Полупроводниковые материалы. Полупроводники

2 Полупроводники «Имеется существенное различие между полупроводником, таким как германий, и хорошим проводником, таким как серебро… Электросопротивление хорошего проводника быстро уменьшается с понижением температуры, в то время как у «плохого» проводника оно возрастает и становится очень большим, когда температура приближается к абсолютному нулю» А. Х. Вильсон Электросопротивление (Ом*см):


2 Собственная проводимость Собственной проводимостью полупроводников называется проводимость, обусловленная движением под действием электрического поля одинакового числа свободных электронов и дырок, образовавшихся вследствие перехода электронов полупроводника из валентной зоны в зону проводимости. В идеальном полупроводнике при собственной проводимости концентрации электронов (n) и дырок (p) равны Температурная область собственной проводимости – примеси не оказывают влияния в данной области. - При абсолютном нуле в зоне проводимости все уровни свободны (вакантны) - Зона проводимости отделена от заполненной валентной зоны энергетической щелью шириной E g. - Ширина энергетической щели равна разности между наиболее низкой точкой зоны проводимости и наиболее высокой точкой валентной зоны (края зон)


2 Собственная проводимость По мере возрастания T электроны валентной зоны вследствие термического возбуждения будут переходить в зону проводимости В валентной зоне будут образовываться дырки (вакантные состояния) Движение электронов и дырок в электрическом поле Е. Направления скоростей разные, но создаваемый ток имеет направление электрического поля


2 Собственная проводимость Температурная зависимость логарифма проводимости Ge - Примеси влияют на концентрацию носителей при низких температурах - При высоких Т концентрация определяется собственными свойствами п/п (380 – 800) К – собственная пр. (273 – 300) К – примесная пр. Ширина запрещенной зоны:


2 Запрещенная зона Ширина запрещенной зоны (i – непрямые переходы; d – прямые) Полупроводники, переход электрона в которых из зоны проводимости в валентную зону не сопровождается потерей импульса (прямой переход), называются прямозонными. Полупроводники, переход электрона в которых из зоны проводимости в валентную зону сопровождается потерей импульса (непрямой переход), называются непрямозонными






2 Закон действующих масс n(E g) - кол-во электронов, переходящих в рез- те возбуждения при Т в зону проводимости, как функцию хим. Потенциала Функция распределения Ферми-Дирака: Позволяет найти вероятность, с которой фермион занимает данный энерг. уровень.














2 Примесная проводимость Добавление примесей (легирование) Нарушенная стехиометрия Примесная проводимость превышает собственную. Примеси: донорные (отдающие) и акцепторные (принимающие) Примесными центрами могут быть: атомы или ионы химических элементов, внедренные в решетку полупроводника; избыточные атомы или ионы, внедренные в междоузлия решетки; различного рода другие дефекты и искажения в кристаллической решетке: пустые узлы, трещины, сдвиги, возникающие при деформациях кристаллов, и др.


2 Примесные состояния Примесь As в кристалле Si. Мышьяк имеет 5 валентных электронов, а кремний – 4. Четыре электрона As образуют тетраэдрические ковалентные связи, подобные связям Si, а пятый электрон осуществляет проводимость. Атом мышьяка – донор, поскольку при ионизации отдает электрон в зону проводимости (полупроводник n-типа)


2 Примесные состояния Если в кристалле 4-валентного элемента (Si, Ge) часть атомов замещена атомами 3-валентного элемента (Ga, In), то для образования четырех ковалентных связей у примесного атома не хватает одного электрона. Электрон может быть получен от атома основного элемента полупроводника за счет разрыва ковалентной связи. Разрыв связи приводит к появлению дырки. Примеси, захватывающие валентные электроны, называют акцепторными. За счет ионизации атомов исходного материала часть валентных электронов становится свободной. Однако свободных электронов значительно меньше, чем дырок. Поэтому дырки в таких полупроводниках являются основными, а электроны неосновными подвижными носителями заряда. Такие полупроводники носят название полупроводников с дырочной электропроводностью или полупроводников p-типа.


2 Электронно-дырочные переходы Создадим контакт из двух полупроводников, n-типа и p-типа (p-n переход) Слева от перехода имеются свободные дырки, их концентрация равна концентрации отрицательно ионизованных акцепторных примесных атомов. Справа от перехода имеются свободные электроны, их концентрация равна концентрации положительно заряженных донорных примесных атомов. Толщина границы между p- и n-областью может быть порядка см


2 Электронно-дырочные переходы Носители тока находятся в тепловом равновесии с донорными и акцепторными примесями. Так же в тепловом равновесии будут находиться и неосновные носители с малой концентрацией. Неоднородность концентраций в кристалле будет вызывать диффузия дырок в n-область, а электронов в p-область. Это приведет к нарушению электрической нейтральности. В результате будет создаваться избыток отрицательно заряженных ионов акцепторных атомов в p-области и положительно заряженных в n-области. Образуется двойной слой разноименных зарядов, которые создадут электрическое поле, направленное от n- к p-области


2 Электронно-дырочные переходы Электростатический потенциал будет испытывать скачок в области перехода Электрохимический потенциал постоянен по всему объему Если концы кристалла соединить в цепь, а пучок света направить на переход, то потечет ток. Фотоны будут образовывать электроны и дырки. Когда пары электрон-дырка образуются в области перехода, электрическое поле двойного слоя будет перемещать дырки в p-область, а электроны в n-область. Ток потечет из n-области в p-область. Энергия фотонов будет превращаться в электрическую энергию


2 От песка до процессора Кремний (Si) и Песок (SiO 2) Восстановление: SiO 2 + 2C = Si + 2CO Технический кремний: % чистоты Путем хлорирования технического кремния получают тетрахлорид кремния (SiCl 4), который в дальнейшем преобразуется в трихлорсилан (SiHCl 3): 3SiCl 4 + 2H 2 + Si 4SiHCl 3 2SiHCl 3 SiH 2 Cl 2 + SiCl 4 2SiH 2 Cl 2 SiH 3 Cl + SiHCl 3 2SiH 3 Cl SiH 4 + SiH 2 Cl 2 SiH 4 Si + 2H 2 99, %


2 От песка до процессора Фотолитография «свет-шаблон- фоторезист» На кремниевую подложку наносят слой материала, из которого нужно сформировать рисунок. На него наносится фоторезист слой полимерного светочувствительного материала, меняющего свои физико-химические свойства при облучении светом. Производится экспонирование (освещение фотослоя в течение точно установленного промежутка времени) через фотошаблон Удаление отработанного фоторезиста.


