Основы пилотируемой космонавтики. История пилотируемой космонавтики

Дело в том, что НАСА до сих пор совершенно не способно безопасно возвратить экипаж из дальнего космоса, и, следовательно, в силу одного этого обстоятельства миф Аполлона разваливается на части.

Мифология программы Аполлон раскрывается из источников НАСА по следующим направлениям:

  • Попытка разработать тяжелую лунную ракету-носитель в течение пяти лет завершилась признанием наличия серьезных вибрационных проблем в первой ступени ракеты, аналогичных тем, что имели место на Сатурне-5. Впоследствии от ракет серии Арес пришлось отказаться;
  • Неудивительно, что двигатели F-1 первой ступени Сатурна-5 даже не обсуждаются в текущих аналитических документах НАСА;
  • Модернизированная версия двигателя J-2 второй ступени Сатурна-5 была предложена десять лет тому назад для новой тяжелой ракеты, но НАСА теперь утверждает, что это реально сводится к новой разработке, и работа была приостановлена. Непонятно, когда модернизированный двигатель J-2 будет готов для применения на Пусковой Системе;
  • НАСА до сих пор не в состоянии разработать тяжелую ракету с грузоподъемностью 70 тонн, не говоря уже о повторении возможностей Сатурна-5;
  • НАСА квалифицирует взлет с поверхности Луны как подъем из «глубокого гравитационного колодца», и планы по высадке на Луну оказались отложенными настолько, что от них практически отказались. Это не удивительно, поскольку лунный модуль Аполлона был явно неспособен стартовать с посадочной платформы из-за отсутствия каналов для отвода газов;
  • Командный модуль Аполлона (КМ) имел свойство бистабильности при посадке, то есть существовала равновероятная опасность его переворота и сгорания при входе в атмосферу Земли;
  • НАСА до сих пор не имеет надежного теплозащитного экрана для КМ, чтобы безопасно вернуть экипажи из дальнего космоса;
  • Профиль «прямого» входа в атмосферу, заявленный в аполлоновских отчетах, практически неприменим*, и в случае его реализации при приземлении, скорее всего он окажется катастрофическим для посадочного модуля;
    *) Неприменим – при возвращении на Землю со второй космической скоростью - Прим. ред.
  • Если бы спускаемый аппарат каким-то образом все же удачно перенёс вход в атмосферу, то пережившие спуск астронавты оказались бы в критическом состоянии из-за серьезной опасности тяжелых гравитационных перегрузок после длительного периода невесомости и, скорее всего, после приводнения находились бы в тяжелом состоянии и не выглядели бы столь бодрыми;
  • Недостаток ключевых знаний, касающихся воздействия на человека солнечной и космической радиации за пределами НОО, делает реальную защиту от радиации весьма проблематичной.

После того, как программа «Созвездие» (ПС), которая включала в себя высадку на лунную поверхность в течение 15 лет, была отменена в 2010 году, никаких новых планов полетов на Луну в обозримом будущем не предлагалось. “После того, как ПС была остановлена, стало ясно, что существуют глубокие пробелы в техническом протоколе общеизвестных высадок на Луну в прошлом. Словно впервые, должны быть разработаны и заново созданы следующие элементы программы: ракета большой грузоподъемности; ЛМ для операций на Луне; аппаратная часть для безопасного возвращения в атмосферу Земли.” ()

Миф Аполлона находится сейчас в завершающей стадии своего существования и вскоре будет отброшен как серьезное препятствие на пути освоения человеком космического пространства. Однако, “НАСА действует в рамках парадигмы уловка-22: Агентство не может двигаться вперед без признания истинного положения дел в контексте опыта, накопленного в области пилотируемых исследований космического пространства, в первую очередь наследия Аполлонов, каковым бы оно ни было, а с другой стороны, оно не может раскрыть правду об Аполлонах по различным политическим причинам.” ()

Хотя корни мифа Аполлонов в основе своей были политические, в настоящей статье рассматриваются только технические аспекты и будет показано, как продолжающаяся поддержка этого мифа препятствует развитию пилотируемых исследований космического пространства. Лунная база – такой же амбициозный проект сегодня, каким была высадка на Луну около 50 лет назад. Однако НАСА не удалось разработать жизнеспособную программу по возвращению на Луну, и теперь Агентство решило увести идею лунной базы подальше от общественного внимания и вместо этого продвигать Марс в качестве реальной цели.

См. также главу «Изъяны программы Аполлон» в Приложении

В чём заключается препятствие?

Когда дело доходит до принятия решения, приступить ли к реальной работе по нерешенным проблемам пилотируемой космонавтики, НАСА вынуждено выбирать: либо признать лживость программы Аполлон, либо продолжать вывешивать дымовую завесу для сохранения мифологии Аполлонов. И выбором для НАСА, несомненно, оказывается второй вариант. В этой искаженной системе ценностей, когда упорное следование аполлоновской версии имеет первостепенное значение, прогресс техники пилотируемой космонавтики будет систематически из года в год приноситься в жертву. Ключевые технические этапы на пути к осуществлению полетов человека на Луну были вполне определены, но никогда не были завершены.

Критически важным недостающим элементом является методика безопасного возвращения экипажа из дальнего космоса. Для компетентного аналитика очевидно, что нет смысла планировать длительные космические полеты за пределы НОО, пока полностью не отлажена техника надежного и безопасного возвращения экипажа на землю, и для этого, помимо решения вопросов, связанных с радиационной защитой, наверняка потребуется несколько испытаний в реальных условиях входа в земную атмосферу.

Аполлон имел принципиальные недостатки, касающиеся эффективной тепловой защиты, аэродинамики спускаемого аппарата при входе в атмосферу, а также важных медико-биологические аспектов жизнеобеспечения и безопасности экипажей. Последний фактор налагает бескомпромиссные требования к первым двум. Годы, проведенные в самодовольстве за каменной стеной постоянной лжи о возможностях Аполлонов, методически подавляли работу администраторов, ученых и инженеров, которые могли бы гораздо ранее добиться значительного прогресса в этих критически важных областях.

Триумфу Аполлона исполнилось 20 лет к тому дню, когда Джордж Буш подхватил призыв Р. Рейгана в его обращении к нации в 1984 году. Вслед за Дж. Ф. Кеннеди, Рейган говорил: "Сегодня я поручаю НАСА создать постоянно действующую пилотируемую космическую станцию и сделать это в течение десятилетия." Джордж Буш-старший, стоя на ступенях Национального Музея Авиации и Космонавтики, объявил в 1989 г. об Инициативе по освоению космоса (Space Exploration Initiative). В ней были обозначены планы создания не только космической станции, но также и лунной базы, и, в конечном счете, планы отправить астронавтов на Марс. Президент отметил, что эти исследования – предназначение человечества, а предназначение Америки – в них лидировать. Доклад, опубликованный после президентской речи 20 июля, заявлял, что:

"Следующим стратегическим шагом явится создание постоянно действующего лунного форпоста, который начнется с двух-трех запусков с Земли на станцию «Фридом» кораблей с лунным оборудованием, экипажем, транспортными средствами и топливом. На станции «Фридом» экипаж, грузы и топливо перегружаются на транспортный корабль, который доставит их на окололунную орбиту."

Часть этих впечатляющих замыслов позднее была материализована в виде Международной Космической Станции (МКС), основанной на ключевых российских элементах начиная с 1998 г., к которым в 2001 г. был пристыкован американский модуль «Дестини».

Страстный сторонник идеи полетов на Марс, Роберт Зубрин, хорошо осведомленный в делах НАСА на протяжении многих лет, предоставил информацию из первых рук о том, как эта инициатива 1989 года была отвергнута – как только НАСА получило финансирование для программ Спейс Шаттл и МКС. Зубрин описывает, как “Руководство НАСА отказалось отстаивать программу, которую президент Буш назвал национальным приоритетом.” Он упоминает о “многих людях” , которые воспринимали подход со стороны администрации НАСА как “откровенный саботаж” , который стал возможным благодаря “безразличию президента” .

Эта цепочка событий является хорошим примером того, как сначала провозглашают грандиозный замысел, а потом пускают его под откос как со стороны НАСА, так и правительства США. В итоге, с целью поддержания мифа об Аполлонах, на протяжении более тридцати лет практически ни одной разработки не было завершено в области пилотируемой космонавтики за пределами НОО. Подобный сценарий НИОКР-овских «американских горок», снова отбросивший идею лунной базы в никуда, повторился с Программой Созвездие. Однако, по крайней мере, первоначальный проблеск энтузиазма в 2005 - 2009 гг. вызвал целый ряд интересных теоретических работ, признающих проблемы с заявленным аполлоновским прямым входом спускаемого аппарата в атмосферу, а также исключительную важность решения задачи входа в атмосферу по профилю с отскоком.

