В процессе преобразований рациональных выражений используют. Определение и примеры рациональных дробей

>>Математика:Преобразование рациональных выражений

Преобразование рациональных выражений

Этот параграф подводит итог всему тому, что мы, начиная с 7-го класса, говорили о математическом языке, о математической символике, о числах, переменных, степенях, многочленах и алгебраических дробях . Но сначала совершим небольшой экскурс в прошлое.

Вспомните, как в младших классах обстояло дело с изучением чисел и числовых выражений.

А, скажем, к дроби можно приклеить только один ярлык - рациональное число.

Аналогично обстоит дело с алгебраическими выражениями: первый этап их изучения - числа, переменные, степени («цифры»); второй этап их изучения - одночлены («натуральные числа»); третий этап их изучения - многочлены («целые числа»); четвертый этап их изучения - алгебраические дроби
(«рациональные числа»). При этом каждый следующий этап как бы вбирает в себя предыдущий: так, числа, переменные, степени - частные случаи одночленов; одночлены - частные случаи многочленов; многочлены - частные случаи алгебраических дробей. Между прочим, в алгебре используют иногда и такие термины: многочлен - целое выражение , алгебраическая дробь - дробное выражение (это лишь усиливает аналогию).

Продолжим упомянутую аналогию. Вы знаете, что любое числовое выражение после выполнения всех входящих в его состав арифметических действий принимает конкретное числовое значение - рациональное число (разумеется, оно может оказаться и натуральным числом, и целым числом, и дробью - это неважно). Точно так же любое алгебраическое выражение, составленное из чисел и переменных с помощью арифметических операций и возведения в натуральную степень , после выполнения преобразований принимает вид алгебраической дроби и опять-таки, в частности, может получиться не дробь, а многочлен или даже одночлен). Для таких выражений в алгебре используют термин рациональное выражение.

Пример. Доказать тождество

Решение.
Доказать тождество - это значит установить, что при всех допустимых значениях переменных его левая и правая части представляют собой тождественно равные выражения. В алгебре тождества доказывают различными способами:

1) выполняют преобразования левой части и получают в итоге правую часть;

2) выполняют преобразования правой части и получают в итоге левую часть;

3) по отдельности преобразуют правую и левую части и получают и в первом и во втором случае одно и то же выражение;

4) составляют разность левой и правой частей и в результате ее преобразований получают нуль.

Какой способ выбрать - зависит от конкретного вида тождества , которое вам предлагается доказать. В данном примере целесообразно выбрать первый способ.

Для преобразования рациональных выражений принят тот же порядок действий, что и для преобразования числовых выражений. Это значит, что сначала выполняют действия в скобках, затем действия второй ступени (умножение, деление, возведение в степень), затем действия первой ступени (сложение, вычитание).

Выполним преобразования по действиям, опираясь на те правила, алгоритмы , что были выработаны в предыдущих параграфах.

Как видите, нам удалось преобразовать левую часть проверяемого тождества к виду правой части. Это значит, что тождество доказано. Однако напомним, что тождество справедливо лишь для допустимых значений переменных. Таковыми в данном примере являются любые значения а и b, кроме тех, которые обращают знаменатели дробей в нуль. Значит, допустимыми являются любые пары чисел (а; b), кроме тех, при которых выполняется хотя бы одно из равенств:

2а - b = 0, 2а + b = 0, b = 0.

Мордкович А. Г., Алгебра . 8 кл.: Учеб. для общеобразоват. учреждений.- 3-е изд., доработ. - М.: Мнемозина, 2001. - 223 с: ил.

Полный перечень тем по классам, календарный план согласно школьной программе по математике онлайн , видеоматериал по математике для 8 класса скачать

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Торезский учебно-воспитательный комплекс

«Общеобразовательная школа І-ІІ ступеней № 1 – лицей «Спектр»

Тема. Тождественные преобразования рациональных выражений

Разработка урока в 8 классе

Кирилюк Наталья Анатольевна,

учитель математики высшей категории,

старший учитель

Торез – 2014

Цели:

Продолжить формирование у учащихся умений и навыков преобразования рациональных выражений; закрепить умение применять формулы сокращенного умножения, складывать, вычитать, умножать и делить рациональные выражения;

Способствовать развитию логического мышления;

Содействовать развитию у детей умений ставить цель и планировать свою деятельность; осуществлять самооценку и самокоррекцию учебной деятельности; умение работать во времени;

Способствовать воспитанию внимательности, активности, культуры общения.

