Видимые движения тел. Движение небесных тел

Двумя наиболее значительными успехами классического естествознания, основанного на механике Ньютона, были практически исчерпывающее описание наблюдаемого движения небесных тел и объяснение известных из эксперимента законов идеального газа.

Законы Кеплера.

Первоначально считалось, что Земля неподвижна, а движение небесных тел казалось весьма сложным. Галилей одним из первых высказал предположение о том, что наша планета не является исключением и тоже движется вокруг Солнца. Эта концепция была встречена достаточно враждебно. Тихо Браге решил не принимать участия в дискуссиях, а заняться непосредственным измерениями координат тел на небесной сфере. Он посвятил этому всю свою жизнь, но не только не сделал каких-либо выводов из своих наблюдений, но даже не опубликовал результатов. Позднее данные Тихо попали к Кеплеру, который нашел простое объяснение наблюдаемым сложным траекториям, сформулировав три законов движения планет (и Земли) вокруг Солнца (рис.6_1):

1. Планеты двигаются по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

2. Скорость движения планеты изменяется таким образом, что площади, заметаемые ее радиус-вектором за равные промежутки времени, оказываются равными.

3. Периоды обращения планет одной Солнечной системы и большие полуоси их орбит связаны соотношением:

.

Сложное движение планет на “небесной сфере”, наблюдаемой с Земли, согласно Кеплеру, возникало вследствие сложения этих планет по эллиптическим орбитам с движением наблюдателя, совершающего вместе с Землей орбитальное движение вокруг солнца и суточное вращение вокруг оси планеты.

Прямым доказательством суточного вращения Земли был эксперимент, поставленный Фуко, в котором плоскость колебаний маятника поворачивалась относительно поверхности вращающейся Земли.

Закон Всемирного тяготения.

Законы Кеплера прекрасно описывали наблюдаемое движение планет, но не вскрывали причин, приводящих к такому движению (напр. вполне можно было считать, что причиной движения тел по кеплеровым орбитам являлась воля какого-либо существа или стремление самих небесных тел к гармонии). Теория гравитации Ньютона указала причину, обусловившую движение космических тел по законам Кеплера, правильно предсказала и объяснила особенности их движения в более сложных случаях, позволила в одних терминах описать многие явления космического и земного масштабов (движение звезд в галактическом скоплении и падение яблока на поверхность Земли).

Ньютон нашел правильное выражение для гравитационной силы, возникающей при взаимодействии двух точечных тел (тел, размеры которых малы по сравнению с расстоянием между ними):

,

которое совместно со вторым законом в случае, если масса планеты m много меньше массы звезды M, приводило к дифференциальному уравнению

,

допускающему аналитическое решение. Не привлекая каких-либо дополнительных физических идей, чисто математическими методами модно показать, что при соответствующих начальных условиях (достаточно малые начальные расстояние до звезды и скорость планеты) космическое тело будет совершать вращение по замкнутой, устойчивой эллиптической орбите в полном согласии с законами Кеплера (в частности второй закон Кеплера является прямым следствием закона сохранения момента импульса, выполняющегося при гравитационных взаимодействиях, поскольку момент силы (2) относительно массивного центра всегда равен нулю). При достаточно высокой начальной скорости (ее значение зависит от массы звезды и начального положения) космическое тело движется по гиперболической траектории, в конце концов уходя от звезды на бесконечно большое расстояние.

Важным свойством закона гравитации (2) является сохранение его математической формы в случае гравитационного взаимодействия неточечных тел в случае сферически-симметричного распределения их масс по объему. При этом роль R играет расстояние между центрами этих тел.

Движение небесных тел при наличии возмущений. Строго говоря, законы Кеплера выполняются точно лишь в случае движения лишь одного тела вблизи другого, обладающего значительно большей массой, при условии сферичности этих тел. При незначительных отступлениях от сферической формы (напр. из-за вращения звезды она может несколько “сплющиться”) орбита планеты перестает быть замкнутой и представляет собой прецессирующий вокруг звезды эллипс.

Другим часто встречающимся возмущением является гравитационное влияние планет одной звездной системы друг на друга. Кеплеровы орбиты являются устойчивыми относительно слабых возмущений, т.е., испытав воздействие от близко пролетающего соседа, планета стремится вернуться на исходную траекторию. При наличии сильных возмущений (пролет массивного тела на небольшом расстоянии) задача о движении существенно усложняется и не может быть решена аналитические. численные расчеты показывают, что в этом случае траектории планет перестают быть эллипсами и представляют собой незамкнутые кривые.

Согласно третьему закону Ньютона существует сила, действующая на звезду со стороны планет. В случае M>>m ускорение звезды пренебрежимо мало и ее можно считать неподвижной. При наличии двух тел соизмеримых масс, притягивающихся друг к другу, возможно их устойчивое совместное движение по эллиптическим орбитам вокруг общего центра масс. Очевидно, что более массивное тело совершает движение по орбите меньшего радиуса. В случае движения планет вокруг звезды указанный эффект малозаметен. однако в космосе были обнаружены системы, совершающие описанное движение - двойные звезды. Численный расчет движения планет в системе двойной звезды показывает, что их орбиты существенно нестационарны, расстояние от планеты до звезд быстро меняется в весьма широких пределах. Неизбежные при этом быстрые изменения климата на планетах делает там весьма проблематичной возможность биологической эволюции. Еще менее вероятно возникновение технических цивилизаций на планетах систем двойных звезд, поскольку сложное непериодическое движение планет приводит к трудно расшифровываемому наблюдаемому движению тел на “небесной сфере”, существенно затрудняя формулировку законов Кеплера и, как следствие, развитие классической механики (рис. 6_2).

Строение Солнечной системы.

Хорошо известно, что основная масса Солнечной системы (около 99.8%) приходится на ее единственную звезду - Солнце. Суммарная масса планет составляет только 0.13% от общей. На остальные тела системы (кометы, спутники планет, астероиды и метеоритное вещество) приходится только 0.0003% массы. Из приведенных цифр следует, что законы Кеплера для движения планет в нашей системе должны выполняться очень хорошо. Существенные отклонения от эллиптических орбит могут возникать лишь в случае близкого (по сравнению с расстоянием до Солнца) пролета мимо одной из планет: Меркурия, Венеры, Земли, Марса, Юпитера, Сатурна, Урана, Нептуна или Плутона (особенно это касается самой массивной из планет - Юпитера). Именно наблюдения возмущения орбиты Нептуна позволили предсказать, а потом и обнаружить Плутон - самую удаленную из известных планет нашей системы.