2 От песка до процессора Через маски пропускается световое излучение, которое фокусируется на подложке. Для точной фокусировки необходима специальная система линз или зеркал, способная не просто уменьшить, изображение, вырезанное на маске, до размеров чипа, но и точно спроецировать его на заготовке. Напечатанные пластины, как правило, в четыре раза меньше, чем сами маски. Весь отработанный фоторезист (изменивший свою растворимость под действием облучения) удаляется специальным химическим раствором – вместе с ним растворяется и часть подложки под засвеченным фоторезистом. Часть подложки, которая была закрыта от света маской, не растворится. Она образует проводник или будущий активный элемент


2 От песка до процессора Для соединения логических элементов пластины помещают в раствор сульфата меди, в котором под действием электрического тока атомы металла «оседают» в оставшихся «проходах» в результате этого гальванического процесса образуются проводящие области, создающие соединения между отдельными частями процессорной «логики». Излишки проводящего покрытия убираются полировкой.


2 От песка до процессора Осталось хитрым способом соединить «остатки» транзисторов принцип и последовательность всех этих соединений (шин) и называется процессорной архитектурой. Для каждого процессора эти соединения различны – хоть схемы и кажутся абсолютно плоскими, в некоторых случаях может использоваться до 30 уровней таких «проводов».

Самым известным полупроводником является кремний (Si). Но, кроме него, есть много других. Примером могут служить такие природные полупроводниковые материалы, как цинковая обманка (ZnS), куприт (Cu 2 O), галенит (PbS) и многие другие. Семейство полупроводников, включая полупроводники, синтезированные в лабораториях, представляет собой один из наиболее разносторонних классов материалов, известных человеку.

Характеристика полупроводников

Из 104 элементов таблицы Менделеева 79 являются металлами, 25 - неметаллами, из которых 13 обладают полупроводниковыми свойствами и 12 - диэлектрическими. Основное отличие полупроводников состоит в том, что их электропроводность значительно возрастает при повышении температуры. При низких температурах они ведут себя подобно диэлектрикам, а при высоких — как проводники. Этим полупроводники отличаются от металлов: сопротивление металла растёт пропорционально увеличению температуры.

Другим отличием полупроводника от металла является то, что сопротивление полупроводника падает под действием света, в то время как на металл последний не влияет. Также меняется проводимость полупроводников при введении незначительного количества примеси.

Полупроводники встречаются среди химических соединений с разнообразными кристаллическими структурами. Это могут быть такие элементы, как кремний и селен, или двойные соединения, как арсенид галлия. Многие полиацетилен (СН) n, - полупроводниковые материалы. Некоторые полупроводники проявляют магнитные (Cd 1-x Mn x Te) или сегнетоэлектрические свойства (SbSI). Другие при достаточном легировании становятся сверхпроводниками (GeTe и SrTiO 3). Многие из недавно открытых высокотемпературных сверхпроводников имеют неметаллические полупроводящие фазы. Например, La 2 CuO 4 является полупроводником, но при образовании сплава с Sr становится сверхроводником (La 1-x Sr x) 2 CuO 4 .

Учебники физики дают полупроводнику определение как материалу с электрическим сопротивлением от 10 -4 до 10 7 Ом·м. Возможно и альтернативное определение. Ширина запрещённой зоны полупроводника - от 0 до 3 эВ. Металлы и полуметаллы - это материалы с нулевым энергетическим разрывом, а вещества, у которых она превышает З эВ, называют изоляторами. Есть и исключения. Например, полупроводниковый алмаз имеет запрещённую зону шириной 6 эВ, полуизолирующий GaAs - 1,5 эВ. GaN, материал для в синей области, имеет запрещённую зону шириной 3,5 эВ.

Энергетический зазор

Валентные орбитали атомов в кристаллической решётке разделены на две группы энергетических уровней - свободную зону, расположенную на высшем уровне и определяющую электропроводность полупроводников, и валентную зону, расположенную ниже. Эти уровни, в зависимости от симметрии решётки кристалла и состава атомов, могут пересекаться или располагаться на расстоянии друг от друга. В последнем случае между зонами возникает энергетический разрыв или, другими словами, запрещённая зона.

Расположение и заполнение уровней определяет электропроводные свойства вещества. По этому признаку вещества делят на проводники, изоляторы и полупроводники. Ширина запрещённой зоны полупроводника варьируется в пределах 0,01-3 эВ, энергетический зазор диэлектрика превышает 3 эВ. Металлы из-за перекрытия уровней энергетических разрывов не имеют.

Полупроводники и диэлектрики, в противовес металлам, имеют заполненную электронами валентную зону, а ближайшая свободная зона, или зона проводимости, отгорожена от валентной энергетическим разрывом - участком запрещённых энергий электронов.

В диэлектриках тепловой энергии либо незначительного электрического поля недостаточно для совершения скачка через этот промежуток, электроны в зону проводимости не попадают. Они не способны передвигаться по кристаллической решётке и становиться переносчиками электрического тока.