Тип урока : учебно-развивающий урок с элементами деловой активности.

Оборудование : карточки для игры «Поле чудес», «акции предприятий», таблица рейтингового оценивания учащихся на уроке, материал с дифференцированными заданиями для игры «Биржа знаний»

Формы и метолы работы

I Мотивация учебной деятельности. Самопостановка целей и задач на урок.

II Актуализация опорных знаний:

1) Фронтальный опрос;

2) Устные упражнения;

3) Математическое домино.

1) Игра «Поле чудес» (работа в парах);

2) Логическое задание.

V Занимательная задача.

VI Домашнее задание.

I Мотивация учебного процесса. Сообщение темы. Самопостановка целей и задач на урок.

Многое было известно давно, но очень-очень многое не было. Как в капле воды можно увидеть все неисчислимые богатства океана, так и в школьном учебнике присутствует тысячелетний опыт. Прошлое ждет, что ты постигнешь те знания, которые были добыты с большим трудом, а будущее надеется, что ты внесешь что-то новое и передашь своим детям и внукам.

«Теория без практики мертва или бесплодна, а практика без теории невозможна или пагубна».

Для теории нужны знания, для практики нужны умения.

Алексей Николаевич Крылов

Сегодня на уроке мы приобретем умения для того, чтобы складывать, вычитать, умножать и делить рациональные выражения, применяя теорию: способы разложения многочленов на множители.

Исходя из поставленной темы и целей на урок, сформулируйте и свои задачи на урок.

Ожидаемый результат:

1.совершенствовать умения выполнять сложение, вычитание, умножение и деление рациональных дробей;

2. проводить тождественные преобразования рациональных выражений.

Учитель: Перед каждым лежит таблица рейтингового оценивания. В эту таблицу вы будете заносить баллы, заработанные на уроке.

II Актуализация опорных знаний .

1. Фронтальный опрос (взаимопроверка «Учитель-ученик», по 1б.)

    Какое выражение называется рациональным?

    Как сложить две рациональные дроби с разными знаменателями?

    Какие способы разложения многочлена на множители вы знаете?

    Как найти произведение рациональных выражений?

    Каков порядок действий при выполнении тождественных преобразований?

2. Устные упражнения (самооценка, по 1б.)

3. Математическое домино (взаимопроверка, по 1б.)

Разложить на множители (выбрать правильный ответ)

III Активизация мыслительной деятельности:

1) Игра «Поле чудес» (работа в парах, по 2 б);

Учиться надо весело, чтобы поглощать знания,

нужно переваривать их с аппетитом.

Анатоль Франс

1)
15)

2)
16)

3)
17)

4)
18)

5)
19)

6)
20)

7)
21)

8)
22)

9)
23)

10)
24)

11)
25)

12)
26)

13)
27)

14)
28)

А

В

Д

Е

И

Л

М

Н

Х-У

b-4

a+b

5xy

С

Т

У

Ч

Ш

Ы

Я

9ab

Х-6

5

Учитель: В результате мы имеем выражение: «Мышление начинается с удивления». Так сказал 2500 лет тому назад Аристотель.

Наш соотечественник В. Сухомлинский считал, что «чувство удивления – могучий источник желания знать. От удивления к знаниям – один шаг» , а математика – замечательный источник для удивления.

2) Логическое задание (2б.)

Учитель: Я попробую вас сейчас удивить, доказав, что 2 числа равны между собой, используя алгебраические законы и выполняя тождественные преобразования

5=6

Доказательство

35+10-45=42+12-54

5(7+2-9)=6(7+2-9)

5=6

Права ли я? Какой закон нарушен? Найдите ошибку.

IV Экономическая игра “Биржа знаний» (работа в группах).

Сейчас мы будем принимать участие в работе «фондовой биржи».

Справочные сведения «биржа знаний».

    Биржа – коммерческое предприятие по производству посреднических услуг, где совершаются сделки купли – продажи.

    Фондовая биржа – биржа, на которой торгуют основными видами ценных бумаг, акциями.

    Трейдер – член биржи, который осуществляет операции за свой счет.