Ньютоновский закон гравитации и законы Кеплера позволяют связать размеры орбит планет с периодами вращения, но не позволяют рассчитывать сами орбиты. Еще в 18 веке была предложена эмпирическая формула для радиусов орбит планет солнечной системы:

, - радиус орбиты Земли. В отличие от законов Кеплера соотношение (4) никак не следует из законов Ньютона и до сих пор не получило теоретического обоснования, хотя орбиты всех известных на сегодняшний день планет удовлетворительно описываются этой формулой. Исключение составляет лишь значение n=3, для которого на рассчитанной орбите планеты не существует. Вместо нее был обнаружен пояс астероидов - небольших по планетным масштабам тел неправильной формы. Эмпирические законы, не подтвержденные имеющейся теорией, могут играть положительную роль в исследованиях, поскольку тоже отражают объективную реальность (возможно в несовсем точном и даже в несколько искаженном виде).

Привлекательной казалась гипотеза о ранее существовавшей пятой планете - Фаэтоне, разрушенной на куски гигантским гравитационным притяжением ее массивного соседа - Юпитера, однако количественный анализ движения планеты - гиганта показал несостоятельность этого предположения. По-видимому упомянутая проблема может быть разрешена лишь на основе законченной теории возникновения и эволюции планет Солнечной системы, пока еще несуществующей. Весьма привлекательная теория совместного происхождения солнца и планет из единого газового облака, сжавшегося под действием гравитационных сил, оказывается в противоречии с наблюдаемым неравномерным распределением вращательного момента (момента импульса) между звездой и планетами. Обсуждаются модели происхождения планет в результате гравитационного захвата Солнцем тел, прилетающих из далекого космоса, эффекты, вызванные взрывом сверх-новых. В большинстве “сценариев” развития солнечной системы существование пояса астероидов так или иначе связывается с его близким соседством с самой массивной планетой системы.

Известные на сегодняшний день свойства планет Солнечной системы позволяют разделить их на две группы. Первые четыре планеты земной группы характеризуются сравнительно малыми массами и большими плотностями слагающих их веществ. Они состоят из расплавленного железного ядра, окруженного силикатной оболочкой - корой. Планеты обладают газовыми атомосферами. Их температуры главным образом определяются расстоянием до Солнца и убывают с его увеличением. Начинающаяся с Юпитера группа планет - гигантов в основном сложена из легких элементов (водорода и гелия), давление которых во внутренних слоях возрастает до огромных величин, вследствие гравитационного сжатия. В результате по пере приближения к центру газы постепенно переходят в жидкое и, возможно, в твердотельное состояния. Предполагается, что в центральных областях давления столь велико, что водород существует в металлической фазе, пока не наблюдавшейся на Замле даже в лабораторных условиях. Планеты второй группы обладают большим числом спутников. У сатурна их число столь велико, что при недостаточном увеличении планета кажется опоясанной системой непрерывных колец (рис. 6_3).

Все космогонические гипотезы можно разделить на несколько групп. Согласно одной из них Солнце и все тела Солнечной системы: планеты, спутники, астероиды, кометы и метеорные тела - образовались из единого газовопылевого, или пылевого облака. Согласно второй Солнце и его семейство имеют различное происхождение, так что Солнце образовалось из одного газовопылевого облака (туманности, глобулы), а остальные небесные тела Солнечной системы - из другого облака, которое было захвачено каким-то, не совсем понятным, образом Солнцем на свою орбиту и разделилось каким-то, еще более непонятным образом на множество самых различных тел (планет, их спутников, астероидов, комет и метеорных тел), имеющих самые различные характеристики: массу, плотность, эксцентриситет, направление обращения по орбите и направление вращения вокруг своей оси, наклонение орбиты к плоскости экватора Солнца (или эклиптики) и наклон плоскости экватора к плоскости своей орбиты.
Девять больших планет обращаются вокруг Солнца по эллипсам (мало отличающимся от окружностей) почти в одной плоскости. В порядке удаления от Солнца - это Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон . Кроме них в Солнечной системе множество малых планет (астероидов), большинство которых движется между орбитами Марса и Юпитера. Пространство между планетами заполнено крайне разреженным газом и космической пылью. Его пронизывают электромагнитные излучения.
Солнце в 109 раз больше Земли по диаметру и примерно в 333 000 раз массивнее Земли . Масса всех планет составляет всего лишь около 0,1% от массы Солнца, поэтому оно силой своего притяжения управляет движением всех членов Солнечной системы.

Конфигурация и условия видимости планет

Конфигурациями планет называют некоторые характернее взаимные расположения планет, Земли и Солнца.
Условия видимости планет с Земли резко различаются для планет внутренних (Венера и Меркурий), орбиты которых лежат внутри земной орбиты, и для планет внешних (все остальные).
Внутренняя планета может оказаться между Землей и Солнцем или за Солнцем. В таких положениях планета невидима, так как теряется в лучах Солнца. Эти положения называются соединениями планеты с Солнцем. В нижнем соединении планета ближе всего к Земле, а в верхнем соединении она от нас дальше всего.

Синодические периоды обращения планет и их связь с сидерическими периодами

Период обращения планет вокруг Солнца по отношению к звездам называется звездным или сидерическим периодом.
Чем ближе планета к Солнцу, тем больше ее линейная и угловая скорости и короче звездный период обращения вокруг Солнца.
Однако из непосредственных наблюдений определяют не сидерический период обращения планеты, а промежуток времени, протекающий между ее двумя последовательными одноименными конфигурациями, например между двумя последовательными соединениями (противостояниями). Этот период называется синодическим периодом обращения. Определив из наблюдений синодические периоды, путем вычислений находят звездные периоды обращения планет.
Синодический период внешней планеты - это промежуток времени, по истечении которого Земля обгоняет планету на 360° при их движении вокруг Солнца.

Законы Кеплера

Заслуга открытия законов движения планет принадлежит выдающемуся немецкому ученому Иоганну Кеплеру (1571 -1630). В начале XVII в. Кеплер, изучая обращение Марса вокруг Солнца, установил три закона движения планет.

Первый закон Кеплера . Каждая планета обращается по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон Кеплера (закон площадей). Радиус-вектор планеты за одинаковые промежутки времени описывает равные площади.

Третий закон Кеплера . Квадраты звездных периодов обращения планет относятся как кубы больших полуосей их орбит.

Среднее расстояние всех планет от Солнца в астрономических единицах можно вычислить, используя третий закон Кеплера. Определив среднее расстояние Земли от Солнца (т. е. значение 1 а.е.) в километрах, можно найти в этих единицах расстояния до всех планет Солнечной системы.Большая полуось земной орбиты принята за астрономическую единицу расстояний (=1 a.e.)
Классическим способом определения расстояний был и остается угломерный геометрический способ. Им определяют расстояния и до далеких звезд, к которым метод радиолокации неприменим. Геометрический способ основан на явлении параллактического смещения .

Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя .

ПРИМЕР РЕШЕНИЯ ЗАДАЧИ

Задача . Противостояния некоторой планеты повторяются через 2 года. Чему равна большая полуось ее орбиты?

Дано
РЕШЕНИЕ

Большую полуось орбиты можно определить из третьего закона Кеплера:
,
а звездный период - из соотношения между сидерическим и синодическим периодами:
,

- ?