Далее, в ходе разработки ракеты Арес были вновь подтверждены проблемы создания мощной ракеты - аналога Сатурну-5. Однако, дальнейшего прогресса добиться не удалось, поскольку Программа Созвездие была свернута, а затем восстановлена в 2010 г. (как новая безымянная - Прим. ред.) , будучи упрощена наполовину и сведена к разработке мощного носителя и возвращаемой капсулы, но без лунного модуля и без каких-либо планов по фактической высадке на лунную поверхность.

Очевиден тот факт, что негласный консенсус между администрацией НАСА и правительственными учреждениями – которые достаточно хорошо знают, что высадки человека на Луну не было, – может продолжаться годами. Как признает Счетная Палата США, "Попытки агентства за последние два десятилетия по разработке средств доставки человека за пределы низкой околоземной орбиты в конечном счете не увенчались успехом."

Похоже, специалисты НАСА не верят, что они смогут поднять этот серьезный вопрос в такой форме, которая потребовала бы практического решения. Их бездействие продолжает демонстрировать, что политический истеблишмент пресечет любые поползновения, способные подорвать значение Аполлона как американского трофея в космической гонке.

Оползающие графики

Хорошо известно, что в настоящее время НАСА планирует две предстоящие исследовательские лунные миссии на корабле Орион: Exploration Mission-1 (EM-1) and Exploration Mission-2 (EM-2) выводимые ракетой-носителем Стартовая Система, (Space Launch System, SLS). Во время первого, беспилотного запуска EM-1, планируется выполнить облет Луны, затем испытать перед пилотируемым полетом скоростное вхождение аппарата в атмосферу и функционирование системы теплозащиты. Второй полет, EM-2 с экипажем на борту, должен будет “продемонстрировать базовые возможности корабля Орион” , т. е. надеется повторить заявленный успех Аполлона-8 в далеком 1968 году.

Все же правительство США заявляет, что НАСА “находится в середине пути разработки первой пилотируемой капсулы, способной доставить людей до Луны и далее” ... и тут же признает, что попытки “не увенчались успехом” .

Кажется невероятным то, что доклад Счетной Палаты подводит черту под усилиями НАСА на протяжении двух десятилетий, считая с конца 90-х, обобщив эти усилия как “неудачные” , и в то же время признавая, что разработка все еще находится в середине пути. Насколько долго, по мнению специалистов НАСА, эта разработка может продолжаться?

Какие выводы можно сделать из этого заявления? Во-первых, дальнейший перенос сроков разработки является неизбежным, поскольку в настоящее время признано, что “НАСА не установило конкретных дат запуска EM-1 и EM-2. Агентство планирует установить дату начала EM-2 после того, как миссия EM-1 будет завершена.”

Последнее заявление про дату запуска EM-2 – просто унизительно, если сравнивать с тем, что по обещаниям 2013 года должно было быть осуществлено в 2021 году (см. ), а затем в 2015 г. было перенесено на 2023 год (см. ). Теперь предполагается, что такое существенное оползание графика будет иметь “эффект домино для связки подпрограмм” .

Во-вторых, скорее всего, последует очередной пересмотр стратегических целей со ссылкой на нехватку ресурсов и проблемы с передачей технологий от фирм-изготовителей. Это приведет к свертыванию текущих планов и постановке другой грандиозной задачи на последующие 10 - 20 лет.

"Программа Орион в настоящее время перерабатывает свой тепловой экран по результатам декабрьского 2014 года испытательного полета. НАСА заключило, что не все части монолитной конструкции, использованной в этих испытаниях, будут удовлетворять более жестким требованиям при EM-1 и EM-2, когда капсула будет подвергаться воздействию повышенного диапазона температур с большей продолжительностью. Было решено сменить монолитную структуру на сотовую конструкцию теплозащитного экрана для EM-1.”

Являясь прежде всего финансовым документом, отчет GAO тем не менее углубляется в специфические технические детали, выявляя трудноразрешимую проблему. О возможных решениях по новому теплозащитному экрану Счетная Палата рассуждает: “В этой конструкции будет примерно 300 ячеек, крепящихся к каркасу, зазоры между ячейками заполняются специальным наполнителем аналогично конструкции, использованной в Космических Челноках (Space Shuttle).” Очевидно, что НАСА экспериментирует с критически важными конструктивными решениями на основе идей, которые ранее были реализованы в менее жестких условиях на Космических Челноках, но не обращается к предыдущему опыту с теплозащитными экранами Аполлонов. Доклад Палаты продолжает: “Однако, сотовая конструкция также несет в себе определенный риск, так как не ясно, насколько надежно ячейки будут крепиться к каркасу, а также нет уверенности в эксплуатационных качествах шовного материала.” И потом: “Программа продолжает испытания монолитной конструкции как одного из возможных подходов для минимизации рисков.”

Очевидно, что, фактически не имея предыдущего опыта работы по теплозащитному экрану для дальних космических полетов, НАСА не уверено в результатах своих текущих экспериментов с экраном и принимает ситуативные решения. Да и тестовый полет 2014 года был осуществлен на скоростях ниже тех, которые будут достигать космические аппараты, возвращаемые как с Луны, так и из других более дальних маршрутов.

Затруднения НАСА с технологиями для полетов за пределами НОО, возможно, объяснимы частично тем, что в течение десяти лет три, если не четыре, группы научно-технических разработчиков (в том числе Boeing, SpaceX и тот же Lockheed Martin с их Орионом) участвовали в работе над капсулой для транспортировки экипажей на Международную Космическую Станцию, и, несмотря на все их усилия, их разработки даже для полетов на НОО не достигают уровня проверенной временем технологии аппарата Союз:

“Соединенные Штаты не имеют внутренних возможностей для транспортировки экипажей на Международную Космическую Станцию (МКС) и для возвращения с нее, и вместо этого продолжают полагаться на Российское Федеральное Космическое Агентство (Роскосмос). С 2006 по 2018 гг. сумма выплат НАСА Роскосмосу составит примерно $3.4 миллиарда за доставку 64-х астронавтов НАСА и их партнеров на МКС и обратно на космических кораблях Союз.” При нынешних ценах, достигающих теперь $80 млн. за вояж туда и обратно на Союзе, будет трудно не прийти к заключению, что русских вполне устраивает молчаливо поддерживать миф о полетах Аполлонов.

Самые последние инициативы от НАСА, особенно от SpaceX, поскорее отправить экипажи на облет Луны , и, тем более, взять туристов сразу в полет к Луне – это безответственная игра словами. И хотя все это, вероятно, призвано поддержать интерес к полетам человека в космос, такие обещания совершенно нереалистичны.

Возвращение грузовой капсулы по баллистической траектории с перегрузкой торможения до 34 g , которая длилась чуть более 2-х минут , вовсе не служит доказательством того, что увеличенный термоизоляционный экран будет работать в условиях, сертифицируемых для возвращения человека. . Что касается планов НАСА отправить экипаж сразу к Луне, не проведя предварительных испытаний без человека на борту, они уже оказались либо отложены, как и ожидалось , либо остаются в подвешенном состоянии – чтобы потом тихо их отменить, после того как шум обещаний в средствах массовой информации достигнет нужного эффекта. Действительно, Агентство без лишнего шума уже отложило и сам беспилотный полет до 2019 года.

“НАСА продолжает находить новые критические аспекты для дальнейших НИОКР-овских доработок по Ориону главным образом не из-за ужесточения требований, например, по безопасности, но просто из-за того, что Агентство, наконец, начало получать подлинную информацию о реальных требованиях к полетам за пределами НОО.” (выделено автором, см. )

Логистика и аэродинамика возвращаемой капсулы

Логистика и аэродинамика возвращения капсулы с экипажем является еще одним важнейшим аспектом, который требует детальной проработки. Невероятно, но эти критические элементы программы не упоминаются ни в текущих планах НАСА, ни в соответствующих докладах Счетной Палаты.

Учитывая заявленный успех Аполлонов, отправка по плану EM-1 беспилотного корабля на облет Луны (планировалась в 2018 году, теперь перенесена на 2019-й), на первый взгляд, кажется скромной задачей. В действительности, ЕМ-1 - это тот беспилотный полет, который отсутствовал в ходе подготовки программы Аполлон. По версии НАСА, за предварительными испытаниями на НОО неожиданно последовал полет Аполлона-8 с экипажем, который якобы отправился прямо к Луне, и, после облета Луны с выходом на окололунную орбиту, его якобы удалось благополучно вернуть на Землю. () После испытаний Ориона в декабре 2014 г. его тепловой щит – заявленный как улучшенная версия экрана Аполлонов – был признан недостаточно надежным для полетов и возвращения из дальнего космоса.

Так что же тогда нужно сделать, чтобы добиться успеха?