Чтобы возбудить электропроводимость, электрону на валентном уровне нужно придать энергию, которой бы хватило для преодоления энергетического разрыва. Лишь при поглощении количества энергии, не меньшего, чем величина энергетического зазора, электрон перейдёт из валентного уровня на уровень проводимости.

В том случае, если ширина энергетического разрыва превышает 4 эВ, возбуждение проводимости полупроводника облучением либо нагреванием практически невозможно - энергия возбуждения электронов при температуре плавления оказывается недостаточной для прыжка через зону энергетического разрыва. При нагреве кристалл расплавится до возникновения электронной проводимости. К таким веществам относится кварц (dE = 5,2 эВ), алмаз (dE = 5,1 эВ), многие соли.

Примесная и собственная проводимость полупроводников

Чистые полупроводниковые кристаллы имеют собственную проводимость. Такие полупроводники именуются собственными. Собственный полупроводник содержит равное число дырок и свободных электронов. При нагреве собственная проводимость полупроводников возрастает. При постоянной температуре возникает состояние динамического равновесия количества образующихся электронно-дырочных пар и количества рекомбинирующих электронов и дырок, которые остаются постоянными при данных условиях.

Наличие примесей оказывает значительное влияние на электропроводность полупроводников. Добавление их позволяет намного увеличить количество свободных электронов при небольшом числе дырок и увеличить количество дырок при небольшом числе электронов на уровне проводимости. Примесные полупроводники - это проводники, обладающие примесной проводимостью.

Примеси, которые с лёгкостью отдают электроны, называются донорными. Донорными примесями могут быть химические элементы с атомами, валентные уровни которых содержат большее количество электронов, чем атомы базового вещества. Например, фосфор и висмут - это донорные примеси кремния.

Энергия, необходимая для прыжка электрона в область проводимости, носит название энергии активизации. Примесным полупроводникам необходимо намного меньше ее, чем основному веществу. При небольшом нагреве либо освещении освобождаются преимущественно электроны атомов примесных полупроводников. Место покинувшего атом электрона занимает дырка. Но рекомбинации электронов в дырки практически не происходит. Дырочная проводимость донора незначительна. Это происходит потому, что малое количество атомов примеси не позволяет свободным электронам часто приближаться к дырке и занимать её. Электроны находятся около дырок, но не способны их заполнить по причине недостаточного энергетического уровня.

Незначительная добавка донорной примеси на несколько порядков увеличивает число электронов проводимости по сравнению с количеством свободных электронов в собственном полупроводнике. Электроны здесь - основные переносчики зарядов атомов примесных полупроводников. Эти вещества относят к полупроводникам n-типа.

Примеси, которые связывают электроны полупроводника, увеличивая в нём количество дырок, называют акцепторными. Акцепторными примесями служат химические элементы с меньшим числом электронов на валентном уровне, чем у базового полупроводника. Бор, галлий, индий - акцепторные примеси для кремния.

Характеристики полупроводника находятся в зависимости от дефектов его кристаллической структуры. Это является причиной необходимости выращивания предельно чистых кристаллов. Параметрами проводимости полупроводника управляют путем добавления легирующих присадок. Кристаллы кремния легируют фосфором (элемент V подгруппы), который является донором, чтобы создать кристалл кремния n-типа. Для получения кристалла с дырочной проводимостью в кремний вводят акцептор бор. Полупроводники с компенсированным уровнем Ферми для перемещения его в середину запрещённой зоны создают подобным образом.

Одноэлементные полупроводники

Самым распространённым полупроводником является, конечно, кремний. Вместе с германием он стал прототипом широкого класса полупроводников, обладающих подобными структурами кристалла.

Si и Ge та же, что у алмаза и α-олова. В ней каждый атом окружают 4 ближайших атома, которые образуют тетраэдр. Такая координация называется четырехкратной. Кристаллы с тетрадрической связью стали базовыми для электронной промышленности и играют ключевую роль в современной технологии. Некоторые элементы V и VI группы таблицы Менделеева также являются полупроводниками. Примеры полупроводников этого типа - фосфор (Р), сера (S), селен (Se) и теллур (Те). В этих полупроводниках атомы могут иметь трехкратную (Р), двухкратную (S, Se, Те) или четырехкратную координацию. В результате подобные элементы могут существовать в нескольких различных кристаллических структурах, а также быть получены в виде стекла. Например, Se выращивался в моноклинной и тригональной кристаллических структурах или в виде стекла (которое можно также считать полимером).

Алмаз обладает отличной термической проводимостью, превосходными механическими и оптическими характеристиками, высокой механической прочностью. Ширина энергетического разрыва - dE = 5,47 эВ.

Кремний - полупроводник, используемый в солнечных батареях, а в аморфной форме - в тонкоплёночных солнечных батареях. Является наиболее используемым полупроводником в фотоэлементах, прост в производстве, обладает хорошими электрическими и механическими качествами. dE = 1,12 эВ.

Германий - полупроводник, используемый в гамма-спектроскопии, высокоэффективных фотоэлементах. Использовался в первых диодах и транзисторах. Требует меньше очистки, чем кремний. dE = 0,67 эВ.

Селен - полупроводник, который применяется в селеновых выпрямителях, обладающих высокой радиационной устойчивостью и способностью к самовосстановлению.

Двухэлементные соединения

Свойства полупроводников, образуемых элементами 3 и 4 групп таблицы Менделеева, напоминают 4 группы. Переход от 4 группы элементов к соединениям 3-4 гр. делает связи частично ионными по причине переноса заряда электронов от атома 3 группы к атому 4 группы. Ионность меняет свойства полупроводников. Она является причиной увеличения кулоновского межионного взаимодействия и энергии энергетического разрыва зонной структуры электронов. Пример бинарного соединения этого типа - антимонид индия InSb, арсенид галлия GaAs, антимонид галлия GaSb, фосфид индия InP, антимонид алюминия AlSb, фосфид галлия GaP.