Размер и форма Земли

На фотоснимках, сделанных из космоса, Земля выглядит как шар, освещенный Солнцем.
Точный ответ о форме и размере Земли дают градусные измерения , т. е. измерения в километрах длины дуги в 1° в разных местах на поверхности Земли. Градусные измерения показали, что длина 1° дуги меридиана в километрах в полярной области наибольшая (111,7 км), а на экваторе наименьшая (110,6 км). Следовательно, на экваторе кривизна поверхности Земли больше, чем у полюсов, а это говорит о том, что Земля не является шаром. Экваториальный радиус Земли больше полярного на 21,4 км. Поэтому Земля (как и другие планеты) вследствие вращения сжата у полюсов.
Шар, равновеликий нашей планете, имеет радиус, равный 6370 км. Это значение принято считать радиусом Земли.
Угол, под которым со светила виден радиус Земли, перпендикулярный к лучу зрения, называется горизонтальным параллаксом.

Масса и плотность Земли

Закон всемирного тяготения позволяет определить одну из важнейших характеристик небесных тел - массу, в частности массу нашей планеты. Действительно, исходя из закона всемирного тяготения, ускорение свободного падения g=(G*M)/r 2 . Следовательно, если известны значения ускорения свободного падения, гравитационной постоянной и радиуса Земли, то можно определить ее массу.
Подставив в указанную формулу значение g = 9,8 м/с 2 , G =6,67 * 10 -11 Н * м 2 /кг 2 ,

R =6370 км, найдем, что масса Земли М=6 x 10 24 кг. Зная массу и объем Земли, можно вычислить ее среднюю плотность.

С самых древних времен человечество интересовали видимые движения небесных тел: Солнца, Луны и звезд. Трудно представить себе Наша собственная Солнечная система кажется слишком большой, протянувшись более чем на 4 триллиона миль от Солнца. А между тем Солнце - это всего лишь одна сотая миллиарда от других звезд, которые составляют галактику Млечный Путь.

Млечный Путь

Сама галактика представляет собой громаднейшее колесо, которое вращается, из газа, пыли и более 200 миллиардов звезд. Между ними простираются триллионы миль пустого пространства. Солнце закрепилось на окраине галактики, по форме напоминающей спираль: сверху Млечный Путь смотрится как огромный вращающийся ураган из звезд. По сравнению с размерами галактики, Солнечная система чрезвычайно мала. Если представить, что Млечный Путь величиной с Европу, то Солнечная система будет не больше по размерам, чем грецкий орех.

Солнечная система

Солнце и его 9 планет - спутников разбросаны в одном направлении от центра галактики. Как планеты совершают обороты вокруг своих звезд, так же и звезды обращаются вокруг галактик.

Солнцу понадобится около 200 миллионов лет при скорости 588000 миль в час для того, чтобы сделать полный оборот вокруг этой галактической карусели. Ничем особенным наше Солнце не отличается от других звезд, кроме того, что у него есть спутник, планета под названием Земля, населенная жизнью. Вокруг Солнца по своим орбитам вращаются планеты и небесные тела поменьше, которые называются астероидами.

Первые наблюдения светил

Человек наблюдает видимые движения небесных тел и космические явления уже как минимум 10000 лет. Впервые записи в летописях о небесных телах появились в древнем Египте и Шумере. Египтяне умели различать на небе три типа тел: звезды, планеты и "звезды с хвостами". Тогда же были обнаружены небесные тела: Сатурн, Юпитер, Марс, Венера, Меркурий и, конечно, Солнце, и Луна. Видимые движения небесных тел - это созерцаемое с Земли передвижение этих объектов относительно системы координат, независимо от суточного вращения. Настоящее движение - движение их в космическом пространстве, определяемое действующими на эти тела силами.

Видимые галактики

Глядя в ночное небо, можно увидеть нашу ближайшую соседку - - в виде спирали. Млечный путь, несмотря на его размеры, всего лишь одна из 100 миллиардов галактик в космосе. Без использования телескопа можно увидеть три галактики и часть нашей. Две из них имеют названия Большое и Малое Магелланово облако. Впервые они были увидены в южных водах в 1519 году экспедицией португальского исследователя Магеллана. Эти небольшие галактики совершают обороты вокруг Млечного пути, поэтому являются нашими самыми близкими космическими соседями.

Третья видимая с Земли галактика, Андромеда, отдалена от нас примерно 2 миллионами световых лет. Это значит, что звездный свет Андромеды проходит миллионы лет, чтобы приблизиться к нашей Земле. Таким образом, мы созерцаем эту галактику такой, какой она была 2 миллиона лет назад.

Помимо этих трех галактик ночью можно увидеть часть Млечного пути, представленного множеством звезд. По мнению древних греков, эта группа звезд - молоко из груди богини Геры, отсюда и происходит название.

Видимые планеты с Земли

Планеты - это небесные тела, обращающиеся вокруг Солнца. Когда мы наблюдаем Венеру, светящуюся в небе, то это происходит от того, что она освещается Солнцем и отбивает часть солнечного света. Венера - это Вечерняя звезда или Утренняя звезда. Люди называют ее по-разному, потому что вечером и утром она находится в разных местах.

Как планета Венера вращается вокруг Солнца и меняет свое местонахождение. На протяжении суток происходит видимое движение небесных тел. Система небесных координат не только помогает разобраться в местоположении светил, но и позволяет составлять звездные карты, ориентироваться в ночном небе по созвездиям и изучать поведение небесных объектов.

Законы движения планет

Соединяя воедино наблюдения и теории о движении небесных тел, люди вывели закономерности нашей галактики. Открытия ученых помогли расшифровать видимые движения небесных тел. открытые были одними из первых астрономических законов.

Немецкий математик и астроном стал первооткрывателем данной темы. Кеплер, изучив работы Коперника, вычислил для орбит самую лучшую форму, разъясняющую видимые движения небесных тел - эллипс, и довел закономерности передвижения планет, известные в научном мире как законы Кеплера. Два из них характеризуют передвижение планеты по орбите. Они гласят:

    Любая планета вращается по эллипсу. В одном из фокусов его присутствует Солнце.

    Каждая из них передвигается в плоскости, проходящей сквозь середину Солнца, при этом за одинаковые периоды радиус-вектор между Солнцем и планетой, очерчивает равновеликие площади.

Третий закон соединяет орбитальные данные планет в пределах системы.

Нижние и верхние планеты

Изучая видимые движения небесных тел, физика подразделяет их на две группы: нижние, куда относятся Венера, Меркурий, и верхние - Сатурн, Марс, Юпитер, Нептун, Уран и Плутон. Передвижение этих небесных тел в сфере совершается по-разному. В процессе наблюдаемого перемещения нижних планет у них отмечается смена фаз как у Луны. При перемещении верхних планет можно заметить, что смена фаз у них не происходит, они постоянно обращены к людям своей светлой стороной.