Еще до попытки долететь до Луны, необходимо провести предварительные испытательные полеты для сертификации возвращаемой капсулы пилотируемого класса, чтобы удостовериться в надежной отработке методики вхождения в атмосферу из глубин космоса со второй космической скоростью. Это может быть целая серия полетов подобных тому, который был выполнен в декабре 2014 года, но с более высокой эллиптической орбитой и со скоростью корабля равной 11,2 км в секунду относительно гравитационного тела Земли. Для предполагаемого профиля входа в атмосферу его параметры могут быть аналогичны параметрам планируемого возвращения с Луны с фактической скоростью входа в атмосферу в области интерфейса примерно 10,8 км в секунду с учетом вращения планеты.

Во время прямого входа в атмосферу, предположительно осуществленного в полетах Аполлонов, спускаемый аппарат в процессе приземления не покидал пределы атмосферы, поэтому длительное время он должен был испытывать постоянные, если не возрастающие, термические и динамические нагрузки, и, как следствие, это налагало существенные дополнительные требования к теплозащитному экрану. Наблюдая непрекращающиеся попытки обелить программу Аполлон, следует отметить, что ее современные адвокаты рассматривают вход в атмосферу по схеме Аполлон как происходивший на самом деле с отскоком (см. также комментарии Криса Крафта в ) и обсуждают критичность угла входа: “Необходимо было дать спускаемому аппарату возможность войти и выйти из атмосферы, чтобы снизить скорость... При слишком остром угле корабль отскочил бы от атмосферы в космос без всякой надежды на спасение.”

Это утверждение оказалось ключевой ошибкой конструкторов Аполлона, которые приняли решение не применять вариант с отскоком и последующим повторным входом в атмосферу. В действительности, после потери энергии во время первой фазы погружения в атмосферу возвращаемая капсула не может избежать гравитации Земли, так что она не сможет улететь далеко в космос, а вместо этого продолжит свое движение вдоль поверхности Земли. Как оказалось, русские не сделали подобной ошибки, а отработали метод повторного входа в атмосферу после отскока в своих успешных беспилотных полетах начиная с 1968 года. (см. )

Теперь НАСА вынуждено принять концепцию возвращения с отскоком и реализовать, например, метод, предлагаемый в Архитектурном Исследовании 2005 года (Рис.1). На Рис.1б, приведенном ниже, предлагаемый теоретический профиль возвращения с отскоком сравнивается с профилями прямого спуска, описанными в докладах программы Аполлон – с момента входа в зону т.н. интерфейса и до момента раскрытия парашютов на высоте 6 - 7 км. Далее, в Архитектурном Исследовании целевой диапазон (протяженность траектории приземления – Прим. ред.) для прямого входа в полетах Аполлонов предполагается равным примерно 2600 км (Рис.1г) и, далее: ”версия руководства 1969 г. по управлению кораблем Аполлон используется для моделирования прямого входа” , вместо того, чтобы использовать реальные профили, указанные в отчетах.

Вполне вероятно, что на определенном этапе НАСА будет вынуждено признать, что даже в случае возвращения согласно этой теоретической версии с отскоком , первоначальный этап входа не является оптимальным из-за выбора угла входа (– 6.0 град), слишком близкого по величине к обычно сообщаемому для спуска Аполлонов (– 6.65 град). Более реалистичные профили входа рассматривались позднее в теоретических работах академических и военных научно-исследовательских институтов, цитируемых в .

Подводя итог, можно утверждать, что нет необходимости для НАСА дожидаться создания тяжелой ракеты для того, чтобы разработать надежную технику возвращения. Агентству следует продолжать беспилотные испытания, аналогичные испытанию декабря 2014 года, с использованием пусковых систем средней мощности. Ничего подобного не наблюдается в текущих планах НАСА.


Рис. 1а. Вариант возвращения по схеме с отскоком от атмосферы, предложенный в 2005 году, с проецированной дальностью до 13,590 км и общим временем около 37 минут с момента входа в интерфейс на высоте 122 км до посадки возле мыса Канаверал. Скорость входа в атмосферу в зоне интерфейса будет 11,07 км/сек.


Рис. 1б. Зависимость геодезической высоты от времени: сравнение профиля возвращения с отскоком, показанного на Рис.1а (эквивалент рис.5-74 в ) с профилями прямого входа, представленными в докладах миссий Аполлон-8 (рис.5-6(b) в Докладе Миссии) и Аполлон-10 (рис.6-7(b) в Докладе Миссии); график Аполлона-10 слегка сдвинут для отображения всех данных, доступных из доклада (реконструкция автора).


Рис. 1в. Возвращение с отскоком в сравнении с прямым входом: профили из Рис.1б на первоначальном этапе входа. Спуск Аполлона-10 был объявлен выполненным менее, чем за 8 минут. Следует обратить внимание на пологий профиль входа по схеме возвращения с отскоком и плавность ухода обратно к линии интерфейса.

Примечание

1. Автор написал серию статей про Лунную Базу в журнале Nexus 21/05, 22/03, и 23/04, которые опубликованы также на сайте Aulis.com/moonbase2014 , и - они цитируются здесь как MB1, MB2, MB3.

Эти статьи имеются также в русском переводе по следующим ссылкам (Прим. ред.) :

MB1 : Лунная база. Есть ли надежда построить, наконец, лунную базу?

Основные вехи пилотируемой космонавтики

Начало эпохи пилотируемой космонавтики

День 12 апреля 1961 года стал точкой отсчета эпохи пилотируемых космических полетов. За 50 космических лет пилотируемая космонавтика прошла гигантский путь от первого полета Юрия Алексеевича Гагарина, протяженностью всего 108 минут до полетов экипажей на Международной космической станции (МКС), находящейся более 10 лет практически в непрерывном пилотируемом режиме.

В течение 1957— 1961 годов были проведены космические запуски автоматических аппаратов для изучения Земли и околоземного космического пространства, Луны и дальнего космоса. В начале 60-х годов отечественными специалистами под руководством Главного конструктора ОКБ-1 Сергея Павловича Королёва было завершено решение сложнейшей задачи - создание первого в мире пилотируемого космического корабля «Восток».

Выполнение программы «Восток»

В полетах «Востоков» исследовалось воздействие на организм космонавтов перегрузок и невесомости, влияние длительного пребывания в кабине ограниченного объема. Первый «Восток», пилотируемый Юрием Алексеевичем Гагариным, совершил только 1 оборот вокруг Земли. В том же году Герман Степанович Титов провел в космосе целые сутки и доказал, что человек в невесомости может жить и работать. Титов первым из космонавтов сделал фотоснимки Земли, он стал первым космическим фотографом.

Полёт корабля «Восток-5» с космонавтом Валерием Федоровичем Быковским продолжался уже около 5 суток.

На корабле «Восток-6» 16 июня 1963 года полет в космос выполнила первая в мире женщина-космонавт Валентина Владимировна Терешкова.

Первый «выход» человека в открытый космос

«Восход» - первый в мире многоместный пилотируемый космический корабль. Из корабля «Восход-2» 18 марта 1965 года Алексей Архипович Леонов совершил первый в мире выход в открытый космос продолжительностью 12 минут 9 секунд. Теперь внекорабельная деятельность космонавтов стала неотъемлемой частью почти всех космических полетов.


Первая стыковка в космосе двух пилотируемых кораблей

16 января 1969 года - первая стыковка на орбите (в ручном режиме) двух пилотируемых кораблей. Выполнен переход двух космонавтов - Алексея Станиславовича Елисеева и Евгения Васильевича Хрунова через открытый космос из «Союза-5» в «Союз-4».

Первые люди на Луне

Июль 1969 года - полет «Аполлона-11». В ходе полёта 16—24 июля 1969 года люди впервые в истории совершили посадку на поверхность другого небесного тела — Луны. 20 июля 1969 года, в 20:17:39 UTC командир экипажа Нил Армстронг и пилот Эдвин Олдрин посадили лунный модуль корабля в юго-западном районе Моря Спокойствия. Они оставались на поверхности Луны в течение 21 часа 36 минут и 21 секунды. Всё это время пилот командного модуля Майкл Коллинз ожидал их на окололунной орбите. Астронавты совершили один выход на лунную поверхность, который продолжался 2 часа 31 минуту 40 секунд. Первым человеком, ступившим на Луну, стал Нил Армстронг. Это произошло 21 июля, в 02:56:15 UTC. Через 15 минут к нему присоединился Олдрин.

Первая экспедиция на долговременную орбитальную станцию

Новый этап орбитальных полетов начался в июне 1971 года полетом «Союза-11» (Георгий Тимофеевич Добровольский, Виктор Иванович Пацаев, Владислав Николаевич Волков—на фото слева направо) и экспедицией на первую долговременную орбитальную станцию «Салют». На орбите космонавты в течение 22 суток впервые отработали цикл полетных операций, ставших впоследствии типовыми для длительных экспедиций на космических станциях.