Ионность возрастает, а значение её еще больше растёт в соединениях веществ 2—6 групп, таких как селенид кадмия, сульфид цинка, сульфид кадмия, теллурид кадмия, селенид цинка. В итоге у большинства соединений 2—6 групп запрещённая зона шире 1 эВ, кроме соединений ртути. Теллурид ртути - полупроводник без энергетического зазора, полуметалл, подобно α-олову.

Полупроводники 2-6 групп с большим энергетическим зазором находят применение в производстве лазеров и дисплеев. Бинарные соединения 2- 6 групп со суженным энергетическим разрывом подходят для инфракрасных приемников. Бинарные соединения элементов 1-7 групп (бромид меди CuBr, иодид серебра AgI, хлорид меди CuCl) по причине высокой ионности обладают запрещённой зоной шире З эВ. Они фактически не полупроводники, а изоляторы. Рост энергии сцепления кристалла по причине кулоновского межионного взаимодействия способствует структурированию атомов с шестикратной, а не квадратичной координацией. Соединения 4-6 групп - сульфид и теллурид свинца, сульфид олова - также полупроводники. Степень ионности данных веществ тоже содействует образованию шестикратной координации. Значительная ионность не препятствует наличию у них очень узких запрещённых зон, что позволяет использовать их для приёма ИК-излучения. Нитрид галлия - соединение 3-5 групп с широким энергетическим зазором, нашёл применение в и светодиодах, работающих в голубой части спектра.

GaAs, арсенид галлия - второй по востребованности после кремния полупроводник, обычно используемый в качестве подложки для других проводников, например, GaInNAs и InGaAs, в ИК-сетодиодах, высокочастотных микросхемах и транзисторах, высокоэффективных фотоэлементах, лазерных диодах, детекторах ядерного излечения. dE = 1,43 эВ, что позволяет повысить мощность приборов по сравнению с кремнием. Хрупок, содержит больше примесей, сложен в изготовлении.

ZnS, сульфид цинка - цинковая соль сероводородной кислоты с диапазоном запрещённой зоны 3,54 и 3,91 эВ, используется в лазерах и в качестве люминофора.

SnS, сульфид олова - полупроводник, используемый в фоторезисторах и фотодиодах, dE= 1,3 и 10 эВ.

Оксиды

Оксиды металлов преимущественно являются прекрасными изоляторами, но есть и исключения. Примеры полупроводников этого типа - оксид никеля, оксид меди, оксид кобальта, двуокись меди, оксид железа, оксид европия, оксид цинка. Так как двуокись меди существует в виде минерала куприта, её свойства усиленно исследовались. Процедура выращивания полупроводников этого типа еще не совсем понятна, поэтому их применение пока ограничено. Исключение составляет оксид цинка (ZnO), соединение 2—6 групп, применяемый в качестве преобразователя и в производстве клеящих лент и пластырей.

Положение кардинально изменилось после того, как во многих соединениях меди с кислородом была открыта сверхпроводимость. Первым высокотемпературным сверхпроводником, открытым Мюллером и Беднорцем, стало соединение, основанное на полупроводнике La 2 CuO 4 с энергетическим зазором 2 эВ. Замещая трёхвалентный лантан двухвалентным барием или стронцием, в полупроводник вводятся переносчики заряда дырки. Достижение необходимой концентрации дырок превращает La 2 CuO 4 в сверхпроводник. В данное время наибольшая температура перехода в сверхпроводящее состояние принадлежит соединению HgBaCa 2 Cu 3 O 8 . При высоком давлении её значение составляет 134 К.

ZnO, оксид цинка, используется в варисторах, голубых светодиодах, датчиках газа, биологических сенсорах, покрытиях окон для отражения инфракрасного света, как проводник в ЖК-дисплеях и солнечных батареях. dE=3.37 эВ.

Слоистые кристаллы

Двойные соединения, подобные дииодиду свинца, селениду галлия и дисульфиду молибдена, отличаются слоистым строением кристалла. В слоях действуют значительной силы, намного сильнее ван-дер-ваальсовских связей между самими слоями. Полупроводники такого типа интересны тем, что электроны ведут себя в слоях квази-двумерно. Взаимодействие слоёв изменяется введением сторонних атомов - интеркаляцией.

MoS 2, дисульфид молибдена применяется в высокочастотных детекторах, выпрямителях, мемристорах, транзисторах. dE=1,23 и 1,8 эВ.

Органические полупроводники

Примеры полупроводников на основе органических соединений - нафталин, полиацетилен (CH 2) n , антрацен, полидиацетилен, фталоцианиды, поливинилкарбазол. Органические полупроводники обладают преимуществом перед неорганическими: им легко придавать нужные качества. Вещества с сопряжёнными связями вида -С=С-С=, обладают значительной оптической нелинейностью и, благодаря этому, применяются в оптоэлектронике. Кроме того, зоны энергетического разрыва органических полупроводников изменяются изменением формулы соединения, что намного легче, чем у обычных полупроводников. Кристаллические аллотропы углерода фуллерен, графен, нанотрубки - тоже полупроводниками.

Фуллерен имеет структуру в виде выпуклого замкнутого многогранника из чётного количества атомов углеорода. А легирование фуллерена С 60 щелочным металлом превращает его в сверхпроводник.

Графен образован одноатомным слоем углерода, соединённого в двумерную гексагональную решётку. Обладает рекордной теплопроводностью и подвижностью электронов, высокой жёсткостью

Нанотрубки представляют собой свернутые в трубку пластины графита, имеющие несколько нанометров в диаметре. Эти формы углерода имеют большую перспективу в наноэлектронике. В зависимости от сцепления могут проявлять металлические или полупроводниковые качества.