Земля, наравне с Меркурием, Венерой и Марсом, принадлежит к группе так называемых внутренних планет. Они совершают обороты вокруг Солнца внутренними орбитами, в отличие от больших планет, которые вращаются внешними орбитами. Например, Меркурий, который в 20 раз меньше по крайней внутренней орбите.

Кометы и метеориты

Вокруг Солнца вертятся, кроме планет, еще миллиарды ледяных глыб, состоящие из замерзшего твердого газа, мелкого камня и пыли, - кометы, которыми заполнена Солнечная система. Видимые движения небесных тел, представленные кометами, можно увидеть только тогда, когда они приближаются к Солнцу. Тогда их хвост начинает гореть и светится в небе.

Самая знаменитая из них - комета Галлея. Каждые 76 лет она сходит со своей орбиты и приближается к Солнцу. В это время ее можно наблюдать с Земли. Еще в ночном небе можно созерцать метеориты в виде летящих звезд - это сгустки материи, которые движутся по Вселенной с огромной скоростью. Когда они попадают в поле притяжения Земли, почти всегда сгорают. Из-за чрезвычайной скорости и трения с воздушной оболочкой Земли метеориты раскаляются и распадаются на мелкие частицы. Процесс их сгорания можно наблюдать в ночном небе в виде светящейся ленты.

Учебная программа по астрономии описывает видимые движения небесных тел. 11 класс уже ознакомлен с закономерностями, по которым происходит сложное движение планет, сменой лунных фаз и законами затмений.

Сначала мы обсудим видимые движения небесных тел, в том числе солнечные и лунные затмения. Говоря о видимом движении светил, мы имеем в виду изменение их взаимного положения на небесной сфере, не включая кажущееся вращение самой небесной сферы, вызванное суточным вращением Земли

Самое привычное и наглядное из видимых изменений на небе – это смена фаз Луны. Мы с детства знаем, что образ Луны ежемесячно проходит через несколько характерных фаз – новолуние, первая четверть, полнолуние и последняя четверть. Однако указать причину этого привычного явления может далеко не каждый. На днях моей маленькой внучке подарили книгу, от чтения которой у меня волосы встали дыбом, поскольку ее автор представил смену лунных фаз как ежемесячное затмение лунного диска тенью Земли. Ежемесячное лунное затмение – такого извращенного представления об астрономических событиях я еще не встречал и даже не ожидал его от современного человека. Поэтому, думаю, с причиной смены лунных фаз нужно познакомиться в первую очередь.

При описании внешнего вида Луны или планеты мы называем фазой определенную стадию в периодическом изменении видимой формы освещенного Солнцем полушария этих тел. Смена фаз Луны – явление наглядное. Каждый вечер мы наблюдаем спутник Земли в новом виде. В течение 29,5 суток, практически одного месяца, происходит полная смена фаз – это так называемый синодический лунный месяц.

Мы находимся на Земле, Луна движется вокруг нас, совершая за месяц полный оборот. Солнце в этой шкале времени почти неподвижно (за месяц смещение Солнца относительно Земли происходит всего лишь на 1 /12 часть окружности). У лунного шара всегда освещено полушарие, обращенное к Солнцу. А мы наблюдаем лунный шар с разных сторон по отношению к направлению на Солнце, поэтому иногда видим ее полностью освещенную половинку, иногда – часть, а иногда (в новолуние) к нам обращена полностью затемненная сторона лунного шара. Это и есть причина смены фаз. То есть, у Луны всегда освещена одна половина и всегда в тени другая, но наша точка зрения на эти половинки в течение месяца меняется.

Но, хотя в течение месяца мы видим и светлую, и темную стороны Луны, из этого не следует, что с Земли мы можем увидеть всю лунную поверхность: к Земле постоянно обращена одна – «видимая» – сторона Луны. Почему так происходит? Потому что два движения Луны синхронны: один оборот по орбите вокруг Земли и один поворот вокруг своей оси у Луны происходят за одно и то же время – за месяц.

Названия фаз Луны на русском языке не очень разнообразны, их в ходу четыре: новолуние, первая четверть, полнолуние и последняя четверть. Кстати, вы не задумывались, почему мы говорим «четверть», когда освещена половина лунного диска? Потому что от новолуния прошла четвертая часть периода – лунного месяца.

В некоторых других языках существуют более разнообразные варианты названий лунных фаз. Например, в английском между новолунием и первой четвертью выделяют фазу «растущего серпа» (Waxing crescent ), а между первой четвертью и полнолунием еще есть «растущая Луна» (Waxing gibbous ).

Думаю, у некоторых коренных народов, для которых Луна и ее ночной свет гораздо важнее, чем для нас – городских жителей, есть и другие названия лунных фаз, которые дробят месяц на более мелкие периоды. Например, у эскимосов есть два десятка слов для характеристики цвета и состояния снега, потому что для них он очень актуален. Так и с Луной, вероятно.

В английском языке есть такая фраза On the dark side of the moon , песня такая есть. Но это неверное выражение, поскольку в нем подразумевается, что сторона Луны, о которой поет Pink Floid , всегда темная, а обращенная к нам, всегда светлая. Правильно было бы говорить: On the far side of the moon – на дальней стороне Луны. А ближнюю к Земле называют near side . Потому что на Землю смотрит всегда одно и то же полушарие, а другое всегда от нас отвернуто и никогда, до полетов космических аппаратов, мы не видели дальнюю сторону.

Значением фазы называют освещенную долю диаметра диска Луны (или планеты), перпендикулярного линии, соединяющей концы серпа, или, что то же самое – отношение площади освещенной части видимого диска ко всей его площади. Следовательно, фаза определяется числом от 0 до 1, отношением максимального размера освещенной части диска к полному диаметру диска. Но из-за того, что фаза 0,5 соответствует и первой, и последней четверти, без дополнительного указания трудно разобраться о какой именно фазе идет речь – тут у астрономов недоработка.

Кто любит математику, докажет простую теорему о том, что отношение d/D равно отношению освещенной площади диска к его полной площади. Граница между освещенной и неосвещенной частями диска называется «терминатор», и у шарообразного небесного тела она имеет форму половины эллипса, «разрезанного» вдоль большой оси.

Луна движется вокруг Земли по эллиптической орбите, причем заметить это довольно легко, просто измеряя на небе видимый диаметр лунного диска. В течение месяца он меняется: когда Луна к нам ближе (ближайшая к Земле точка орбиты называется перигей – тогда лунный диск выглядит немного крупнее обычного. А в апогее – немного меньше). Впрочем, непрофессиональный глаз может этого и не заметить, поскольку разница составляет около 10%. Тем не менее, в последние годы журналисты регулярно напоминают нам о «суперлунии», утверждая, что Луна будет огромная. Не думаю, что сами они способны заметить эту разницу в 10%.

Движение Луны по эллиптической орбите вызывает одно легко наблюдаемое явление, о котором мало кто знает. Я имею в виду либрации, т. е. видимые покачивания лунного шара (от лат. lībrātiō «раскачивание»). Покачивания Луны «вправо-влево» называют либрацией по долготе, а покачивания «с ног на голову» – либрацией по широте. Отдельные моменты этого движения показаны на рис. выше, а в динамике это можно увидеть на https://ru.wikipedia.org/wiki/Либрация . Как объяснить это явление? Оказывается, его природа чисто геометрическая.