Первая международная экспериментальная программа «Аполлон-Союз»

Особое место в пилотируемой космонавтике занимает проходивший с 15 по 25 июля 1975 г. полет в рамках «Экспериментальной программы «Аполлон-Союз». 17 июля в 19 часов 12 минут была совершена стыковка «Союза» и «Аполлона»; 19 июля была проведена расстыковка кораблей, после чего, через два витка «Союза», совершена повторная стыковка кораблей, ещё через два витка корабли окончательно расстыковались. Это был первый опыт проведения совместной космической деятельности представителей разных стран - СССР и США, положивший начало международному сотрудничеству в космосе - проектам «Интеркосмос», «Мир-НАСА», «Мир-Шаттл», МКС.

Многоразовые транспортные космические системы программы «СпейсШаттл» и «Буран»

В начале 70-х годов в обеих «космических державах» - СССР и США - были развернуты работы по созданию многоразовых транспортных космических систем по программам «Спейс шаттл» и «Энергия-Буран».

Многоразовые ТКС располагали возможностями, недоступными для одноразовых ПКА:

  • доставка крупногабаритных объектов (в грузовом отсеке) на орбитальные станции;
  • выведение на орбиту, снятие с орбиты искусственных спутников Земли;
  • техническое обслуживание и ремонт спутников в космосе;
  • инспекция космических объектов на орбите;
  • повторное использование многоразовых элементов транспортной космической системы.

Свой первый и единственный космический полёт «Буран» совершил 15 ноября 1988 года. Космический корабль был запущен с космодрома Байконур при помощи ракеты-носителя «Энергия». Продолжительность полёта составила 205 минут, корабль совершил два витка вокруг Земли, после чего произвёл посадку на аэродроме «Юбилейный» на Байконуре. Полёт прошёл без экипажа в автоматическом режиме с использованием бортового компьютера и бортового программного обеспечения, в отличие от шаттла, который традиционно совершает последнюю стадию посадки на ручном управлении (вход в атмосферу и торможение до скорости звука в обоих случаях полностью компьютеризованы). Данный факт — полёт космического аппарата в космос и спуск его на Землю в автоматическом режиме под управлением бортового компьютера — вошёл в книгу рекордов Гиннеса.

За 30 лет пятью кораблями «Спейс шаттл» было выполнено 133 полета. К марту 2011 года больше всего полётов—39— совершил шаттл «Дискавери». Всего с 1975 по 1991 год было построено шесть шаттлов: «Энтерпрайз» (не летал в космос), «Колумбия» (сгорел при посадке в 2003), «Челленджер» (взорвался во время запуска в 1986), «Дискавери», «Атлантис» и «Индевор».

Орбитальные станции

В период с 1971 по 1997 год, нашей страной было выведено на орбиту восемь пилотируемых космических станций. Эксплуатация первых космических станций по программе «Салют» позволила получить опыт в разработке сложных орбитальных пилотируемых комплексов, обеспечивающих долговременную жизнедеятельность человека в космосе. На борту «Салютов» в общей сложности работали 34 экипажа.

Американским аэрокосмическим агентством была выполнена интересная программа полетов на «Скайлэб», (англ. Skylab, сокращенное от sky laboratory — небесная лаборатория), американская космическая обитаемая орбитальная станция. Выведена на околоземную орбиту 14 мая 1973. На «Скайлэб» работали три экспедиции космонавтов, доставлявшиеся космическими кораблями "Аполлон".

Ч. Конрад, Дж. Кервин, П. Вейц с 25 мая по 22 июня 1973; А. Вин, О. Гэрриот, Дж. Лусма с 28 июля по 26 сентября 1973; Дж. Карр, У. Поуг, Э. Гибсон с 16 ноября 1973 по 8 февраля 1974. Основные задачи всех трёх экспедиций — медико-биологические исследования, направленные на изучение процесса адаптации человека к условиям длительного космического полёта и последующей реадаптации к земному тяготению; наблюдения Солнца; изучение природных ресурсов Земли, технические эксперименты.

Орбитальный комплекс (ОК) «Мир» стал международным многоцелевым комплексом, на котором была осуществлена практическая отработка целевого применения будущих пилотируемых космических комплексов, выполнена обширная программа научных исследований. На борту ОК «Мир» работало 28 основных экспедиций, 9 экспедиций посещения, выполнено 79 выходов в открытый космос и проведено более 23000 сеансов научных исследований и экспериментов. На «Мире» работали 71 человек из 12 стран. Выполнено 27 международных научных программ. Космонавтом Валерием Поляковым в 1994-1995 годах был выполнен полет, равный по длительности полету на Марс и обратно. Он продолжался 438 суток. В течение 15-летнего полёта комплекса был приобретён опыт устранения нештатных ситуаций различной значимости и отклонений от нормы, возникавших по различным причинам.

Международная космическая станция

Международная космическая станция - это проект, в котором участвуют шестнадцать стран. Она вобрала в себя опыт и технологии всех предшествующих ей программ развития пилотируемой космонавтики. Вклад России в создание и обеспечение эксплуатации МКС весьма значителен. К началу работ на МКС в 1993 году Россия уже имела 25-летний опыт эксплуатации орбитальных станций и соответственно развитую наземную инфраструктуру. В настоящий момент на борту МКС работает 59 основная экспедиция. Подготовлены и выполнили полет 18 экспедиций посещения на МКС.

Название орбитальной станции

Период полета, годы

Количество экспедиций

Налет, сутки

Основных

Посещения

Салют-1

Салют-2

1973 - 1979

Салют-3

1974 - 1975

Салют-4

1974 - 1977

Салют-5

1976 - 1977

Салют-6

1977 - 1982

Салют-7

1982 - 1991

1986 - 2001

В соответствии с «Долгосрочной программой научно-прикладных исследований и экспериментов, планируемых на российском сегменте МКС» на борту станции выполняются космические эксперименты. Они сгруппированы в тематические разделы по десяти направлениям научно-технических исследований. Программа дает представление о целях, задачах и ожидаемых результатах исследований и является основанием для разработки планов ее реализации в зависимости от имеющихся ресурсов и готовности аппаратуры и документации. Космические исследования расширяют и углубляют знания о нашей планете, окружающем мире, закладывают основы для решения фундаментальных научных и социально-экономических проблем. Объем проводимых исследований на РС МКС неуклонно растёт..

Планируется дооснащение станции российским многоцелевым лабораторным модулем (МЛМ), позволяющим существенно увеличить российскую программу научных исследований за счет доставки на МКС целого комплекса новой научной аппаратуры. Кроме того, вместе с МЛМ планируется доставка европейского манипулятора ERA для обеспечения внекорабельной деятельности экипажей МКС. В дальнейшем предполагается доставить на РС МКС узловой модуль и два научно-энергетических модуля.

Космический туризм

В ряде стран уже разворачивается целая индустрия по обеспечению полетов в космос обычных граждан, не имеющих профессиональной квалификации космонавта. Частный космос может не только приносить прибыль владельцам соответствующих средств, но, как и традиционный, государственный ведет к созданию новых технологий, а, значит, к расширению возможностей общества.

К полету на РС МКС прошли подготовку 20 космических туристов, 10 из них совершили космический полет:

Область профессиональной деятельности, профессия

Выполнено полётов, период, продолжительность

Тито Денис

1 полет

7 суток 22 часа 4 минуты 8 секунд.

Шаттлворт Марк

1 полет

9 суток 21 час 25 минут 05 секунд.

Олсен Грегори

1 полет

9 суток 21 час 14 минут 07 секунд.

Костенко Сергей

Понтес Маркос

Бразилия

Летчик-испытатель

1 полет

9 суток 21 час 17 минут 04 секунды.

Ансари Анюше

1 полет

10 суток 21 час 04 минуты 37 секунд.

Эномото Дайсукэ

Симони Чарльз

2 полета

13 суток 18 часов 59 минут 50 секунд;

12 суток 19 часов 25 минут 52 секунды.

Шейх Музафар

Малайзия

Врач-ортопед

1 полет

10 суток 21 час 13 минут 21 секунда.

Фаиз бин-Халид

Малайзия

Военврач, стоматолог

Полонский Сергей

Лэнс Басс

Музыкант

Гарвер Лори

Йи Сойон (Ли Со Ён)

Республика Корея

Наука, биотехнология

1 полет

10 суток 21 час 13 минут 05 секунд.

Республика Корея

Ричард Гэрриотт

1 полет

11 суток 20 часов 35 минут 37 секунд.