    Брокер – член биржи, получающий вознаграждение за выполнение поручений клиентов.

    Клерк – член биржи, владеющий торговой информацией, т.е. продающий акции.

    Арбитражный комитет – орган, который регулирует споры по поводу сделки, и отношения между участниками биржевой торговли.

    Инвестиции – вложение средств.

    Акция – вид ценной бумаги, т.е. бумажный дубликат капитала.

Представьте себе, что вы члены «фондовой биржи» - «трейдеры», задача которых сохранить первоначальный капитал, приумножить его, сделав правильный выбор в «инвестировании».

Выполнив верно задание, вы получите «доход» и приобретете акции соответствующего предприятия.

При выполнении заданий можно пользоваться услугами консультанта-посредника.

У нас 5 брокерских групп. Каждая фирма покупает задание, определив наиболее выгодную «инвестицию».(приложение 1)

Siesta”

2 таланта

«Живчик»

3 таланта

«Шоколад Украины»

4 таланта

№32(1)

Стр.13

№32(3)

Стр.13

№32(4)

Стр.13

№39(1)

Стр.14

№39(2)

Стр.14

№39(3)

Стр.14

Подводятся итоги, выделяется лучшая брокерская фирма. В качестве награды выдается лицензия, позволяющая оказывать брокерские услуги клиентам.

(приложение 2)

V Занимательная задача.

VI Домашнее задание . (повторить §8. выполнить тест)

VII Итоги урока (рейтинговое оценивание учащихся)

оценка

Кол-во баллов

9-10

11-12

13-14

15-16

17-18

19-20

21-22

23-24

Свыше 25

Учитель подбивает итоги урока, зачитывает результаты рейтингового оценивания

«Открытый микрофон»

1.Что было интересного на уроке?

2. Что было сложно?

Приложение 1. Акции предприятий

Приложение 2. Лицензия

На предыдущем уроке уже было введено понятие рационального выражения, на сегодняшнем уроке мы продолжаем работать с рациональными выражениями и основной упор делаем на их преобразования. На конкретных примерах мы рассмотрим методы решения задач на преобразования рациональных выражений и доказательство связанных с ними тождеств.

Тема: Алгебраические дроби. Арифметические операции над алгебраическими дробями

Урок: Преобразование рациональных выражений

Вспомним сначала определение рационального выражения.

Определение. Рациональное выражение - алгебраическое выражение, не содержащее корней и включающее только действия сложения, вычитания, умножения и деления (возведения в степень).

Под понятием «преобразовать рациональное выражение» мы имеем в виду, прежде всего, его упрощение. А это осуществляется в известном нам порядке действий: сначала действия в скобках, затем произведение чисел (возведение в степень), деление чисел, а затем действия сложения/вычитания.

Основной целью сегодняшнего урока будет приобретение опыта при решении более сложных задач на упрощение рациональных выражений.

Пример 1.

Решение. Сначала может показаться, что указанные дроби можно сократить, т. к. выражения в числителях дробей очень похожи на формулы полных квадратов соответствующих им знаменателей. В данном случае важно не спешить, а отдельно проверить, так ли это.

Проверим числитель первой дроби: . Теперь числитель второй: .

Как видно, наши ожидания не оправдались, и выражения в числителях не являются полными квадратами, т. к. у них отсутствует удвоение произведения. Такие выражения, если вспомнить курс 7 класса, называют неполными квадратами. Следует быть очень внимательными в таких случаях, т. к. перепутывание формулы полного квадрата с неполным - очень частая ошибка, а подобные примеры проверяют внимательность учащегося.

Поскольку сокращение невозможно, то выполним сложение дробей. У знаменателей нет общих множителей, поэтому они просто перемножаются для получения наименьшего общего знаменателя, а дополнительным множителем для каждой из дробей является знаменатель другой дроби.

Конечно же, далее можно раскрыть скобки и привести затем подобные слагаемые, однако, в данном случае можно обойтись меньшими затратами сил и заметить, что в числителе первое слагаемое является формулой суммы кубов, а второе - разности кубов. Для удобства вспомним эти формулы в общем виде:

В нашем же случае выражения в числителе сворачиваются следующим образом:

, второе выражение аналогично. Имеем:

Ответ. .

Пример 2. Упростить рациональное выражение .