Причина покачиваний по долготе – форма лунной орбиты. Ведь орбита Луны не круговая, а эллиптическая, и это заставляет Луну двигаться вокруг Земли с переменной угловой скоростью. Астрономы называют это Вторым законом Кеплера, а физически это простое проявление закона сохранения орбитального момента импульса. В то же время вокруг своей оси Луна, конечно, вращается с постоянной скоростью. Сложение этих двух движений – равномерного и неравномерного – приводит к тому, что Луна иногда показывает нам чуть больше своего восточного полушария, а иногда немножко больше западного. Покачивания довольно легко обнаружить, о них знали еще до изобретения телескопа.

Широтные покачивания Луны происходят из-за того, что ось ее вращения не перпендикулярна плоскости ее орбиты. У Земли ось вращения тоже наклонена, поэтому полгода наша планета показывает Солнцу в большей степени одно свое полушарие, вторые полгода – другое. А случае Луны мы на Земле выступаем в роли Солнца: Луна полмесяца показывает нам чуть больше свое северное полушарие, а вторые полмесяца – южное.

Вообще, движение Луны не так-то просто описать математически. В первую очередь оно зависит от притяжения к нашей планете. А поскольку Земля не шар, а сплюснутый эллипсоид (и это только в первом приближении!), ее гравитационное поле не сферически симметричное, а значительно более сложное. Это вынуждает Луну двигаться по непростой орбите. Если бы ничего кроме Земли рядом с Луной не было, проблема была бы не такой сложной; но есть еще Солнце и оно тоже влияет на движение нашего спутника. А еще на нее действует притяжение больших планет. Так что изучение движения Луны – это одна из самых сложных задач небесной механики.

Когда говорят о теории движения Луны, подразумевают некое сложное уравнение, содержащее тысячи членов. Уже в начале XX века аналитическое уравнение движения Луны содержало 1400 членов. А сегодня, когда методы лазерной локации позволяют измерять расстояние до Луны с ошибкой не более нескольких миллиметров, компьютерные программы движения Луны содержат десятки тысяч членов.

Полагаю, что не более сотни из них понятны с точки зрения физики. В первом приближении Земля – шар, имеющий простое гравитационное поле с потенциалом 1/R . Во втором приближении Земля – сплюснутый суточным вращением эллипсоид; и тут мы получаем дополнительные гармоники гравитационного поля. Третье приближение: Земля – трехосный эллипсоид, у которого экватор не окружность, а эллипс, отчего ситуация еще больше усложняется. К этому мы добавляем влияние Солнца, Юпитера, Венеры... Дальше идут члены, смысл которых мы не понимаем, и просто подгоняем уравнение под наблюдения. Теория движения Луны до сих пор разрабатывается и уточняется.

Затмения

Мы, жители Земли, время от времени наблюдаем солнечные и лунные затмения. Нам невероятно повезло, что видимые размеры лунного диска в точности соответствуют размерам солнечного. Это удивительно, потому что Луна, вообще говоря, понемногу удаляется от Земли. Но почему-то именно в нашу эпоху она находится на таком расстоянии от нас, что ее наблюдаемый размер идеально соответствует видимому размеру Солнца. Луна примерно в 400 раз меньше Солнца по физическому размеру, но и в 400 раз ближе к Земле, чем Солнце. Поэтому угловые размеры их дисков совпадают.

В астрономии есть три разных термина, описывающих ситуацию, когда два объекта в проекции совмещаются на небе. Мы используем тот или иной из этих терминов в зависимости от того, каков относительный угловой размер этих объектов. Если их угловые размеры близки друг к другу, мы называем это затмением; если более крупный объект перекрывает собой более мелкий, мы говорим, что это покрытие; когда же мелкий объект проходит на фоне крупного – это прохождение, или транзит.

Теперь давайте разберемся, чем эти явления могут быть полезны человеку, чем они интересны.

Например, покрытия – очень полезный способ измерять размер маленьких небесных объектов. Диаметры звезд мы вообще не различаем даже в лучшие телескопы; они слишком малы, намного меньше одной угловой секунды. Но если Луна, двигаясь по небу, своим краем закрывает какую-нибудь звездочку, та меркнет, но это потемнение происходит не моментально, а в соответствии с теорией дифракции.

Когда источник света закрывают краем плоского экрана, его яркость для удаленного наблюдателя испытывает несколько колебаний и лишь затем окончательно обнуляется. Наблюдая покрытие звезды темным краем лунного диска, можно подобрать теоретическую кривую, подходящую к измеренным колебаниям яркости звезды, и вывести из этого угловой размер объекта. В Государственном астрономическом институте им. П.К. Штернберга (ГАИШ МГУ), где я работаю, мои коллеги этим занимаются и получают при измерении размеров звездных дисков разрешение до трех тысячных долей угловой секунды. Это очень высокая точность, которую каким-либо другим способом не достичь. К сожалению, Луна не по всему небу ходит, поэтому размеры всех звезд измерить методом покрытий мы не можем. Луна движется вблизи плоскости эклиптики, примерно в пределах ±5° от нее. Именно в этой полосе угловые размеры звезд хорошо измерены.

В нынешнем веке мы можем наблюдать не только за поведением Земли и Луны, но и затмения-покрытия любых объектов Солнечной системы. Например, в прошлом году мимо Плутона пролетал первый космический аппарат, New Horizons (NASA). Он сфотографировал планету с ночной стороны, и мы впервые увидели атмосферу Плутона. В этом положении диск Плутона закрывает собой Солнце, но его лучи просвечивают по краям планетного диска и демонстрируют плутонианскую атмосферу, про свойства которой мы почти ничего не знали. Если повысить контраст, то даже видны слои в атмосфере Плутона. И это нам очень многое говорит об атмосфере далекой карликовой планеты: из чего она состоит и как устроена. Оказалось, что Плутон маленькая, но очень интересная планета.

Недавно в журнале Nature появились две статьи, в которых весьма убедительно показано, что под ледяной корой Плутона есть жидкий водный океан. Абсолютно неожиданная вещь! Мы предполагали, что подледный океан есть у спутников Юпитера и Сатурна, но Плутон – он так далеко от Солнца, там так холодно и рядом с ним нет гигантской планеты, которая могла бы его согреть. Там все должно было замерзнуть давно и навсегда. Но оказалось, есть признаки того, что под корой Плутона – океан. Он не совсем пригоден для жизни; вероятно, там много аммиака, но все же это океан – и это очень интересно.

А вот еще один замечательный пример – покрытие Солнца Сатурном.

