецепторами (субъединицами хлоридных каналов) приводит к их открытию и быстрому входу в постсинаптический нейрон ионов Cl – (рис. 2 , Б). Эти ионы вызывают гиперполяризацию (увеличение отрицательного заряда на внутренней стороне плазматической мембраны) и в результате - торможение функций нейрона. Оно столь же необходимо для всех функций головного мозга, как и возбуждение. По сути самое главное для мозга - это не концентрация и действие одного медиатора, а баланс возбуждающих и тормозящих регуляторов.

Есть лекарства, активирующие ГАМК А -рецепторы: барбитураты (фенобарбитал) и бензодиазепины (диазепам), они обладают успокаивающим (транквилизаторы), снотворным и даже наркотическим действием. Любые нарушения баланса нейромедиаторов могут помешать нормальной работе мозга - вспомним вредное действие избытка глутамата при эпилепсии и инсульте. Большинство противоэпилептических лекарств так или иначе стимулирует ГАМКергическую систему, что восстанавливает баланс возбуждающих и тормозящих медиаторов. При попадании в рану возбудителя столбняка он образует токсин, который выключает систему ГАМК. Она не может работать - и тогда активирующие аминокислоты, не встречая противодействия, вызывают перевозбуждение, что приводит к появлению судорог и смерти.

Аминокислота глицин - основной ингибирующий нейромедиатор спинного мозга. Он действует по аналогичному механизму, а антагонистом его рецепторов является стрихнин. Отравление последним прекращает действие глицина, эффекты возбуждающих медиаторов становятся преобладающими, что приводит к судорогам.


Нейромодуляторы

Прежде всего к ним относятся все рассмотренные нами нейромедиаторы, но их модулирующие эффекты реализуются не через ионо-, а через метаботропные рецепторы. Ацетилхолин через М-холинорецепторы включает три разные СТС, что снижает уровень цАМФ (циклического аденозинмонофосфата), открывает К + -каналы и вызывает накопление липидных вторых посредников и затем ионов Са 2+ . Через М-рецепторы (их в мозге больше, чем N-рецепторов) ацетилхолин стимулирует образование условных рефлексов и память. Неудивительно, что при болезни Альцгеймера (основной формы старческого слабоумия) ранняя гибель холинергических нейронов сочетается с ухудшением памяти. Через эти же рецепторы ацетилхолин реализует активность мотонейронов спинного мозга и регуляцию внутренних органов парасимпатическими нервами.

ГАМК и её синтетические агонисты через оба типа своих рецепторов (ГАМК А и ГАМК В) вызывают один и тот же основной эффект - снижают активность головного мозга. В случае метаботропных ГАМК В -рецепторов это опосредовано тремя разными G-белокзависимыми СТС: происходит снижение концентрации ионов Са 2+ (а также цАМФ), что ингибирует освобождение многих НТ; открытие К + -каналов с выходом ионов К + из нейрона (концентрация К + в клетке намного больше, чем в межклеточной жидкости) приводит к гиперполяризации нейрона и его торможению.

Существует большое количество специализированных нейромодуляторов. В головном мозге из прогестерона (стероидного гормона жёлтого тела яичников и плаценты) образуются активирующие мозг модуляторы - нейростероиды. В отличие от большинства стероидных гормонов они действуют не путём проникновения в ядро клетки и соединения с ядерными рецепторами, а в результате активации ГАМК А -рецепторов нейронов. Снижение нейростероидов за две недели до месячных вызывает предменструальный синдром с характерной для него раздражительностью, а большой избыток при беременности прогестерона может способствовать уменьшению возбудимости головного мозга.

Описанные выше три типа СТС опосредуют действие и некоторых других ингибиторных модуляторов, в том числе пока единственного нуклеозидного НТ - аденозина. Через свои А 1 -рецепторы он снижает концентрацию ионов Са 2+ в нейронах, что ингибирует освобождение многих НТ, снижает тонус головного мозга, способствует утренней вялости, нежеланию вставать и работать. Когда мы пьём кофе или чай, содержащийся в них кофеин блокирует рецепторы аденозина и в результате мешает его тормозному действию. Человек взбадривается, чувствует прилив сил и энергии.