Решение. Данный пример похож на предыдущий, но здесь сразу видно, что в числителях дробей находятся неполные квадраты, поэтому сокращение на начальном этапе решения невозможно. Аналогично предыдущему примеру складываем дроби:

Здесь мы аналогично способу, указанному выше, заметили и свернули выражения по формулам суммы и разности кубов.

Ответ. .

Пример 3. Упростить рациональное выражение .

Решение. Можно заметить, что знаменатель второй дроби раскладывается на множители по формуле суммы кубов. Как мы уже знаем, разложение знаменателей на множители является полезным для дальнейшего поиска наименьшего общего знаменателя дробей.

Укажем наименьший общий знаменатель дробей, он равен: , т. к. делится на знаменатель третьей дроби, а первое выражение вообще является целым, и для него подойдет любой знаменатель. Указав очевидные дополнительные множители, запишем:

Ответ.

Рассмотрим более сложный пример с «многоэтажными» дробями.

Пример 4. Доказать тождество при всех допустимых значениях переменной.

Доказательство. Для доказательства указанного тождества постараемся упростить его левую часть (сложную) до того простого вида, который от нас требуется. Для этого выполним все действия с дробями в числителе и знаменателе, а затем разделим дроби и упростим результат.

Доказано при всех допустимых значениях переменной.

Доказано.

На следующем уроке мы подробно рассмотрим более сложные примеры на преобразование рациональных выражений.

Список литературы

1. Башмаков М.И. Алгебра 8 класс. - М.: Просвещение, 2004.

2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. - 5-е изд. - М.: Просвещение, 2010.

3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. - М.: Просвещение, 2006.

2. Разработки уроков, презентации, конспекты занятий ().

Домашнее задание

1. №96-101. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. - 5-е изд. - М.: Просвещение, 2010.

2. Упростите выражение .

3. Упростите выражение .

4. Докажите тождество .

Урок и презентация на тему: "Преобразование рациональных выражений. Примеры решения задач"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Пособие к учебнику Муравина Г.К. Пособие к учебнику Макарычева Ю.Н.

Понятие о рациональном выражении

Понятие "рациональное выражение" схоже с понятием "рациональная дробь". Выражение также представляется в виде дроби. Только в числители у нас - не числа, а различного рода выражения. Чаще всего этого многочлены. Алгебраическая дробь - дробное выражение, состоящее из чисел и переменных.

При решении многих задач в младших классах после выполнения арифметических операций мы получали конкретные числовые значения, чаще всего дроби. Теперь после выполнения операций мы будем получать алгебраические дроби. Ребята, помните: чтобы получить правильный ответ, необходимо максимально упростить выражение, с которым вы работаете. Надо получить самую маленькую степень, какую возможно; одинаковые выражения в числители и знаменатели стоит сократить; с выражениями, которые можно свернуть, надо так и поступить. То есть после выполнения ряда действий мы должны получить максимально простую алгебраическую дробь.

Порядок действий с рациональными выражениями

Порядок действий при выполнении операций с рациональными выражениями такой же, как и при арифметических операциях. Сначала выполняются действия в скобках, потом – умножение и деление, возведение в степень и наконец – сложение и вычитание.

Доказать тождество – это значит показать, что при всех значениях переменных правая и левая части равны. Примеров с доказательством тождеств очень много.

К основным способам решения тождеств относятся.

  • Преобразование левой части до равенства с правой.
  • Преобразование правой части до равенства с левой.
  • Преобразование левой и правой части по отдельности, до тех пор пока не получится одинаковое выражение.
  • Из левой части вычитают правую, и в итоге должен получиться нуль.

Преобразование рациональных выражений. Примеры решения задач

Пример 1.
Докажите тождество:

$(\frac{a+5}{5a-1}+\frac{a+5}{a+1}):{\frac{a^2+5a}{1-5a}}+\frac{a^2+5}{a+1}=a-1$.

Решение.
Очевидно, нам надо преобразовать левую часть.
Сначала выполним действия в скобках:

1) $\frac{a+5}{5a-1}+\frac{a+5}{a+1}=\frac{(a+5)(a+1)+(a+5)(5a-1)}{(a+1)(5a-1)}=$
$=\frac{(a+5)(a+1+5a-1)}{(a+1)(5a-1)}=\frac{(a+5)(6a)}{(a+1)(5a-1)}$

.