Ник Халик

Австралия

Ги Лалибирте

Бизнес, артист

1 полет

10 сут 21 ч 16 мин 55 секунд

Эстер Дайсон

Барбара Бэрретт

Изучив этот параграф, мы:

  • вспомним ученых, внесших значительный вклад в освоение космоса;
  • узнаем, как можно изменять орбиту космических кораблей;
  • убедимся, что космонавтика широко используется на Земле.

Зарождение космонавтики

Космонавтика изучает движение искусственных спутников Земли (ИСЗ), космических кораблей и межпланетных станций в космическом пространстве. Существует различие между природными телами и искусственными космическими аппаратами: последние при помощи реактивных двигателей могут изменять параметры своей орбиты.

Значительный вклад в создание научных основ космонавтики, пилотируемых космических кораблей и автоматических межпланетных станций (АМС) внесли советские ученые.

Рис. 5.1. К. Э. Циолковский (1857-1935)

К. Э. Циолковский (рис. 5.1) создал теорию реактивного движения. В 1902 г. он впервые доказал, что только при помощи реактивного двигателя можно достичь первой космической скорости.

Рис. 5.2. Ю. В. Кондратюк (1898-1942)

Ю. В. Кондратюк (А. Г. Шаргей; рис. 5.2) в 1918 г. рассчитал траекторию полета на Луну, которая впоследствии была применена в США при подготовке космических экспедиций «Аполлон». Выдающийся конструктор первых в мире космических кораблей и межпланетных станций С. П. Королев (1906-1966) родился и учился в Украине. Под его руководством 4 октября 1957 г. в Советском Союзе был запущен первый в мире ИСЗ, созданы АМС, которые первыми в истории космонавтики достигли Луны, Венеры и Марса. Наибольшим достижением космонавтики в то время был первый пилотируемый полет космического корабля «Восток», на котором 12 апреля 1961 г. летчик-космонавт Ю. А. Гагарин совершил кругосветное космическое путешествие.

Круговая скорость

Рассмотрим орбиту спутника, который обращается по круговой орбите на высоте Н над поверхностью Земли (рис. 5.3).

Рис. 5.3. Круговая скорость определяет движение тела вокруг Земли на постоянной высоте Н над ее поверхностью

Для того чтобы орбита была постоянной и не изменяла свои параметры, должны выполняться два условия.

  1. Вектор скорости должен быть направлен по касательной к орбите.
  2. Величина линейной скорости спутника должна равняться круговой скорости, которая определяется уравнением:

(5.1)

где - Мзем = 6×10 24 кг - масса Земли; G = 6,67×10 -11 (H м 2)/кг 2 - постоянная всемирного тяготения; Н - высота спутника над поверхностью Земли, Rзем = 6,37 10 9 м - радиус Земли. Из формулы (5.1) следует, что самое большое значение круговая скорость имеет при высоте Н = 0, то есть в том случае, когда спутник движется у самой поверхности Земли. Такая скорость в космонавтике называется первой космической:

В реальных условиях ни один спутник не может обращаться вокруг Земли по круговой орбите с первой космической скоростью, ибо плотная атмосфера очень тормозит движение тел, которые перемещаются с большой скоростью. Если бы даже скорость ракеты в атмосфере достигла величины первой космической, то большое сопротивление воздуха разогрело бы ее поверхность до температуры плавления. Поэтому ракеты во время старта с поверхности Земли сначала поднимаются вертикально вверх до высоты нескольких сотен километров, где сопротивление воздуха незначительно, и только тогда спутнику сообщается соответствующая скорость в горизонтальном направлении.

Для любознательных

Невесомость во время полета в космическом корабле наступает в момент, когда прекращают работу ракетные двигатели. Для того чтобы ощутить состояние невесомости, не обязательно лететь в космос. Любой прыжок в высоту, или длину, когда исчезает опора под ногами, дает нам кратковременное ощущение состояния невесомости.

Движение космических аппаратов по эллиптическим орбитам

Если величина скорости спутника будет отличаться от круговой или вектор скорости не будет параллелен плоскости горизонта, тогда космический аппарат (КА) будет обращаться вокруг Земли по эллиптической траектории. Согласно первому закону, в одном из фокусов эллипса должен находиться центр Земли, поэтому плоскость орбиты спутника должна пересекать плоскость экватора или совпадать с ней (рис. 5.4). В этом случае высота спутника над поверхностью Земли изменяется в пределах от перигея до апогея. ствующим точкам на орбитах планет - перигелия и афелия (см. § 4).

Рис. 5.4. Движение спутника по эллиптической траектории похоже на обращение планет в зоне тяготения Солнца. Изменение скорости определяется законом сохранения энергии: сумма кинетической и потенциальной энергии тела при движении по орбите остается постоянной

Если спутник движется по эллиптической траектории, то, согласно второму закону Кеплера, изменяется его скорость: наибольшую скорость спутник имеет в перигее, а наименьшую - в апогее.

Период обращения космического аппарата

Если космический аппарат движется по эллипсу вокруг Земли с переменной скоростью, его период обращения можно определить с помощью третьего закона Кеплера (см. § 4):

где Тс - период обращения спутника вокруг Земли; Т м = 27,3 суток - сидерический период обращения Луны вокруг Земли; а с - большая полуось орбиты спутника; =380000 км большая полуось орбиты Луны. Из уравнения (5.3) определим:

(5.4)

Рис. 5.5. Геостационарный спутник обращается на высоте 35600 км только по круговой орбите в плоскости экватора с периодом 24 ч (N - Северный полюс)

В космонавтике особую роль играют ИСЗ, которые «висят» над одной точкой Земли - это геостационарные спутники, использующиеся для космической связи (рис. 5.5).

Для любознательных

Для обеспечения глобальной связи достаточно вывести на геостационарную орбиту три спутника, которые должны «висеть» в вершинах правильного треугольника. Сейчас на таких орбитах находятся уже несколько десятков коммерческих спутников разных стран, обеспечивая ретрансляцию телевизионных программ, мобильную телефонную связь, компьютерную сеть Интернет.

Вторая и третья космические скорости

Эти скорости определяют условия соответственно для межпланетных и межзвездных перелетов. Если сравнить вторую космическую скорость V 2 с первой V 1 (5.2), то получим соотношение:

Космический корабль, стартующий с поверхности Земли со второй космической скоростью и движущийся по параболической траектории, мог бы полететь к звездам, потому что парабола является незамкнутой кривой и уходит в бесконечность. Но в реальных условиях такой корабль не покинет Солнечную систему, ибо любое тело, которое вышло за пределы земного тяготения, попадает в гравитационное поле Солнца. То есть космический корабль станет спутником Солнца и будет обращаться в Солнечной системе подобно планетам или астероидам.

Для полета за пределы Солнечной системы космическому кораблю нужно сообщить третью космическую скорость V 3 =16,7 км/с. К сожалению, мощность современных реактивных двигателей еще недостаточна для полета к звездам при старте непосредственно с поверхности Земли. Но если КА пролетает через гравитационное поле другой планеты, он может получить дополнительную энергию, которая позволяет в наше время совершать межзвездные полеты. В США уже запустили несколько таких АМС («Пионер-10,11» и «Вояджер-1,2»), которые в гравитационном поле планет-гигантов увеличили свою скорость настолько, что в будущем вылетят за пределы Солнечной системы.

Для любознательных

Полет на Луну происходит в гравитационном поле Земли, поэтому КА летит по эллипсу, в фокусе которого находится центр Земли. Самая выгодная траектория полета с минимальным расходом топлива - это эллипс, являющийся касательным к орбите Луны.

Во время межпланетных полетов, например на Марс, КА летит по эллипсу, в фокусе которого находится Солнце. Самая выгодная траектория с наименьшей затратой энергии проходит по эллипсу, который является касательным к орбите Земли и Марса. Точки старта и прилета лежат на одной прямой по разные стороны от Солнца. Такой полет в одну сторону длится более 8 месяцев. Космонавтам, которые в недалеком будущем посетят Марс, надо учесть, что сразу же вернуться на Землю они не смогут: Земля по орбите движется быстрее, чем Марс, и через 8 месяцев его опередит. До возвращения космонавтам нужно находиться на Марсе еще 8 месяцев, пока Земля займет выгодное положение. То есть общая продолжительность экспедиции на Марс будет не менее двух лет.

Практическое применение космонавтики

В наше время космонавтика служит не только для изучения Вселенной, но и приносит большую практическую пользу людям на Земле. Искусственные космические аппараты изучают погоду, исследуют космос, помогают решать экологические проблемы, ведут поиски полезных ископаемых, обеспечивают радионавигацию (рис. 5.6, 5.7). Но наибольшие заслуги космонавтики в развитии космических средств связи, космического мобильного телефона, телевидения и Интернета.

Рис. 5.6. Международная космическая станция

Ученые проектируют строительство космических солнечных электростанций, которые будут передавать энергию на Землю. В недалеком будущем кто-нибудь из нынешних учеников полетит на Марс, будет осваивать Луну и астероиды. Нас ждут загадочные чужие миры и встреча с другими формами жизни, а возможно, и с внеземными цивилизациями.