Очень важный класс нейромодуляторов - моноамины: катехоламины (КА) и индолилалкиламины. КА синтезируются из аминокислоты тирозина, активность ключевого фермента синтеза тирозингидроксилазы увеличивается системой цАМФ - протеинкиназа А. КА обеспечивают функционирование симпатико-адреналовой системы. Дофамин освобождается в основном в синапсах базальных ядер головного мозга, норадреналин - в стволе мозга и окончаниях симпатических нервов, адреналин секретируется мозговым веществом надпочечников. Дофамин - тормозной модулятор, снижающий эффекты возбуждающего медиатора ацетилхолина. У пожилых людей нередко возникает паркинсонизм - гибель нейронов, синтезирующих дофамин. Это приводит к тому, что ацетилхолин проявляет избыточную активность. Возникает скованная походка, дрожание пальцев, лицо становится маскообразным, не выражающим эмоций. Разработаны лекарства, позволяющие лечить эту болезнь путём увеличения синтеза дофамина или введения проникающих в головной мозг агонистов его рецепторов. Однако эффекты дофамина намного сложнее. Он способствует как повышенному настроению и эмоциональному удовлетворению, так и нестандартной активности головного мозга (в том числе, вероятно, и творческой). И снова заметим, что всё хорошо в меру. Многие наркотические вещества ингибируют обратный захват нейронами дофамина, что приводит к его избыточному накоплению в синапсе. В патогенезе одной из двух основных форм главного психического заболевания - шизофрении важное значение придают увеличенному действию дофамина. Во всяком случае большинство эффективных при шизофрении лекарств (нейролептики) блокируют рецепторы дофамина. Нобелевская премия по физиологии и медицине 2000 года присуждена за исследования по дофамину.

Второй КА - норадреналин вызывает накопление в клетке ионов Са 2+ (через α 1 -адренорецепторы) и цАМФ (через β-адренорецепторы). Активируется ретикулярная формация ствола, что тонизирует головной мозг, включая кору больших полушарий. Это стимулирует память, целесообразное поведение, эмоции и мышление. Введение веществ, которые уменьшают накопление КА в нервных клетках (резерпин), резко снижает активность мозга. Подобные лекарства вводят буйным психическим больным, а также при отлове зверей (выстрел ампулой с таким веществом). КА тесно связаны с отрицательными эмоциями. Норадреналин выделяется из симпатических нервных окончаний в синапс и затем в кровь при гневе, ярости, психологической мобилизации; он снижает депрессию (подавленность, тоску, мрачную настроенность). Третий КА - адреналин освобождается из мозгового вещества надпочечников при страхе и депрессии. Люди с преимущественным освобождением норадреналина успешно работают лётчиками, разведчиками, монтажниками-высотниками, хирургами. У людей с преобладанием адреналиновой реакции при малейшей трудности всё валится из рук, выводит из равновесия. Им легче трудиться в спокойной обстановке - канцелярскими работниками, философами, терапевтами.

КА особенно важны при стрессе: они активируют процессы распада и выработки энергии, вызывают освобождение других гормонов стресса, особенно глюкокортикостероидов, стимулируют основные физиологические системы и в результате увеличивают устойчивость организма.

Однако те же КА через α 2 -адренорецепторы снижают концентрации ионов Са 2+ и цАМФ, что приводит к уменьшению выделения норадреналина и других НТ. Эта отрицательная обратная связь предупреждает перевозбуждение, снижает тонус головного мозга. В отличие от ситуации с ГАМК один и тот же НТ - норадреналин через разные СТС может давать противоположные эффекты. Конечный результат зависит от преобладания в данном отделе мозга той или иной СТС и/или её фунциональной активности.

ГАМК, аденозин и селективные агонисты α 2 -адренорецепторов реализуют, в том числе и у млекопитающих, другую приспособительную стратегию - толерантную. Для неё характерно снижение потребления О 2 , температуры тела и катаболизма с уменьшением активности головного мозга и других физиологических систем. В результате значительно увеличивается устойчивость организма ко многим экстремальным факторам . Обе стратегии связаны не только с НТ, но и с дистантными и местными гормонами.

Индолилалкиламины образуются из аминокислоты триптофана: серотонин - в стволе головного мозга и энтерохромаффинных клетках кишечника, мелатонин - в эпифизе (шишковидной железе). Серотонин снижает агрессивность, страх, депрессию, стимулирует пищевое поведение, сон и впадение в зимнюю спячку, увеличивает пищевые и снижает болевые условные рефлексы, способствует обучению и лидерству. Мелатонин преимущественно освобождается ночью и способствует сну (теперь его применяют как снотворное), тормозит выделение гонадотропных гормонов. Оба индолилалкиламина снижают половую активность.

Обмен моноаминов нарушен при депрессиях, которые распространяются всё шире. Они мучительны и могут привести к самоубийству. Депрессии особенно часто поражают творческих людей. Блокаторы обратного захвата моноаминов нейронами и ингибиторы моноаминоксидазы, метаболизирующей катехоламины и серотонин, снижают инактивирование моноаминов, их уровни в синапсах возрастают. Это даёт чёткий лечебный эффект - снижает депрессию. Очень важные и многообразные функции выполняет ещё одна большая группа НТ - нейропептиды.