Выносить общие множители надо стараться по максимуму.
2) Преобразуем выражение, на которое делим:

$\frac{a^2+5a}{1-5a}=\frac{a(a+5)}{(1-5a}=\frac{a(a+5)}{-(5a-1)}$

.
3) Выполним операцию деления:

$\frac{(a+5)(6a)}{(a+1)(5a-1)}:\frac{a(a+5)}{-(5a-1)}=\frac{(a+5)(6a)}{(a+1)(5a-1)}*\frac{-(5a-1)}{a(a+5)}=\frac{-6}{a+1}$.

4) Выполним операцию сложения:

$\frac{-6}{a+1}+\frac{a^2+5}{a+1}=\frac{a^2-1}{a+1}=\frac{(a-1)(a+1)}{a+})=a-1$.

Правая и левая части совпали. Значит, тождество доказано.
Ребята, при решении данного примера нам понадобилось знание многих формул и операций. Мы видим, что после преобразования большое выражение превратилось совсем в маленькое. При решении почти всех задач, обычно преобразования приводят к простым выражениям.

Пример 2.
Упростите выражение:

$(\frac{a^2}{a+b}-\frac{a^3}{a^2+2ab+b^2}):(\frac{a}{a+b}-\frac{a^2}{a^2-b^2})$.

Решение.
Начнем с первых скобок.

1. $\frac{a^2}{a+b}-\frac{a^3}{a^2+2ab+b^2}=\frac{a^2}{a+b}-\frac{a^3}{(a+b)^2}=\frac{a^2(a+b)-a^3}{(a+b)^2}=$
$=\frac{a^3+a^2 b-a^3}{(a+b)^2}=\frac{a^2b}{(a+b)^2}$.

2. Преобразуем вторые скобки.

$\frac{a}{a+b}-\frac{a^2}{a^2-b^2}=\frac{a}{a+b}-\frac{a^2}{(a-b)(a+b)}=\frac{a(a-b)-a^2}{(a-b)(a+b)}=$
$=\frac{a^2-ab-a^2}{(a-b)(a+b)}=\frac{-ab}{(a-b)(a+b)}$.

3. Выполним деление.

$\frac{a^2b}{(a+b)^2}:\frac{-ab}{(a-b)(a+b)}=\frac{a^2b}{(a+b)^2}*\frac{(a-b)(a+b)}{(-ab)}=$
$=-\frac{a(a-b)}{a+b}$

.

Ответ: $-\frac{a(a-b)}{a+b}$.

Пример 3.
Выполните действия:

$\frac{k-4}{k-2}:(\frac{80k}{(k^3-8}+\frac{2k}{k^2+2k+4}-\frac{k-16}{2-k})-\frac{6k+4}{(4-k)^2}$.


Решение.
Как всегда надо начинать со скобок.

1. $\frac{80k}{k^3-8}+\frac{2k}{k^2+2k+4}-\frac{k-16}{2-k}=\frac{80k}{(k-2)(k^2+2k+4)} +\frac{2k}{k^2+2k+4}+\frac{k-16}{k-2}=$

$=\frac{80k+2k(k-2)+(k-16)(k^2+2k+4)}{(k-2)(k^2+2k+4)}=\frac{80k+2k^2-4k+k^3+2k^2+4k-16k^2-32k-64}{(k-2)(k^2+2k+4)}=$

$=\frac{k^3-12k^2+48k-64}{(k-2)(k^2+2k+4)}=\frac{(k-4)^3}{(k-2)(k^2+2k+4)}$.

2. Теперь выполним деление.

$\frac{k-4}{k-2}:\frac{(k-4)^3}{(k-2)(k^2+2k+4)}=\frac{k-4}{k-2}*\frac{(k-2)(k^2+2k+4)}{(k-4)^3}=\frac{(k^2+2k+4)}{(k-4)^2}$.

3. Воспользуемся свойством: $(4-k)^2=(k-4)^2$.
4. Выполним операцию вычитания.

$\frac{(k^2+2k+4)}{(k-4)^2}-\frac{6k+4}{(k-4)^2}=\frac{k^2-4k}{(k-4)^2}=\frac{k(k-4)}{(k-4)^2}=\frac{k}{k-4}$.