Рис. 5.7. Космическая станция в виде гигантского кольца, идею которой предложил Циолковский. Вращение станции вокруг оси создаст искусственное притяжение

Рис. 5.8. Старт украинской ракеты «Зенит» с космодрома в Тихом океане

Выводы

Космонавтика как наука о полетах в межпланетное пространство бурно развивается и занимает особое место в методах изучения небесных тел и космической среды. Кроме того в наше время космонавтика успешно применяется в средствах связи (телефон, радио, телевидение, Интернет), в навигации, геологии, метеорологии и многих других областях деятельности человека.

Тесты

  1. С первой космической скоростью может лететь космический корабль, обращающийся вокруг Земли по круговой орбите на такой высоте над поверхностью:
      А. О км.
      Б. 100 км.
      В. 200 км.
      Г. 1000 км.
      Д. 10000 км.
  2. Ракета стартует с поверхности Земли со второй космической скоростью. Куда она долетит?
      А. До Луны.
      Б. До Солнца.
      В. Станет спутником Солнца.
      Г. Станет спутником Марса.
      Д. Полетит к звездам.
  3. Космический корабль обращается вокруг Земли по эллиптической орбите. Как называется точка орбиты, в которой космонавты находятся ближе всего к Земле?
      А. Перигей.
      Б. Перигелий.
      В. Апогей.
      Г. Афелий.
      Д. Парсек.
  4. Ракета с космическим кораблем стартует с космодрома. Когда космонавты почувствуют невесомость?
      А. На высоте 100 м.
      Б. На высоте 100 км.
      В. Когда выключится реактивный двигатель.
      Г. Когда ракета попадет в безвоздушное пространство.
  5. Какие из этих физических законов не выполняются в невесомости?
      А. Закон Гука.
      Б. Закон Кулона.
      В. Закон всемирного тяготения.
      Г. Закон Бойля-Мариотта.
      Д. Закон Архимеда.
  6. Почему ни один спутник не может обращаться вокруг Земли по круговой орбите с первой космической скоростью?
  7. Чем отличается перигей от перигелия?
  8. Почему при запуске космического корабля возникают перегрузки?
  9. Выполняется ли в невесомости закон Архимеда?
  10. Космический корабль обращается вокруг Земли по круговой орбите на высоте 200 км. Определите линейную скорость корабля.
  11. Может ли космический корабль сделать за сутки 24 оборота вокруг Земли?

Диспуты на предложенные темы

  1. Что вы можете предложить для будущих космических программ?

Задания для наблюдений

  1. Вечером найдите на небе спутник или международную космическую станцию, которые освещаются Солнцем и с поверхности Земли выглядят, как яркие точки. Нарисуйте их путь среди созвездий в течение 10 минут. Чем отличается полет спутника от движения планет?

Ключевые понятия и термины:

Апогей, геостационарный спутник, вторая космическая скорость, круговая скорость, межпланетная космическая станция, перигей, первая космическая скорость, искусственный спутник Земли.

Заправлены в планшеты
Космические карты,
И штурман уточняет
В последний раз маршрут...

Владимир Войнович (1957)

В начале 2016 года о том, нужна ли человечеству пилотируемая космонавтика, дискутируют научный журналист, модератор Клуба научных журналистов Александр Сергеев и астроном, ст. науч. сотр. ГАИШ МГУ Владимир Сурдин.

Александр Сергеев :

Нередко звучит мнение , что пилотируемая космонавтика не нужна , что это «всегда была политическая фаллометрия между сверхдержавами» и все задачи космических исследований могут выполнить роботы. Хотя в определенных аспектах это суждение не лишено оснований, в общем случае оно является ошибочным.

Естественно, политическая конкуренция была основным двигателем пилотируемой космонавтики. Как результат эти технологии были созданы исторически несколько преждевременно, из-за чего оказались связаны с чрезмерными рисками и затратами. Думаю, реально востребованными они станут еще через полвека. Но раз уж технологии созданы, желательно их сохранять и совершенствовать, а не забрасывать, чтобы потом воссоздавать с нуля. В этом смысл неспешной деятельности вокруг МКС.

Единственной ключевой проблемой в освоении человеком космоса остается высокая стоимость вывода грузов на орбиту. Из-за этого слишком дорого создавать вне Земли полноценную технологическую инфраструктуру. А без нее очень высокими оказываются риски, что, в свою очередь, увеличивает затраты. Получается порочный круг. Если тем или иным способом удастся существенно удешевить доставку, развитие космонавтики резко ускорится.

Принципиально это возможно. По формуле Циолковского для разгона 1 кг до первой космической скорости с помощью химических двигателей нужно всего около 20 кг топлива, то есть порядка 10 долл. Реальная стоимость доставки груза на МКС - около 30 тыс. долл. за килограмм.

Накрутка на 3,5 порядка (!) связана с традиционными технологическими решениями и организационными процессами, а также с вынужденно завышенными требованиями к безопасности (из-за невозможности оказания технической помощи в полете). Почти наверняка эту стоимость можно снизить в десятки раз за счет масштабирования космической деятельности, создания технологической инфраструктуры на орбите и реализации оригинальных идей, вроде запусков с высотных платформ или электромагнитных катапульт.

Что же касается необходимости пилотируемой космонавтики, то задачи, которые в обозримом будущем неосуществимы для автоматов, в космосе есть. Несколько лет назад я читал на эту тему американский отчет. Главной из таких задач там называлось геологическое бурение на поверхности других небесных тел. Речь шла не о скромных экспериментах, как на «Луне-24» или на «Кьюриосити», а о полноценном разведывательном бурении на десятки и сотни метров.

Также предлагаю сравнить скорость передвижения по поверхности:

  • Лунный ровер «Аполлона-17» - 36 км за 3 дня - 12 км / сутки.
  • «Луноход-2» - 42 км за 4 месяца - 350 м / сутки.
  • «Оппортьюнити» - 42 км за 11,5 лет - 10 м / сутки.

Как сделать космическую базу рентабельной?

Есть мнение, что даже при снижении стоимости выведения на орбиту на порядок и росте орбитального трафика на два порядка пилотируемая космонавтика не найдет коммерческого оправдания. Я полагаю, что это не совсем так. Уже сейчас есть направления, которые находятся на грани рентабельности, а если стоимость выведения снизится на порядок-полтора, то работающие бизнес-идеи просто непременно появятся.

Сейчас на МКС живет шесть человек. Если принять рост орбитального трафика в сто раз, то космическое население должно вырасти даже больше, поскольку будет значительная экономия ресурсов за счет масштабирования и синергии. Итак, на орбите работает около тысячи человек. Чем они могут там заниматься?

Более или менее понятно, что не астрономическими наблюдениями, поскольку для этого даже на земных обсерваториях присутствие человека обычно не требуется.

Уникальное торговое предложение космической базы включает длительную невесомость, высокий вакуум, впечатляющий вид Земли из космоса, возможность сборки и обслуживания космических аппаратов без сведения их с орбиты. Возможно, я что-то упустил, но эти пункты очевидны.

Прежде всего, там создается отель. Даже сейчас, когда туристический билет на МКС стоит более 20 млн долл., туда стоит очередь желающих. И на жалкий суборбитальный прыжок за 200 тыс. - тоже. Думаю, что многие захотят за пару миллионов провести отпуск в орбитальном отеле на огромной космической станции с населением в сотни человек, перепробовать там кучу аттракционов (от спортивных игр в невесомости до выхода в открытый космос), познакомиться с работой различных коммерческих, технологических и научных команд.

Далее строится киностудия для съемок в невесомости. Понятно, что и сейчас в Голливуде умудряются создать впечатление невесомости в различных космических фильмах. Но для таких эффектов есть много ограничений, а сопутствующая компьютерная поддержка стоит дорого. Когда бюджеты фильмов исчисляются сотнями миллионов, может оказаться вполне оправданным за 20 млн отправить на орбиту съемочную команду с актерами.

Не забываем о рекламном потенциале «города на орбите». Компании будут платить за размещение своих логотипов на станции, поставку на нее своих продуктов, съемку там своих рекламных роликов, отправку победителей промо-лотерей. Наверняка появятся и новые неожиданные идеи вроде недавнего предложения устраивать по заказу искусственные метеорные дожди над городами, сбрасывая с орбиты специальные капсулы.

Ремонтный док в космосе

Следующее естественное направление - ремонтный док для спутников. Сейчас большинство спутников строится в расчете на полную автономию. Это заставляет делать все системы сверхнадежными, а значит, дорогими. Ошибки выведения, как правило, делают спутники бесполезными. Страховки покрывают стоимость аппаратов, но не упущенную выгоду. Наконец, многие спутники за время эксплуатации устаревают морально.