Обычно, мы видим Сатурн так, как на нижней картинке (Сатурн вблизи противостояния с Солнцем). Солнце освещает далекую планету «в лоб», и мы видим ее анфас. Мы давно знали о существовании этого красивого ободка – кольца Сатурна, и всегда думали, что между ним и планетой пустота – ничего нет. Когда первый спутник Сатурна «Кассини» (NASA) залетел за ночную сторону планеты, мы увидели, что между внутренним краем наблюдаемого с Земли кольца и планетой, напротив, довольно много вещества, и оно тянется до самой атмосферы планеты. Раз это вещество не заметно в отраженном свете, но видно в рассеянном свете при контровом освещении, значит, это очень мелкие частицы, размер которых сравним с длиной волны света.

Пока непонятно, каким образом в кольце происходит сепарация частиц вещества по их размеру, и почему мелкие частицы оказались ближе к планете. Простая физическая логика подсказывает, что должно быть наоборот: вблизи атмосферы планету лучше сохраняются крупные частицы, поскольку у них отношение площади сечения к массе меньше, а значит, они слабее тормозятся в верхних слоях атмосферы. В природе же оказалось все наоборот.

Эту новую информацию о кольцах Сатурна мы получили именно благодаря тому, что использовали ситуацию затмения (покрытия) как прибор для исследования. Контровое освещение выявило много новых деталей в структуре колец.

Лунные затмения

Теперь мы вернемся к лунным и солнечным затмениям. Каждое небесное тело, освещенное Солнцем, отбрасывает сужающийся конус тени и расширяющийся конус полутени. Тень – это та область пространства, попадая в которую, наблюдатель не видит поверхность Солнца, а в области полутени он видит часть поверхности Солнца. В соответствии с этим лунные затмения делят на теневые и полутеневые. В первом случае хотя бы часть лунного диска проходит через область земной тени, во втором случае – через область полутени. В обоих случаях затмение может быть полным или частным, в зависимости от того, полный диск Луны скрывается в земной тени/полутени или только его часть. То же и с Солнцем: если наблюдатель попадает в тень Луны, он видит полное солнечное затмение, если в полутень – частное. Полное затмение Солнца не заметить нельзя: днем на несколько минут наступает почти ночная темнота. Но неглубокое частное затмение Солнца, если заранее о нем не знать, вполне можно не заметить. То же и с лунными затмениями: теневое затмение Луны выглядит эффектно, а полутеневое – невзрачно и почти незаметно.

Длительность лунного затмения зависит от того, насколько глубоко в земную тень проникает Луна. Самые длительные затмения – центральные , когда Луна проходит через центр земной тени. При этом полное теневое затмение продолжается около 2 часов.

Итак, теневое затмение Луны происходит, когда она попадает в тень, отброшенную Землей. Луна попадала бы туда каждый месяц в момент полнолуния, если бы плоскости лунной и земной орбит совпадали, но они не совпадают. Плоскость орбиты Луны на пять с лишним градусов наклонена к эклиптике (среднее значение этого угла 5,15°, и он колеблется от 4,99° до 5,30°). Центр земной тени лежит на эклиптике, а угловой радиус этой тени для наблюдателя на Земле составляет около 0,7°. Угловой радиус лунного диска около 0,25°. Следовательно, если Луна удаляется от эклиптики более чем на 1°, она не попадает в тень Земли. Именно поэтому Луна чаще проходит мимо земной тени, нежели попадает в нее.

Затмения как Луны, так и Солнца, происходят лишь в те моменты, когда Луна проходит вблизи узлов своей орбиты, т. е. вблизи пересечений ее орбитальной плоскости с плоскостью эклиптики (в которой всегда находится Солнце). Вблизи узлов Луна проходит дважды в месяц, но для затмения нужно, чтобы в эти моменты и Солнце тоже оказалось вблизи одного из узлов: если того же узла, где Луна, то наблюдается солнечное затмение, а если противоположного, то лунное. Происходит это не так уж часто. Например, максимальное количество лунных затмений всех типов за год – 4 (например, это произойдет в 2020 и 2038 годах), минимальное количество лунных затмений – два в год. Солнечные затмения происходят приблизительно с такой же частотой, однако возможность увидеть полное лунное затмение намного выше, чем полное солнечное. Дело в том, что при наличии ясного неба лунное затмение видят все жители ночного полушария Земли, а солнечное – только те жители дневного полушария, кому посчастливилось попасть в узкую полосу, по которой пробегает маленькая лунная тень диаметром 250-270 км.

В процессе полного теневого затмения Луны наш спутник сначала попадает в область полутени и чуть-чуть меркнет, а затем приближается и попадает в конус земной тени. Казалось бы, солнечный свет в тень не проникает, других источников света там нет, значит, Луна, пересекая земную тень (а это длится несколько часов), должна стать абсолютно невидимой. Но этого не происходит. Она все же немножко видна в темно-багровых тонах. Дело в том, что ее освещают солнечные лучи, рассеявшиеся и преломившиеся в земной атмосфере. Голубая часть их спектра сильно рассеивается в воздухе и поэтому почти не попадает на Луну. А красные лучи рассеиваются в воздухе значительно слабее и, преломившись из-за атмосферной рефракции, направляются в область геометрической земной тени и освещают лунную поверхность.

Поскольку полутеневое затмение Луны заметить глазом почти невозможно, – настолько слабо уменьшается яркость лунного диска, – это явление редко привлекает внимание наблюдателей. А вот полные теневые затмения Луны в прошлом активно использовались для науки. Дело в том, что в момент затмения, в середине лунного дня, Солнце на несколько часов резко «выключается» и перестает освещать лунную поверхность, которая начинает понемногу охлаждаться. По тому, как быстро происходит охлаждение лунной поверхности, можно понять, какая у нее структура. Если бы Луна состояла из чистого железа или алюминия, была бы таким плотным алюминиевым шаром, тогда ее поверхность остывала бы очень медленно (из-за высокой теплопроводности вещества снизу постоянно подходило бы новое тепло). А если бы Луна была сделана из пемзы или синтепона? Теплопроводность почти нулевая, стало быть, температура поверхности падала бы быстро. Наблюдения показали, что в ходе затмения поверхность охлаждается быстро. Следовательно, она скорее из пемзы или поролона, чем из меди или алюминия. А если серьезно, то планетологи с помощью затмений еще до полетов на Луну роботов и людей поняли, что ее минеральная поверхность пористая и покрыта пылеобразным веществом, которое мы называем реголитом. Позже туда прилетели роботы и люди и подтвердили, что поверхность действительно покрыта пылью, рыхлой наверху и спекшейся в глубине. Так лунные затмения помогли астронавтам заранее узнать, по какой поверхности им предстоит ходить.

Солнечные затмения

Еще более замечательное явление – затмения Солнца. Раньше только они позволяли нам увидеть самую внешнюю область солнечной атмосферы – корону Солнца. Для физики это был настоящий шок, когда в середине XX века была измерена температура этой области. Что нам говорит нормальная физика? Она говорит нам, что, удаляясь от источника тепла, газ атмосферы должен охлаждаться. Мы видим такие примеры сплошь да рядом. Источник тепла на Земле – ее поверхность, нагретая солнечными лучами. Поэтому, поднимаясь вверх на самолете, мы видим, как окружающий воздух становится все холоднее и холоднее. На высоте 10 км температура минус 50° С. Все логично.