Заключение

Нейротрансмиттеры - химические передатчики сигналов нейронов - разделяются на нейромедиаторы и нейромодуляторы. Первые прямо передают нервные импульсы, вторые модифицируют действие медиаторов. НТ выделяются в синапс, взаимодействуют со своими специфическими рецепторами и через СТС меняют функции постсинаптической клетки. Главные медиаторы головного мозга - возбуждающие (глутамат, аспартат) и ингибирующие (ГАМК, глицин) аминокислоты, соотношение их концентраций и активности в основном определяет функциональное состояние большинства нейронов. Нейромодуляторы обычно действуют более локально - в определённых зонах мозга и создают дополнительные вариации, обогащающие спектр физиологического состояния нейронов. Эти функции выполняют как те же нейромедиаторы (но через другие рецепторы и СТС), так и специализированные нейромодуляторы (аденозин, катехоламины, индолилалкиламины, нейростероиды). В целом множественность НТ и многообразие их действия, включая как совпадение, так и противоположность эффектов, обеспечивают функционирование самого сложного органа нашего организма - центральной нервной системы, объединение отдельных нейронов в целостный головной мозг и успешное выполнение всех его разнообразных и жизненно необходимых функций.

    1. Кулинский В.И. Передача и трансдукция гормонального сигнала в разные части клетки // Соросовский Образовательный Журнал. 1997. № 8. С. 14–19.
    2. Кулинский В.И. Две стратегии выживания организма // Энциклопедия „Современное естествознание“: В 10 т. М.: Наука; Флинта, 1999. Т. 2: Общая биология. С. 252–254.
    3. Нейрохимия / Под ред. И.П. Ашмарина, П.В. Стукалова. М.: НИИ биомедхимии РАМН, 1996. 469 с.
    4. Раевский К.С., Георгиев В.П. Медиаторные аминокислоты: Нейрофармакологические и нейрохимические аспекты. М.: Медицина, 1986. 239 с.
    5. Сергеев П.В., Шимановский Н.Л., Петров В.И. Рецепторы физиологически активных веществ. 2-е изд. М.; Волгоград, 1999. 639 с.
    6. Ткачук В.А. Молекулярные механизмы нейроэндокринной регуляции // Соросовский Образовательный Журнал. 1998. № 6. С. 16–20.
    7. Garrett R.H., Grisham Ch.M. Molecular Aspects of Cell Biology. Fort Worth. Philadelphia etc.: Saunders Coll.Publ., 1995. P. 1180–1243.

Об авторе:
Владимир Ильич Кулинский
, доктор медицинских наук, профессор, зав. кафедрой биохимии Иркутского государственного медицинского университета. Область научных интересов - регуляция гормонами и вторыми посредниками окислительно-восстановительных процессов и устойчивости организма к экстремальным факторам. Автор более 200 статей и пяти учебных пособий.

Между нейронами, а также, например, от нейронов к мышечной ткани или железистым клеткам. Нервный импульс, поступающий в пресинаптическое окончание, вызывает освобождение в синаптическую щель медиатора. Молекулы медиаторов реагируют со специфическими рецепторными белками клеточной мембраны , инициируя цепь биохимических реакций, вызывающих изменение трансмембранного тока ионов, что приводит к деполяризации мембраны и возникновению потенциала действия.

Энциклопедичный YouTube

    1 / 3

    ✪ Когнитивная психология #15. Основные нейромедиаторы и их влияние на наше поведение.

    ✪ Как работают нейромедиаторы

    ✪ Химия мозга (рассказывает профессор Вячеслав Дубынин)

    Субтитры

Классификация

Традиционно нейромедиаторы относят к трём группам: аминокислоты , пептиды , моноамины (в том числе катехоламины).

Аминокислоты

  • Гамма-аминомасляная кислота (ГАМК) - важнейший тормозной нейромедиатор центральной нервной системы человека и млекопитающих.
  • Глицин - как нейромедиаторная аминокислота, проявляет двоякое действие. Глициновые рецепторы имеются во многих участках головного мозга и спинного мозга. Связываясь с рецепторами, глицин вызывает «тормозящее» воздействие на нейроны, уменьшает выделение из нейронов «возбуждающих» аминокислот, таких как глутамат, и повышает выделение ГАМК . Также глицин связывается со специфическими участками NMDA-рецепторов и, таким образом, способствует передаче сигнала от возбуждающих нейротрансмиттеров глутамата и аспартата. В спинном мозге глицин приводит к торможению мотонейронов, что позволяет использовать глицин в неврологической практике для устранения повышенного мышечного тонуса.
  • Глутаминовая кислота (глутамат) - наиболее распространённый возбуждающий нейротрансмиттер в нервной системе позвоночных, в нейронах мозжечка и спинного мозга.
  • Аспарагиновая кислота (аспарагинат) - возбуждающий нейромедиатор в нейронах коры головного мозга.