Магнитные полупроводники

Соединения с магнитными ионами европия и марганца обладают любопытными магнитными и полупроводниковыми свойствами. Примеры полупроводников этого типа - сульфид европия, селенид европия и твёрдые растворы, подобные Cd 1-x- Mn x Te. Содержание магнитных ионов влияет на то, как в веществах проявляются такие магнитные свойства, как антиферромагнетизм и ферромагнетизм. Полумагнитные полупроводники - это твёрдые магнитные растворы полупроводников, которые содержат магнитные ионы в небольшой концентрации. Такие твёрдые растворы обращают на себя внимание своей перспективностью и большим потенциалом возможных применений. Например, в отличие от немагнитных полупроводников, в них можно достигнуть в миллион раз большего фарадеевского вращения.

Сильные магнитооптические эффекты магнитных полупроводников позволяют использовать их для оптической модуляции. Перовскиты, подобные Mn 0,7 Ca 0,3 O 3, своими свойствами превосходят переход металл-полупроводник, прямая зависимость которого от магнитного поля имеет следствием явление гигантской магнето-резистивности. Применяются в радиотехнических, оптических приборах, которые управляются магнитным полем, в волноводах СВЧ-устройств.

Полупроводниковые сегнетоэлектрики

Этот тип кристаллов отличается наличием в них электрических моментов и возникновением спонтанной поляризации. Например, такими свойствами обладают полупроводники титанат свинца PbTiO 3 , титанат бария BaTiO 3 , теллурид германия GeTe, теллурид олова SnTe, которые при низких температурах имеют свойства сегнетоэлектрика. Эти материалы применяются в нелинейно-оптических, запоминающих устройствах и пьезодатчиках.

Разнообразие полупроводниковых материалов

Помимо упомянутых выше полупроводниковых веществ, есть много других, которые не попадают ни под один из перечисленных типов. Соединения элементов по формуле 1-3-5 2 (AgGaS 2) и 2-4-5 2 (ZnSiP 2) образуют кристаллы в структуре халькопирита. Связи соединений тетраэдрические, аналогично полупроводникам 3-5 и 2-6 групп с кристаллической структурой цинковой обманки. Соединения, которые образуют элементы полупроводников 5 и 6 групп (подобно As 2 Se 3), - полупроводниковые в форме кристалла или стекла. Халькогениды висмута и сурьмы используются в полупроводниковых термоэлектрических генераторах. Свойства полупроводников этого типа чрезвычайно интересны, но они не обрели популярность по причине ограниченного применения. Однако то, что они существуют, подтверждает наличие ещё до конца не исследованных областей физики полупроводников.


Можно считать что полупроводник открыли в 1833 году, когда исследуя температурную зависимость удельной электропроводности - плохого проводника сульфида серебра, Фарадей заметил, что в отличие от хороших металлических проводников, у сульфида серебра при нагревании проводимость не снижалась, а, даже наоборот, увеличивалась. Чуть позже эта особенность была выявлена и у других полупроводников.

Еще два открытия касавшихся проводимости полупроводников были сделаныв 1873 и 1874 годах. В 1873 году Уиллоуби Смит обнаружил увеличение проводимости селена при его освещении внешним источником света, т.е. открыл внутренний фотоэффект, а в 1874 году другой исследователь Ф. Браун, работая с такими материалами, как сернистый свинец (PbS) и пирит (FeS), заметил выпрямление переменного тока при контакте этих веществ с металлом. В начале прошлого века появилось довольно много работ, посвящённых изучению свойств полупроводников. В основном это были сульфиды и оксиды металлов, а также кремний. Именно в это время и сформировался термин полупроводники.

Материал полупроводник, по своей удельной проводимости занимает промежуток между проводниками и диэлектриками и отличается от первых сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения.

Полупроводники это достаточно большая группа веществ, применяемых в радиоэлектроники: германий, кремний, селен, но для изготовления диодов и транзисторов применяют в основном кремний и германий.

По своим электротехническим свойствам они занимают среднее место между проводниками и непроводниками электрического тока.

У полупроводников, ширина запрещённой зоны составляет около нескольких электрон-вольт (эВ). Например,такой материал как алмаз можно отнести к широкозонным полупроводникам, а арсенид индия - к узкозонным. К числу полупроводников относятся также многие химические элементы (кремний, германий, селен, мышьяк теллур, и другие), огромное количество сплавов и химических соединений (например арсенид галлия). Почти все неорганические вещества окружающие нас это полупроводники. Самым распространенным полупроводником на нашей планете является кремний, составляющий около 30 % земной коры. В зависимости от того, захватывает ли примесной атом свободный электрон или наоборот отдает его, такие атомы называют акцепторными или донорными.

В первую очередь, надо отметить, что электропроводность при протекании тока полупроводников зависит от температуры. Например, при очень низкой температуре, -273°С, они не проводят его совсем, а с ростом температуры, их сопротивление электрическому току уменьшается.

Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры.

Если на полупроводник навести источник света, то ток в полупроводниках начинает увеличиваться. Используя это свойство увидели этот мир множество фотоэлектрических приборов. Кроме того они способны преобразовывать световой поток воздействующий на полупроводник в электрический ток, например, принцип работы солнечных батарей строится как раз на этом эффекте, а это уже сегодня позволило снизить сжигание нефти и газа, а через некоторое время бензиновые двигатели авто уже будут историей. А при введении в полупроводник примесей различных веществ, их электропроводность резко возрастает.