Энергия Солнца рождается в его ядре и затем просачивается наружу, а значит, снаружи температура должна быть ниже, и действительно, в центре Солнца около 15 000 000 К, а на поверхности 6000 К – температура падает. И вдруг, в области короны она опять начинает стремительно расти – до 2 млн кельвинов. С какой стати? Где источник энергии? В короне чрезвычайно разреженный газ, никакие ядерные реакции там не происходят. Задача была непростая, и решили ее не сразу. Впрочем, и сейчас еще нельзя сказать, что она решена до конца. Большую роль в исследовании солнечной короны сыграли работы советского астрофизика И. С. Шкловского. А начинал он с наблюдения солнечных затмений.

Структура короны, как видите, напоминает картину расположения железных опилок, рассыпанных над двухполюсным магнитом. Явно видно, что у Солнца есть один магнитный полюс сверху и другой снизу, а по бокам – замкнутые структуры (иногда дипольные, иногда многополюсные).

Благодаря затмениям была не только открыта и исследована солнечная корона и лежащий под ней более плотный и прохладный слой – хромосфера, но состоялись и другие важные открытия и наблюдения. В 1868 г. в спектре хромосферы обнаружились линии не известного в ту пору на Земле химического элемента; им оказался гелий. В спектре короны тоже обнаружились неизвестные линии, которые исследователи поторопились приписать еще одному неизвестному элементу, назвав его коронием . Но это оказались линии железа при крайне высокой степени ионизации, недостижимой в ту пору в лаборатории. В 1918 г. затмение помогло подтвердить один из выводов общей теории относительности Эйнштейна: смещение изображений звезд вблизи солнечного диска продемонстрировало искривление лучей света в гравитационном поле.

В обычное время между затмениями мы не видим корону Солнца, потому что ее яркость намного меньше яркости дневного неба рядом с солнечным диском. Однако в космосе этой проблемы нет. Телескопы некоторых космических обсерваторий (например, SOHO) снабжены специальным экраном, которым можно закрыть изображение солнечного диска и увидеть околосолнечные окрестности – корону, протуберанцы, плотные потоки солнечного ветра, а также, небольшие кометы, которые становятся заметными только если пролететь вплотную к Солнцу, и о существовании которых мы ранее даже не догадывались.

Для наблюдателя на Земле лунный диск так точно совпадает по угловому размеру с солнечным, что стоит Луне чуть-чуть сместиться, и она уже открывает нам полоску фотосферы Солнца, т. е. его видимого диска (рис.). Будь Луна чуть меньше, – хотя бы на 2%, – или располагайся она чуть дальше от нас, своим диском она уже не смогла бы закрыть фотосферу Солнца, и мы бы никогда не увидели с Земли солнечную корону. Потому что стоит маленькому кусочку солнечного диска появиться, как рассеянный в атмосфере его свет делает наше небо ярко голубым, и никакая корона уже не видна.

Эти снимки показываю с удовольствием, потому что они сделаны современными любителями астрономии. Кто хорошо владеет фотокамерой и Фотошопом, может увидеть то, что раньше даже с телескопом нельзя было заметить.

Один из главных вопросов, встающих перед астрономом при подготовке к наблюдению какого-то небесного явления, в данном случае – затмения, куда ехать? Куда ехать, чтобы с наибольшей вероятностью получить желаемый результат? Факторов много: и количество ясного дневного неба в сезон наблюдения, и продолжительность явления, и его высота над горизонтом, и стоимость поездки, и политическая стабильность в регионе, и еще много других факторов.

На всей Земле в год можно наблюдать от 2 до 5 солнечных затмений, из которых не более двух – полные или кольцеобразные (см. ниже). В среднем за 100 лет происходит 237 солнечных затмений, из которых 160 – частные, 63 – полные, 14 – кольцеобразные. Через одну и ту же точку земной поверхности лунная тень проходит в среднем раз в 300 лет. То есть, если не гоняться по планете за полными солнечными затмениями, то, живя на одном месте, шанс увидеть своими глазами солнечную корону невелик.

Учитывая, что 2/3 поверхности земного шара покрыты океаном, путь лунной тени в основном проходит по поверхности воды. Но никто не наблюдает затмения с плавающего судна, поскольку требуется устойчивая опора для оптических приборов. Всегда выбирают область на суше, но и здесь у астронома много своих требований: не должно быть густой растительности, сильного ветра, высоких гор, закрывающих горизонт…

Например, куда бы вы поехали, чтобы наблюдать затмение, случившееся 29 марта 2006 г.? Посмотрите на карту с обстоятельствами затмения и выберите наиболее привлекательное место…

Правильно, в Турцию. Погода там, как правило, хорошая; перелет из России недорогой, Солнце в момент затмения высоко над горизонтом и продолжительность полной фазы затмения близка к максимальной, поскольку место расположено недалеко от середины траектории лунной тени. Поэтому многие поехали именно туда, чтобы наблюдать это полное затмение. И не ошиблись.

Любопытно, что несколько десятилетий назад, в один из предыдущих саросов (т. е. периодов времени, через которые почти в точности повторяются обстоятельства затмений) некоторые экспедиции выбрали Египет, где вероятность хорошей погоды и ясного неба еще выше, чем в Турции. Действительно, в момент затмения (и до, и после него) небо было безоблачным, но по этой причине случилось две беды. От высокой температуры пострадала светоприемная аппаратура, прежде всего – эмульсия фотопластинок, на которые в ту эпоху велось фотографирование. А из-за ветра и пыли пришлось оптическую аппаратуру накрывать целлофановой пленкой, которую быстро съели местные оголодавшие козы, и пыль повредила оптику.

Если вы в момент затмения посмотрите на Землю из космоса (рис.), то сразу увидите, с какими трудностями сталкиваются астрономы: лунная тень бежит по Земле, но она же ложится на облака, а астрономы в этот момент находятся под облаками и не видят Солнца.

Для преодоления трудностей с погодой при наблюдении солнечного затмения существует надежный вариант – нужно вести наблюдения с борта самолета, летящего над облаками в сторону движения лунной тени. В этом случае вам уже точно не страшна облачность – все увидите, но удовольствие это дорогое. А если у вас еще и очень быстрый самолет, то вы можете продлить удовольствие от созерцания и изучения солнечной короны: в вашем распоряжении будут не минуты, а часы. Когда появился первый гражданский сверхзвуковой самолет «Конкорд», один из первых его рейсов были направлен именно в погоню за лунной тенью. Сверхзвуковой самолет способен ее догнать. Ведь Луна, а значит и ее тень, движется по орбите со скоростью около 1 км/с, а Земля вращается в ту же сторону, причем на экваторе со скоростью около 500 м/с. Значит по поверхности Земли лунная тень бежит со скоростью от 1 км/с в полярных областях до 0,5 км/с на экваторе. Поскольку диаметр лунной тени у Земли обычно не превышает 280 км, продолжительность полной фазы затмения для неподвижного наблюдателя обычно не превышает 7 минут. А сверхзвуковой самолет, летящий со скоростью 1,5 М (т. е. около 500 м/с) в районе экватора может сопровождать лунную тень в течение нескольких часов!