Пример телескопа «Хаббл» показывает, что обслуживание спутника может значительно продлить его активную жизнь. Буксир с ионным двигателем может приводить в док для обслуживания спутники, выведенные на нерасчетные орбиты, вышедшие из строя, нуждающиеся в модернизации или дозаправке. Кстати, работа многих комических обсерваторий ограничена запасами жидкого гелия на борту. В доке их можно было бы пополнять.

Развитием идеи ремонтного дока будет строительная верфь для крупных спутников и космических кораблей. Сейчас сложность исследовательских спутников и межпланетных станций ограничивается грузоподъемностью и габаритами ракет-носителей. А также тем, что космический аппарат должен безупречно работать сразу после стрессовых условий ракетного старта.

При снижении стоимости выведения и наличии орбитальной сборочной верфи многие ограничения на конструкцию крупных космических аппаратов были бы сняты. Также перестали бы быть столь проблематичными вопросы пилотируемых полетов к другим планетам. В частности, удалось бы снять самую трудную проблему радиационной безопасности экипажа, поскольку масса радиационной защиты больше не была бы сдерживающим фактором.

Исследовательская база в космосе

Следующий шаг - создание космической базы для систематического сбора, доставки и изучения образцов с различных тел Солнечной системы. Нет необходимости при полете за каждым таким образцом сначала выбираться из гравитационно-атмосферного колодца Земли, а потом возвращаться в него. Зонды с ионными двигателями могут стартовать прямо с космической станции и возвращаться на нее. На ней же может проводиться весь цикл исследований, за исключением самых экзотических.

Что касается исследований, то, полагаю, основной упор должен быть сделан на медицину и биологию в условиях нулевой или пониженной гравитации. Также не исключено появление новых материалов, которые оправданно производить в условиях невесомости.

Космический город

И наконец, не будем забывать, что человеческие поселения существуют не только для того, чтобы что-то куда-то поставлять. В них еще просто живут люди, которые занимаются самыми разными делами. Вполне естественно, что по мере роста космической базы часть людей станет просто ее жителями. Вероятно, поначалу жить там будет дорого и это смогут позволить себе лишь очень состоятельные люди. Но ведь их кто-то должен будет обслуживать. И цены этого обслуживания будут учитывать «орбитальную наценку». Так что все эти люди сформируют свой рынок.

Наконец, пойдут исследования по оптимизации жизни на самой орбитальной станции. Скажем, может оказаться, что снабжать станцию кислородом выгоднее не с Земли, а с Луны - в составе реголита. И из него же можно добывать алюминий для собственных конструкционных нужд.

Короче, если численность населения станет достаточно большой, на станции не сразу, но постепенно запустится своя экономика, и проект начнет сам искать себе заработок - туризм, реклама, эксклюзивные апартаменты, обслуживание космической техники, эксперименты, съемки и развлечения в невесомости и в открытом космическом пространстве. В общем, нормальная человеческая жизнь. Только для ее запуска нужно, чтобы стоимость выведения на орбиту снизилась на порядок, а лучше на два. А вот что нужно для этого, пока еще до конца не ясно.

Необходимо менять стратегию

Владимир Сурдин :

Рождение пилотируемой космонавтики в 1960-е было естественным этапом технического прогресса. В нем были заинтересованы все - инженеры, врачи, идеологи. Появление человека на околоземной орбите и далее на Луне сильно изменило мировоззрение просвещенной части землян, стимулировало прогресс науки.

Но в последние десятилетия в пилотируемой космонавтике застой. Ее развитие практически остановилось в середине 1980-х. Стало ясно, что на околоземной орбите человеку опасно оставаться более года, а вдали от Земли - более полугода. Что все оборонные и хозяйственные задачи (мониторинг Земли, связь, навигация и проч.) эффективнее решаются беспилотными аппаратами. Человек в космосе остается элементом государственного престижа, но с годами эффективность и этой его роли снижается.

Сейчас космонавты присутствуют только на МКС и в основном занимаются поддержанием работоспособности станции. Надежды на разработку новых технологий в невесомости (идеальные кристаллы, чистые лекарства), очевидно, не оправдываются. Научные эксперименты на МКС проводятся. Но если не принимать во внимание меркантильные соображения (т. е. финансирование), то ученые не горят желанием размещать свои приборы на МКС, предпочитая непилотируемые аппараты. Отправляя научную установку на МКС, ее всё равно приходится делать максимально автоматизированной и снабжать дополнительными устройствами, нейтрализующими вредное влияние (вибрацию и т. п.) космонавтов и систем их жизнеобеспечения.

Насколько я знаю, пилотируемая космонавтика съедает более трети бюджета гражданских космических агентств, не принося сколько-нибудь значительных научных и технических результатов, в отличие от беспилотных орбитальных аппаратов и межпланетных зондов.

Тем не менее по закону Паркинсона штат любого ведомства со временем только возрастает. Чиновники от пилотируемой космонавтики декларируют для нее новые амбициозные цели (полеты к астероидам, к Марсу), не делая в этом направлении реальных шагов. Даже моделируя на Земле длительные полеты (например, «Марс–500»), они не создают условий, по возможности близких к космическим, - я имею в виду радиацию.

Разумеется, было бы недальновидно на основании сказанного запретить пилотируемые полеты и в результате потерять наработанные технологии. Но менять стратегию необходимо. Технологии пребывания человека в космосе уже используются частными фирмами, развивающими космический туризм, поэтому они не пропадут. А государственные деньги желательно тратить на решение фундаментальных задач.

Предыдущее поколение людей вошло в историю цивилизации первыми шагами в космос. А чем ответит нынешнее поколение? Если переориентировать приоритеты большой космонавтики на создание новых межпланетных зондов и космических телескопов, то наше поколение могло бы стать первым обнаружившим жизнь вне Земли. По-моему, это достойная задача, решив которую мы откроем новые перспективы для человечества.

Александр Сергеев :

Я полностью согласен, что при неизменности технологий выведения на орбиту обозначенная Владимиром Георгиевичем смена стратегии оправданна и даже необходима. Однако мне была интересна ситуация, когда стоимость выведения удастся радикально снизить. В этом случае можно обеспечить в космосе защиту от радиации (это лишь вопрос массы экранов), избавить экипажи от постоянного воздействия невесомости (за счет закрутки больших станций) и значительно снизить психологические издержки (за счет увеличения численности экипажей и уровня безопасности полетов). Таким образом, радикальной космической экспансии препятствует лишь высокая стоимость вывода на орбиту. Технически осуществимые альтернативы ракетным технологиям уже придуманы. Тому, кто реализует их на практике, будет принадлежать космос. А до тех пор, да, только роботы и космонавты престижа.

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ИНСТИТУТ

(ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

РЕФЕРАТ ПО ИСТОРИИ

«ИСТОРИЯ ПИЛОТИРУЕМОЙ КОСМОНАВТИКИ»

ВЫПОЛНИЛ: Мильяненко Григорий

ГРУППА: 06 – 104

ПРОВЕРИЛ: ____________________

ВСТУПЛЕНИЕ.....................................................................................................................................................3

КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ РАКЕТНОЙ ТЕХНИКИ..........................................................................3

ПИОНЕРЫ ТЕОРЕТИЧЕСКОЙ КОСМОНАВТИКИ....................................................................................3

РАЗВИТИЕ РАКЕТНОЙ ТЕХНИКИ В ДОВОЕННЫЙ ПЕРИОД.................................................................3

РАЗВИТИЕ РАКЕНТОЙ ТЕХНИКИ В ПЕРИОД ВТОРОЙ МИРОВОЙ ВОЙНЫ........................................5

РАЗВИТИЕ РАКЕТНОЙ ТЕХНИКИ В ПОСЛЕВОЕННЫЙ ПЕРИОД.........................................................7

НАЧАЛЬНЫЙ ПЕРИОД РАЗВИТИЯ КОСМОНАВТИКИ............................................................................8

ПИОНЕРЫ ОСВОЕНИЯ КОСМОСА...............................................................................................................8

ХРОНОЛОГИЯ ПИЛОТИРУЕМЫХ КОСМИЧЕСКИЙ ПОЛЕТОВ.............................................................8

ЗАКЛЮЧЕНИЕ..................................................................................................................................................29

«... но в погоне за светом и знаниями человечество сначала робко выглянет за атмосферу, а потом завоют себе все околосолнечное пространство».

К. Э. Циолковский.

Человека всегда манило небо и... звезды. С тех самых пор как он стал осознавать себя «Homo Sapiens», он всегда хотел летать в небе как птица, а вглядываясь в темные глубины космоса, где таинственно мерцали звезды, ему не давали покоя вопросы: одинок ли он во Вселенной? Есть ли братья по разуму и какие они?