Как мы раньше говорили, упрощать дробь надо максимально.
Ответ: $\frac{k}{k-4}$.

Задачи для самостоятельного решения

1. Докажите тождество:

$\frac{b^2-14}{b-4}-(\frac{3-b}{7b-4}+\frac{b-3}{b-4})*\frac{4-7b}{9b-3b^2}=b+4$.


2. Упростите выражение:

$\frac{4(z+4)^2}{z-2}*(\frac{z}{2z-4}-\frac{z^2+4}{2z^2-8}-\frac{2}{z^2+2z})$.


3. Выполните действия:

$(\frac{a-b}{a^2+2ab+b^2}-\frac{2a}{(a-b)(a+b)}+\frac{a-b}{(a-b)^2})*\frac{a^4-b^4}{8ab^2}+\frac{2b^2}{a^2-b^2}$.

Из курса алгебры школьной программы переходим к конкретике. В этой статье мы подробно изучим особый вид рациональных выражений – рациональные дроби , а также разберем, какие характерные тождественные преобразования рациональных дробей имеют место.

Сразу отметим, что рациональные дроби в том смысле, в котором мы их определим ниже, в некоторых учебниках алгебры называют алгебраическими дробями. То есть, в этой статье мы под рациональными и алгебраическими дробями будем понимать одно и то же.

По обыкновению начнем с определения и примеров. Дальше поговорим про приведение рациональной дроби к новому знаменателю и о перемене знаков у членов дроби. После этого разберем, как выполняется сокращение дробей. Наконец, остановимся на представлении рациональной дроби в виде суммы нескольких дробей. Всю информацию будем снабжать примерами с подробными описаниями решений.

Навигация по странице.

Определение и примеры рациональных дробей

Рациональные дроби изучаются на уроках алгебры в 8 классе. Мы будем использовать определение рациональной дроби, которое дается в учебнике алгебры для 8 классов Ю. Н. Макарычева и др.

В данном определении не уточняется, должны ли многочлены в числителе и знаменателе рациональной дроби быть многочленами стандартного вида или нет. Поэтому, будем считать, что в записях рациональных дробей могут содержаться как многочлены стандартного вида, так и не стандартного.

Приведем несколько примеров рациональных дробей . Так , x/8 и - рациональные дроби. А дроби и не подходят под озвученное определение рациональной дроби, так как в первой из них в числителе стоит не многочлен, а во второй и в числителе и в знаменателе находятся выражения, не являющиеся многочленами.

Преобразование числителя и знаменателя рациональной дроби

Числитель и знаменатель любой дроби представляют собой самодостаточные математические выражения, в случае рациональных дробей – это многочлены, в частном случае – одночлены и числа. Поэтому, с числителем и знаменателем рациональной дроби, как и с любым выражением, можно проводить тождественные преобразования. Иными словами, выражение в числителе рациональной дроби можно заменять тождественно равным ему выражением, как и знаменатель.

В числителе и знаменателе рациональной дроби можно выполнять тождественные преобразования . Например, в числителе можно провести группировку и приведение подобных слагаемых, а в знаменателе – произведение нескольких чисел заменить его значением. А так как числитель и знаменатель рациональной дроби есть многочлены, то с ними можно выполнять и характерные для многочленов преобразования, например, приведение к стандартному виду или представление в виде произведения.

Для наглядности рассмотрим решения нескольких примеров.

Пример.

Преобразуйте рациональную дробь так, чтобы в числителе оказался многочлен стандартного вида, а в знаменателе – произведение многочленов.

Решение.

Приведение рациональных дробей к новому знаменателю в основном применяется при сложении и вычитании рациональных дробей .

Изменение знаков перед дробью, а также в ее числителе и знаменателе

Основное свойство дроби можно использовать для смены знаков у членов дроби. Действительно, умножение числителя и знаменателя рациональной дроби на -1 равносильно смене их знаков, а в результате получится дробь, тождественно равная данной. К такому преобразованию приходится достаточно часто обращаться при работе с рациональными дробями.

Таким образом, если одновременно изменить знаки у числителя и знаменателя дроби, то получится дробь, равная исходной. Этому утверждению отвечает равенство .