Катехоламины

  • Адреналин - относят к возбуждающим нейромедиаторам, но его роль для синаптической передачи остаётся неясной, так же как не ясна она для нейромедиаторов VIP , бомбезин, брадикинин , вазопрессин , карнозин , нейротензин, соматостатин , холецистокинин .
  • Норадреналин - считается одним из важнейших «медиаторов бодрствования». Норадренергические проекции участвуют в восходящей ретикулярной активирующей системе . Является медиатором как голубого пятна (лат. locus coeruleus) ствола мозга, так и окончаний симпатической нервной системы. Количество норадренергических нейронов в ЦНС невелико (несколько тысяч), но у них весьма широкое поле иннервации в головном мозге.
  • Дофамин - является одним из химических факторов внутреннего подкрепления и служит важной частью «системы поощрения» мозга, поскольку вызывает чувства удовольствия и предвкушения (или ожидания) удовольствия (или удовлетворения), чем влияет на процессы мотивации и обучения.

Другие моноамины

  • Серотонин - играет роль нейромедиатора в ЦНС. Серотонинергические нейроны группируются в стволе мозга: в варолиевом мосту и ядрах шва. От моста идут нисходящие проекции в спинной мозг, нейроны ядер шва дают восходящие проекции к мозжечку, лимбической системе, базальным ганглиям, коре. При этом нейроны дорсального и медиального ядер шва дают аксоны , различающиеся морфологически, электрофизиологически, мишенями иннервации и чувствительностью к некоторым агентам, например, метамфетамину.
  • Гистамин - некоторые количества гистамина содержатся в ЦНС, где, как предполагают, он играет роль нейромедиатора (или нейромодулятора). Не исключено, что седативное действие некоторых липофильных антагонистов гистамина (проникающих через гематоэнцефалический барьер противогистаминных препаратов, например, димедрола) связано с их блокирующим влиянием на центральные гистаминовые рецепторы.

Другие представители

  • Ацетилхолин - осуществляет нервно-мышечную передачу, а также основной нейромедиатор в парасимпатической нервной системе , единственное среди нейромедиаторов производное холина .
  • Анандамид - является нейротрансмиттером и нейрорегулятором, который играет роль в механизмах происхождения боли, депрессии, аппетита, проблем с памятью, ухудшение репродуктивних функций. Он также повышает устойчивость сердца к аритмогенному действию ишемии и реперфузии.
  • АТФ (Аденозинтрифосфат) - роль как нейромедиатора не ясна.
  • Вазоактивный интестинальный пептид (VIP) - роль как нейромедиатора не ясна.
  • Таурин - играет роль нейромедиаторной аминокислоты, тормозящей синаптическую передачу, обладает противосудорожной активностью, оказывает также кардиотропное действие.
  • Триптамин - предполагается, что триптамин играет роль нейромедиатора и нейротрансмиттера в головном мозге млекопитающих.
  • Эндоканнабиноиды - в роли межклеточных сигнализаторов они похожи на известные трансмиттеры моноамины, такие как ацетилхолин и дофамин, эндоканнабиноиды отличаются во многих отношениях от них - например, они используют ретроградную сигнализацию (выделяются постсинаптической мембраной и воздействуют на пресинаптическую). Кроме того, эндоканнабиноиды являются липофильными молекулами, которые не растворяются в воде. Они не хранятся в пузырьках, а существуют в качестве неотъемлемой компоненты мембранного бислоя, который входит в состав клетки. Предположительно, они синтезируются «по требованию», а не хранятся для дальнейшего использования.
  • N-ацетиласпартилглутамат (NAAG) - является третьим по распространённости нейромедиатором в нервной системе млекопитающих. Имеет все характерные свойства нейромедиаторов: концентрируется в нейронах и синаптических пузырьках, выделяется из аксональных окончаний под воздействием кальция после инициации потенциала действия, подлежит внеклеточному гидролизу пептидазами. Действует как агонист II группы метаботропных глутаматных рецепторов, в особенности рецептора mGluR3, и расщепляется в синаптической щели NAAG-пептидазами (GCPII, GCPIII) на исходные вещества: NAA и глутамат.
  • Кроме того, нейромедиаторная (или нейромодуляторная) роль показана для некоторых производных