Впервые увидеть землю с высоты птичьего полета человек смог только с изобретеньем воздушного шара – 1783 г., а с изобретением самолета такая возможность появилась практически у всего человечества.

С таинство мерцающими звездами дело обстояло посложней – уж больно далеки были самые звезды. Даже свет от них достигает Земли, пробираясь сквозь глубины Вселенной не один десяток лет. И приблизится к ним можно было разве что оседлав мечту. Но человек не только мечтал, он еще и дерзал, творил, приближая осуществление своей мечты.

С изобретением пороха был открыт принцип реактивного движения – пороховая ракета. Но понадобилось еще почти два тысячелетия, чтобы эта маленькая пороховая игрушка, пройдя путь через боевые реактивные снаряды и межконтинентальные носители ядерных боеголовок, превратилась в носителя космических кораблей. Но обо всем по порядку.

На пороховую ракету обратили свое внимание еще полководцы древности и начали использовать ее в качестве зажигательного средства при осаде и штурме крепостей. Позже они решили использовать ее для доставки к цели разрушительных зарядов. В Российской армии первое упоминание об использовании боевых ракет относится к середине XIX столетия – период русско-турецкой войны. Однако из-за отсутствия надежных способов стабилизации и управления полетом ракеты на траектории и, как следствие, очень большого рассеивания, широкого распространения «ракетная артиллерия» не получила. Как раз в это время была реализована идея нарезного ствола, что намного увеличило дальность и точность стрельбы, а новый, далеко несовершенный и капризный реактивный снаряд не сулил артиллеристам никаких выгод.

Но именно в это самое время – конец XIX – начало XX столетий, бурно развивающееся воздухоплавание (кроме воздушных шаров в небе появились первые дирижабли) и только что нарождающаяся авиация дали толчок всем мечтателям в мире, воскресив прекрасную мечту о полетах к другим мирам. В их воображении к соседним планетам уже мчались эскадрильи космических кораблей, готовые или помочь братьям по разуму подняться на более высокую ступень развития, или самим аккумульнуть знаний и технологий. Им казалось, что небо человеком уже освоено, «еще немного, еще чуть-чуть» – и вот он – Марс, мечта всех романтиков космоса.

Повсеместно начали организовываться всевозможные секции и общества, ставившие своей целью полеты на Луну и к Марсу, читались лекции, проводились диспуты, издавалась масса околонаучных и просто фантастических брошюр. Но трезво мыслящие мечтатели (а среди них были и такие) прекрасно понимали, что ни воздушный шар, ни дирижабль, ни самолет с его маломощным поршневым двигателем для достижения других планет не пригодны. И поэтому взоры как мечтателей, так и реально мыслящих практиков космоплавания практически одновременно пали на ракету.

В конце XIX столетия (1881 год) русский революционер-народоволец Николай Кибальчич, приговоренный к смертной казни за убийство царя Александра II, за несколько дней до казни сделал первые наброски и расчеты (очевидно, впервые в России) ракетного летательного аппарата.

Примерно в это же время (конец XIX столетия) калужский преподаватель гимназии Константин Эдуардович Циолковский, страстный мечтатель и ученый-самоучка, впервые теоретически обосновывает принцип реактивного движения. В 1903 году издается его труд «Исследования мировых пространств реактивными приборами». Спустя некоторое время, а именно в 1929 году, издается его вторая книга по основам ракетоплавания «Космические ракетные поезда». В «Трудах о космической ракете» он подводит черту под своими работами в области космоплавания. В них он убедительно доказал, что единственно возможным двигателем для полета в пустоте (космическом пространстве) является ракета и теоретически обосновал возможность достижения ближайших к Земле небесных тел с помощью «ракетных поездов» т.е. многоступенчатых ракет-носителей, отбрасывающих свои отработавшие ступени. Этим достигалось снижение остаточного веса ракеты-носителя и наращивание за счет этого ее скорости.

За этот неоценимый вклад в теорию космоплавания калужский учитель К.Э. Циолковский обрел всемирную известность и по праву считается основоположником теоретической космонавтики.

Примерно в это же время (первое десятилетие XX столетия) на космическом небосводе России вспыхнула еще одна яркая звезда – Фридрих Артурович Цандер.

Слушая рассказы отца о черных безднах, разделяющих звезды, о множестве иных миров, которые наверняка есть, пусть очень далеко, но есть, Фридрих ни о чем другом думать уже не мог. У одних людей жизнь заслоняет собой все эти мысли детства, а у Цандера мысли эти заслонили всю его жизнь.

Он окончил Политехнический институт в Риге, учился в Германии и снова в Риге. В 1915 году война переселила его в Москву. Теперь он занимается только полетом в космос. Нет, конечно, помимо этого он работает на авиазаводе «Мотор», что-то делает, считает, чертит, но все мысли его в космосе. Ослепленный своими мечтами, он уверен, что убедит других, многих, всех в острой необходимости межпланетного полета. Он открывает перед людьми фантастическую картину, однажды открывшуюся ему, мальчику:

«Кто, устремляя в ясную осеннюю ночь свои взоры к небу, при виде сверкающих на нем звезд не думал о том, что там, на далеких планетах, может быть, живут подобные нам разумные существа, опередившие нас в культуре на многие тысячи лет. Какие несметные культурные ценности могли бы быть доставлены на земной шар земной науке, если бы удалось туда перелететь человеку, и какую минимальную затрату надо произвести на такое великое дело в сравнении с тем, что бесполезно тратится человеком».

Один крупный инженер вспоминает: «Он рассказывал о межпланетных полетах так, как будто у него в кармане был ключ от ворот космодрома». Да ему нельзя не верить. И люди верят ему. Пока он говорит. Но он замолкает и тогда многие начинают думать, что, наверное, он все-таки сумасшедший.

А он голодал когда делал расчеты крылатой машины, которая смогла бы унести человека за пределы атмосферы. Работа эта так поглотила его, что он ушел с завода и 13 месяцев занимался своим межпланетным кораблем. Совершенно не было денег, он попал в большую нужду, но продолжал заниматься своими расчетами. Любые дела и разговоры, не связанные с межпланетными путешествиями, его не интересовали. Он считал Циолковского гением, мог сутками сидеть за столом со своей полуметровой логарифмической линейкой и утверждать при этом, что нисколько не устал. В угаре неистовой работы он вдруг стискивал на затылке пальцы и, не замечая никого вокруг, повторял горячо и громко:

– На Марс! На Марс! Вперед, на Марс!

Как легко было ошибиться в нем, приняв за фанатика – не более, за одержимого изобретателя мифического аппарата, воспаленный мозг которого не знал покоя.

Но он не был таким чудаком. Много лет спустя член-корреспондент АН СССР И.Ф. Образцов так скажет о Фридрихе Артуровиче:

«Особенностью творческого метода Цандера была глубокая математическая разработка каждой поставленной перед собой проблемы. Он не просто теоретически глубоко разрабатывал рассматриваемые вопросы, а с присущей ему ясностью изложения старался дать свое толкование волновавшей его проблемы, найти пути к ее практической реализации». Прежде всего Цандер был инженером, и не просто инженером. «Первый звездный инженер, мозг и золото космоплавания», - так отозвался о нем Циолковский.

А в это самое время будущий выпускник МВТУ им. Баумана Сергей Павлович Королев, юноша, страстно влюбленный в небо, конструировал и строил планера, и сам на них летал. Нет, это был еще не тот Королев, конструктов ракетно-космических систем, о котором мир узнает ровно через полвека. На этом отрезке жизненного пути молодого инженера и пилота манила стратосфера и способы ее достижения. Выбор, как и следовало ожидать, тоже остановился на ракете. А знакомство с трудами Циолковского и лично с Цандером окончательно определило направление дальнейших поисков конструктора Королева – ракетоплан. Знакомство с Тихонравовым и Победоносцевым, а также с газодинамической лабораторией (ГДЛ) в Ленинграде подтолкнуло его к созданию аналогичного центра в Москве, оформившегося в группу изучения реактивного движения (ГИРД) при Осоавиахиме 1930 году. Начальником ГИРДа был назначен Королев, а ее лидером, безусловно, был Цандер. А 17 августа 1933 года на полигоне в Нахабино стартовала первая советская ракета – знаменитая «девятка». Сохранился даже «Акт о полете ракеты ГИРД Р–1», – так называли «девятку», из которого следовало, что полет ракеты продолжался 18 секунд и она достигла высоты 400 метров. Глубокой осенью, когда уже выпал снег, стартовала вторая ракета ГИРД-X – полностью жидкостная, с двумя – спиртовым и кислородным – баками, задуманная Цандером и осуществленная его соратниками по первой бригаде. Эти две ракеты стали действительно историческими: с них начинается летопись советских жидкостных ракет.