Характер примеси в полупроводнике может существенно изменяться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается. Проводимость полупроводников сильно зависит от температуры. Около температуры абсолютного нуля полупроводники обладают характеристиками диэлектриков. Для понимания механизма возникновения проводимости в полупроводниках, нужно знать внутреннее строение полупроводниковых кристаллов и связей, удерживающих атомы возле друг друга. Напомним, что фактически у каждого электрона имеется своя собственная орбита и правильнее говорить в этом вопросе, не об одной внешней орбите, а о целом внешнем электронном слое, в котором бывает до восьми орбит.

Принцип строения атомов

Как я уже сказал выше германий и кремний это основные материалы используемые в полупроводниках, так как они имеют во внешних слоях своих оболочек по четыре валентных электрона.

Атом германия имеет в своем составе 32 электрона, а кремния 14. Но только 28 электронов атома германия и 10 кремния, находятся во внутренних слоях своих оболочек и прочно там удерживаются. А эти четыре валентных электрона могут стать свободными, да и то лишь временно. А если атом потеряет хотя бы один из них, то он сразу же превращается в положительный ион.

Внутри пластинки атомы располагаются в строгом порядке: каждый из них окружен 4 подобными атомами. Причем они размещены так близко друг к другу, что их валентные электроны имеют единые орбиты, движущиеся вокруг соседних атомов, тем самым переплетая атомы в единое целое вещество.

Представим взаимосвязь атомов в полупроводнике в виде простой плоской схемы. На схеме шарики с плюсом, условно, показывают ядра атомов - положительные ионы, а маленькие шарики это валентные электроны.

На картинки четко видно, что вокруг каждого атома имеются четыре других атома, а каждый из них имеет связь еще с четырьмя атомами и так далее. Любой из атомов скреплен с соседом двумя валентными электронами, причем один электрон свой собственный, а другой одолжен у соседнего атома. Такая связь из курса химии называется двухэлектронной или ковалентной.

Внешний слой оболочки каждого атома имеет восемь электронов: четыре собственных, и по одному, одолженному у четырех соседей. Здесь уже не возможно понять, какой из этих электронов в атоме свой, а какой чужой. При такой связи во всем объеме кристалла германия или кремния можно условно считать, что кристалл представляет из себя одну огромную молекулу.

Возьмем рисунок кристалла, где атомы обозначаются шариком с плюсом, а межатомные связи изображены двумя линиями.

При температуре абсолютного нулю наш кристалл не будет пропускать ток, так как в нем отсутствуют свободные электроны. Но с ростом температуры связь валентных электронов с ядрами становится слабее и отдельные электроны, вследствие постоянного движения, могут уходить от своих атомов. Становясь свободным, а там где электрон находился, появляется пустое место, которое придумали назвать дыркой.

С ростом температуры, растет количество свободных электронов и дырок. Давайте перейдем к следующей схеме, где схематично изображено явление появления электрического тока в кристалле полупроводника.

Если приложить напряжение к контактам кристалла «+» и «-», то в полупроводнике потечет электрический ток. Вследствие тепловых явлений, из межатомных связей получают свободу электроны, которые, притягиваясь плюсом источника питания, будут двигаться к нему, оставляя дырки, которые заполняются другими свободными электронами. То есть, под действием электрического поля носители заряда получают скорость направленного движения и тем самым генерируют ток.

Пока действует электрическое поле, процесс постоянен: нарушаются межатомные связи, появляются свободные электроны – генерируются дырки. Дырки принимают в себя электроны – восстанавливая одни межатомные связи, но нарушая другие, из которых убегают электроны заполняя следующие дырки

Отсюда, условно можно сказать, что электроны идут от минуса источника питания к плюсу, а дырки двигаются от плюса к минусу.

Рассмотрим вопрос, что такое проводимость полупроводника?

Чуть выше по полочкам мы разобрали механизм проводимости идеальных полупроводников. Проводимость при этих идеальных факторах называют собственной проводимостью полупроводников. Она в некоторых моментах сходна с проводимостью расплавов электролитов или водных растворов. В них также число свободных носителей заряда заметно растет с увеличением интенсивности теплового движения. Поэтому и у полупроводников, и у расплавов электролитов или водных растворов, хорошо заметно увеличение проводимости с увеличением температуры. Особенность полупроводников состоит в том, что в них при наличии примесей наряду с собственной проводимостью появляется дополнительная, так называемая - примесная проводимость. Меняя концентрацию такой примеси, можно существенно регулировать число свободных носителей заряда любого знака. Благодаря этому можно получить полупроводники с преимущественной концентрацией либо отрицательно, либо положительно заряженных носителями.

Итак, в чистом кристалле полупроводника число свободных в определенный момент электронов равно числу дырок, поэтому электропроводность такого кристалла мала, так как он оказывает току достаточно большое сопротивление, и ее называют собственной. Но если в кристалл ввести немного примеси, точнее минимальное количество атомов других элементов, то электропроводность его увеличится в разы, и в зависимости от структуры добавленных атомов примесей элементов электропроводность будет называться электронной или дырочной.

Полупроводник с электронной проводимостью

Предположим, в кристалле атомы имеют 4-ре валентных электрона, мы поменяем один атом другим, у которого пять валентных частиц. Этот атом с четырьмя эл. соединится с 4 соседними атомами, а пятый останется «не удел» – то есть окажется полностью свободным. И чем выше их количество в кристалле, тем большее число свободных электронов, а значит, такой кристалл по своим свойствам, станет похож на металлический проводник, и чтобы через него потек ток, в нем не нужно рвать межатомные связи.

Кристаллы, обладающие такими свойствами, называют полупроводниками с проводимостью типа «n», или n-типа. Здесь латинская буква n получила название от слова «negative» . Отсюда понятно, что в полупроводнике n-типа основные носители заряда – электроны, а не основные – дырки.