Приведем пример. Рациональную дробь можно заменить тождественно равной ей дробью с измененными знаками числителя и знаменателя вида .

С дробями можно провести еще одно тождественное преобразование, при котором меняется знак либо в числителе, либо в знаменателе. Озвучим соответствующее правило. Если заменить знак дроби вместе со знаком числителя или знаменателя, то получится дробь, тождественно равная исходной. Записанному утверждению соответствуют равенства и .

Доказать эти равенства не составляет труда. В основе доказательства лежат свойства умножения чисел. Докажем первое из них: . С помощью аналогичных преобразований доказывается и равенство .

Например, дробь можно заменить выражением или .

В заключение этого пункта приведем еще два полезных равенства и . То есть, если изменить знак только у числителя или только у знаменателя, то дробь изменит свой знак. Например, и .

Рассмотренные преобразования, позволяющие изменять знак у членов дроби, часто применяются при преобразовании дробно рациональных выражений.

Сокращение рациональных дробей

В основе следующего преобразования рациональных дробей, имеющего название сокращение рациональных дробей, лежит все тоже основное свойство дроби. Этому преобразованию соответствует равенство , где a , b и c – некоторые многочлены, причем b и c - ненулевые.

Из приведенного равенства становится понятно, что сокращение рациональной дроби подразумевает избавление от общего множителя в ее числителе и знаменателе.

Пример.

Сократите рациональную дробь .

Решение.

Сразу виден общий множитель 2 , выполним сокращение на него (при записи общие множители, на которые сокращают, удобно зачеркивать). Имеем . Так как x 2 =x·x и y 7 =y 3 ·y 4 (при необходимости смотрите ), то понятно, что x является общим множителем числителя и знаменателя полученной дроби, как и y 3 . Проведем сокращение на эти множители: . На этом сокращение завершено.

Выше мы выполняли сокращение рациональной дроби последовательно. А можно было выполнить сокращение в один шаг, сразу сократив дробь на 2·x·y 3 . В этом случае решение выглядело бы так: .

Ответ:

.

При сокращении рациональных дробей основная проблема заключается в том, что общий множитель числителя и знаменателя далеко не всегда виден. Более того, он не всегда существует. Для того, чтобы найти общий множитель или убедиться в его отсутствии нужно числитель и знаменатель рациональной дроби разложить на множители. Если общего множителя нет, то исходная рациональная дробь не нуждается в сокращении, в противном случае – проводится сокращение.

В процессе сокращения рациональных дробей могут возникать различные нюансы. Основные тонкости на примерах и в деталях разобраны в статье сокращение алгебраических дробей .

Завершая разговор о сокращении рациональных дробей, отметим, что это преобразование является тождественным, а основная сложность в его проведении заключается в разложении на множители многочленов в числителе и знаменателе.

Представление рациональной дроби в виде суммы дробей

Достаточно специфическим, но в некоторых случаях очень полезным, оказывается преобразование рациональной дроби, заключающееся в ее представлении в виде суммы нескольких дробей, либо сумме целого выражения и дроби.

Рациональную дробь, в числителе которой находится многочлен, представляющий собой сумму нескольких одночленов, всегда можно записать как сумму дробей с одинаковыми знаменателями, в числителях которых находятся соответствующие одночлены. Например, . Такое представление объясняется правилом сложения и вычитания алгебраических дробей с одинаковыми знаменателями .

Вообще, любую рациональную дробь можно представить в виде суммы дробей множеством различных способов. Например, дробь a/b можно представить как сумму двух дробей – произвольной дроби c/d и дроби, равной разности дробей a/b и c/d . Это утверждение справедливо, так как имеет место равенство . К примеру, рациональную дробь можно представить в виде суммы дробей различными способами: Представим исходную дробь в виде суммы целого выражения и дроби. Выполнив деление числителя на знаменатель столбиком, мы получим равенство . Значение выражение n 3 +4 при любом целом n является целым числом. А значение дроби является целым числом тогда и только тогда, когда ее знаменатель равен 1 , −1 , 3 или −3 . Этим значениям отвечают значения n=3 , n=1 , n=5 и n=−1 соответственно.

Ответ:

−1 , 1 , 3 , 5 .

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 13-е изд., испр. - М.: Мнемозина, 2009. - 160 с.: ил. ISBN 978-5-346-01198-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.