Полупроводник с дырочной проводимостью

В другом случае в том же кристалле, поменяем атом на другой с тремя свободными электрона, которыми он свяжется только с тремя соседними атомами, а для сцепки с четвертым атомом у него появится дефицит одного электрона. В итоге получается "бублик" или дырка. Понятно, что она примет в себя любой другой свободный электрон, схваченный рядом, И чем больше будет добавлено в кристалл таких атомов, тем выше будет число дырок.

Чтобы в таком случае могли высвобождаться и перемещаться свободные электроны, обязательно надо прорывать валентные связи между атомами. Но электронов все равно не хватит, так как количество дырок всегда будет превышать количество электронов в любой момент.

Такие кристаллы называют полупроводниками с дырочной проводимостью или p-типа, что с латинского значит «positive». То есть, электрический тока в кристалле p-типа обусловлен непрерывным появлением и исчезновением положительных зарядов или дырок. А это говорит о том, что в кристалле p-типа основными носителями заряда будут дырки, а не основными – электроны.

Давайтк рассмотрим полупроводник, правая часть которого содержит донорные примеси и поэтому является кристаллом n-типа, а левая акцепторные и представляет собой типовой полупроводник р-типа. Место соединения двух полупроводников называют р-n переходом. Подключим такой полупроводник к источнику питания и посмотрим его работу при разных подключениях. Сначала соединим так, чтобы потенциал полупроводника р-типа был соединен с плюсом, а n типа с минусом. При этом ток через полупроводник, а точнее его р-n переход будет генерироваться основными носителями: из области n в область р электронами, а из области р в n дырками.

Проводимость в целом будет достаточно большой, а сопротивление - малым. Показанный на рисунке переход называют прямым. Если переключить полюса источника питания, то проводимость образца оказывается малой, а сопротивление большим. Так как образуется запирающий слой. Подробней работа устройства с одним p-n переходом описана в разделе работа диода, нашего сайта.

Если полупроводник помещается в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного I n и дырочного I p токов: I = I n + I p .

Электронно-дырочный механизм проводимости проявляется только у чистых (т.е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов. Рассмотрим качественно этот механизм на примере германия (Ge). В кристалле кремния (Si) механизм аналогичен.

Атомы германия на внешней оболочке имеют четыре слабо связанных электрона. Их называют валентными электронами. В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной, т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам (рис. 1.13.2). Валентные электроны в кристалле германия связаны с атомами гораздо сильнее, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.

При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название дырок. Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместится на новое место в кристалле. При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар. В то же время идет обратный процесс – при встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией. Электронно-дырочные пары могут рождаться также при освещении полупроводника за счет энергии электромагнитного излучения. В отсутствие электрического поля электроны проводимости и дырки участвуют в хаотическом тепловом движении.

При наличии примесей электрическая проводимость полупроводников сильно изменяется. Например, добавка в кристалл кремния примесей фосфора в количестве 0,001 атомного процента уменьшает удельное сопротивление более чем на пять порядков. Такое сильное влияние примесей может быть объяснено на основе изложенных выше представлений о строении полупроводников.


Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.

Проводимость полупроводников при наличии примесей называется примесной проводимостью. Различают два типа примесной проводимости – электронную и дырочную.

Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As).

На рис. 1.13.3 показан пятивалентный атом мышьяка, оказавшийся в узле кристаллической решетки германия. Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался излишним; он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки. Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорной примесью. В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз. Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника.

В кристалле германия с примесью мышьяка есть электроны и дырки, ответственные за собственную проводимость кристалла. Но основным типом носителей свободного заряда являются электроны, оторвавшиеся от атомов мышьяка. В таком кристалле n n >> n p . Такая проводимость называется электронной, а полупроводник, обладающий электронной проводимостью, называется полупроводником n-типа.

Дырочная проводимость возникает, когда в кристалл германия введены трехвалентные атомы (например, атомы индия, In). На рис. 1.13.4 показан атом индия, который с помощью своих валентных электронов создал ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия. Примесь атомов, способных захватывать электроны, называется акцепторной примесью. В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.

Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: n p >> n n . Проводимость такого типа называется дырочной проводимостью. Примесный полупроводник с дырочной проводимостью называется полупроводником p-типа. Основными носителями свободного заряда в полупроводниках p-типа являются дырки.

Следует подчеркнуть, что дырочная проводимость в действительности обусловлена эстафетным перемещением по вакансиям от одного атома германия к другому электронов, которые осуществляют ковалентную связь.

Для полупроводников n- и p-типов закон Ома выполняется в определенных интервалах сил тока и напряжений при условии постоянства концентраций свободных носителей.

4 Электрические свойства "p-n" перехода "p-n" переход (или электронно-дырочный переход) - область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот). В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой. Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника. Внешнее электрическое поле влияет на сопротивление запирающего слоя. При прямом (пропускном) направлении внешнего эл.поля эл.ток проходит через границу двух полупроводников. Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны, переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются. При запирающем (обратном) направлении внешнего электрического поля электрический ток через область контакта двух полупроводников проходить не будет. Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой утолщается, его сопротивление увеличивается. Таким образом, электронно-дырочный переход обладает односторонней проводимостью. 5 Полупроводниковые приборы. Яркая зависимость электропроводимости полупроводников от температуры используется в приборах называемых термосопротивлениями или термисторами. Они используются для измерения температуры в различных машинах и агрегатах, для измерения температуры почвы на различной глубине, всюду, где необходимо поддерживать постоянную температуру. Чувствительные термисторы можно вводить непосредственно в кровеносный сосуд. Полупроводник с одним "p-n" переходом называется полупроводниковым диодом. При наложении эл.поля в одном направлении сопротивление полупроводника велико,в обратном - сопротивление мало.
Полупроводниковые диоды - основные элементы выпрямителей переменного тока В полупроводниковых транзисторах также используются свойства "р-n "переходов. - транзисторы используются в схемотехнике радиоэлектронных приборов. 6 Вопросы на закрепление изученной темы. - Какие вещества называются полупроводниками? Приведите примеры полупроводников. - Какова зависимость сопротивления полупроводника от температуры? - Как зонная теория объясняет различие в проводимости проводников, полупроводников и диэлектриков? - Объясните механизм собственной и примесной проводимости полупроводников. - Что такое термистор? фоторезистор? - Что такое р-n-переход? Каково его основное свойство? - Как устроен и где применяется полупроводниковый диод? .

Займемся тем, что приготовим полупроводник. Один раз вам это уже удалось - когда вы превратили алюминиевую ложку в выпрямитель тока . Теперь опыт не менее интересный, и с теоретическими пояснениями. Ставить его лучше в химическом кружке или в школьной лаборатории, И не потому, что опыт опасный: просто дома у вас скорее всего нет требуемых веществ.

Сначала - предварительный опыт. Приготовьте раствор нитрата или ацетата свинца и пропустите через негo сероводород (работайте под тягой!). Выпавший осадок сульфида свинца PbS высушите и проверьте, как он проводит электричество. Оказывается, это самый обычный изолятор. Так причем же здесь полупроводники?

Не будем спешить с выводами, а поставим следующий, основной опыт. Для него придется приготовить равные количества, скажем, по 15 мл, 3%-ного раствора тиокарбамида NH 2 C(S)NH 2 и 6%-ного раствора ацетата свинца. Вылейте оба раствора в небольшой стакан. С помощью пинцета внесите в раствор стеклянную пластинку и держите ее вертикально (либо закрепите в таком положении). Надев резиновые перчатки, налейте в стакан почти доверху концентрированный раствор щелочи (осторожно!) и очень аккуратно размешайте стеклянной палочкой, стараясь не задевать ею пластинку. Слегка подогрейте раствор - так, чтобы появился пар; помешивание продолжайте. Минут через десять стеклянную пластинку аккуратно выньте, вымойте под струей воды и высушите.

И в этом случае вы получили сульфид свинца - так в чем же разница?

Во втором опыте реакция идет медленно, и осадок выпадает не сразу. Если вы наблюдали за раствором, то заметили, что сначала он помутнел и стал почти как молоко, и лишь потом потемнел,- это промежуточные соединения, разлагаясь, образовали черный сульфид свинца. И он оседает на стекле в виде тонкой черной пленки, которая состоит из очень маленьких, различимых только под микроскопом кристаллов. Поэтому пленка кажется очень гладкой, почти зеркальной.

Присоедините к пленке два электрических контакта и пропустите ток. Если сульфид свинца из предыдущего опыта вел себя как диэлектрик, то теперь он проводит ток! Включите в цепь амперметр, измерьте ток и подсчитайте сопротивление: оно окажется выше, чем у металлов, но не столь уж большим, чтобы служить препятствием для прохождения тока.

Поднесите к пластинке зажженную лампу совсем близко и снова включите ток. Вы сразу обнаружите, что сопротивление сульфида свинца резко упало. Примерно так же будет вести себя черная пленка, если ее просто нагреть. Но если при освещении и нагревании проводимость увеличивается, значит, мы имеем дело с полупроводником!

Отчего же у сульфида свинца такое свойство? Мы записали его формулу как PbS , однако истинный состав кристаллов этого вещества не вполне ей соответствует. Некоторые соединения, среди которых и сульфид свинца, не подчиняются закону постоянства состава. И все они - полупроводники. (Это же, между прочим, относится и к оксиду алюминия, выпрямлявшему переменный ток.)

В кристалле PbS порядок расположения частиц должен, казалось бы, строго повторяться. Но нередко благодаря тому, что концентрации растворов, из которых кристаллы получены, колеблются, порядок нарушается. Сказывается влияние температуры, других внешних причин. Как бы то ни было, в реальном кристалле соотношение атомов серы и свинца не точно 1:1. Отклонения от этого отношения очень невелики, всего около 0,0005. Но и этого достаточно, чтобы свойства существенно изменились.

Атомы свинца и серы связаны в кристалле двумя электронами: свинец отдает их сере. Ну а когда соотношение 1:1 нарушается? Если рядом с атомом свинца нет атома серы, электроны окажутся свободными - они-то и будут служить носителями тока. А таких случаев совсем не так мало, как может показаться. Конечно, отношение 1,0005:1 почти равно единице, но если вспомнить, как много атомов в кристалле, то эта незначительная разница уже не покажется вам такой пустячной.

Состав сульфида свинца можно регулировать. Нужно это затем, чтобы изменять его проводимость. Когда атомов серы в кристалле становится больше, то проводимость падает, а когда их меньше, то образуется больше свободных электронов, и проводимость растет. Словом, меняя соотношение атомов серы и свинца, можно получить требуемую проводимость. Опыт этот поставить непросто; если вы не рискнете проводить эксперимент, поверьте на слово, что он получается.

Возьмите кварцевую трубку и поместите в нее лодочку с сульфидом свинца. С другой стороны введите в трубку такую же лодочку со свинцом и очень сильно нагрейте трубку, чтобы свинец начал испаряться. Сульфид в этом случае будет поглощать пары, он обогатится свинцом, н его электропроводность значительно повысится.

Осталось лишь ответить на вопрос, отчего сульфид свинца так чувствителен к освещению. Световые кванты сообщают энергию электронам, причем в каждом конкретном случае наиболее эффективны лучи с определенной длиной волны. Для сульфида свинца - это инфракрасное тепловое излучение. Поэтому-то мы и советовали вам поднести лампу поближе к пленке.

Между прочим, в приемниках инфракрасного излучения и используют обычно прекрасный полупроводник - сульфид свинца.

О. Ольгин. "Опыты без взрывов"
М., "Химия", 1986