Иногда Луна нас подводит. Это происходит в случае, если затмение наблюдается, когда Луна в апогее своей орбиты и не способна перекрыть солнечный диск целиком. Тогда ее тень не дотягивается до поверхности Земли – мы видим кольцеобразное (иногда говорят «кольцевое») солнечное затмение. Это явление почти бесполезное: в течение всего затмения остается виден яркий край поверхности (фотосферы) Солнца, поэтому корона остается незаметной. Но польза от кольцеобразного затмения все-таки есть. Можно легко отследить моменты касания видимого диска Луны с видимым диском Солнца – всего четыре касания. Эти четыре момента времени регистрируют с высокой точностью (до 1/1000 секунды), что позволяет проверять точность теории движения Луны и вращения Земли.

На этой фотографии затмения 2006 года мы видим солнечную корону. Но, обратите внимание, Луна тоже видна, хотя прямы солнечные лучи на нее не попадают. Что же подсвечивает темную сторону Луны? Это свет от Земли! В момент затмения обращенное к Луне полушарие Земли почти полностью освещено Солнцем, за исключением небольшого пяточка лунной тени. Отраженный от Земли свет уходит в сторону Луны, и мы видим ее ночное полушарие. Впрочем, и вне затмений это явление легко можно наблюдать: если вы посмотрите на молодой месяц сразу после новолуния, то увидите, что темная часть лунного диска все-таки видна как бледно-серая; называется это явление пепельным светом Луны. И в этом случае отраженный от Земли свет подсвечивает темную сторону Луны. Поэтому на видимой стороне Луны, на ее полушарии, постоянно обращенном в сторону Земли, никогда не бывает полной ночи. Там бывают яркий солнечный день и полутемная ночь, которую условно можно назвать «земной ночью». Наш земной шар довольно ярко освещает Луну. Здесь на Земле в полнолуние мы можем гулять без фонаря ночью и даже читать при Луне крупный текст. А Земля на лунном небе занимает в 13 раз большую площадь и отражает солнечный свет в несколько раз лучше лунной поверхности. Так что «земной ночью» поверхность видимого полушария Луны освещена так же ярко, как если бы на нее светили несколько десятков полных Лун. Будущим исследователям Луны не придется заботиться о ночном освещении, пока они будут работать на видимой стороне. Зато на обратной стороне Земля не видна и ночи там очень темные.

Вот еще один качественный снимок Солнечной короны. Мы понимаем, что корона нигде не кончается на самом деле – это бесконечные потоки газа, которые уходят с поверхности Солнца и уже не возвращаются к ней. Со скоростью звука и даже быстрее они несутся во все стороны от Солнца, и в том числе – к Земле.

Про условия наступления затмения я уже вкратце сказал и более детально говорить не буду. Нам важно понять, что раз орбита Луны наклонена на 5 с лишним градусов к эклиптике, а размер видимого диска всего полградуса, то лунная тень, как правило, проходит мимо Земли. И только когда три тела – Солнце, Луна и Земля – располагаются на одной прямой, лунная тень попадает на Землю. То же самое с затмениями Луны: земная тень проходит либо выше, либо ниже Луны, и лишь изредка попадает на нее. Причина этого – несовпадение плоскостей орбит.

Прохождения планет по Солнцу

А еще астрономы очень дорожат наблюдениями прохождения планет на фоне солнечного диска.

Дело тут вот в чем. Уже очень давно астрономы научились измерять относительные размеры орбит планет. Измерить во сколько раз диаметр орбиты Венеры меньше земной орбиты – простая геометрическая задача. Но реального масштаба размеров орбит Солнечной системы мы долго не знали. Разумеется, все было бы намного проще, если бы радиолокацию изобрели лет на 300 раньше, но у астрономов XVII-XVIII веков не было такого метода, а значит, оставался единственный способ – наблюдать прохождение планет на фоне солнечного диска.

Случается такое явление редко. Плоскость венерианской орбиты и плоскость земной (эклиптика) не совпадают. Наблюдать Венеру на фоне Солнца можно только тогда, когда Земля и Венера находятся в районе пересечения двух плоскостей – в узлах венерианской орбиты. Впервые это явление наблюдали и описали его в середине XVII века два англичанина – Джеремайя Хоррокс и его друг Уильям Крабтри.

Это небесное явление дало возможность измерить расстояние между Землей и Венерой, а значит, и между Землей и Солнцем, а затем – вычислить расстояния между всеми планетами, причем не в относительных единицах, а в километрах. Так астрономы вычислили все расстояния в Солнечной системе. Это стало очень важным достижением.

Фактически расстояние от Земли до Венеры было измерено методом параллакса. Этот метод предложил Эдмонд Галлей, он заключался в измерении продолжительности прохождения Венеры по диску Солнца при наблюдении из различных точек Земли, разнесенных по широте. Так как Венера проходит не через центр солнечного диска, то по времени прохождения можно установить длину хорды видимого пути планеты, а по различию этих величин, измеренных в разных точках Земли определить угловое смещение планеты относительно диска Солнца – ее параллакс, а значит, и расстояние до планеты. При этом наблюдения были достаточно просты и для их проведения требовались только телескоп и часы.

В 1761 г. при наблюдении прохождения Венеры неожиданное открытие сделал, как утверждает история, наш родной М. В. Ломоносов. В тот год для наблюдения транзита Венеры, чтобы измерить ее параллакс, во все части света отправились многочисленные академические экспедиции с самыми квалифицированными астрономами. Ломоносову в тот момент было уже около 50 лет, он болел, плохо видел, и никуда не поехал – остался наблюдать явление в простенький телескоп из окна своего дома в Санкт-Петербурге. И он единственный из всего этого огромного количество наблюдателей заметил удивительное явление.

Когда темный диск Венеры подходил к краю солнечного диска, перед ним вырос, как написал Ломоносов, пупырь, яркий ободок. Это было преломление солнечных лучей в атмосфере Венеры. Ломоносов совершенно верно интерпретировал увиденное, тогда он и написал, что у Венеры знатная атмосфера. Загадка в том, как, учитывая все условия, он мог увидеть то, что сейчас можно увидеть отчетливо только при помощи суперсовременного вакуумного телескопа? Видимо, сработала интуиция – все-таки, великий ум.

Если бы наличие у Венеры атмосферы не подтвердилось, ничего страшного, Ломоносов не утратил свой статус в научном мире. Но атмосфера у Венеры есть, поэтому значение гения Ломоносова в научном мире еще больше утвердилось. Это явление во всем мире называется «явлением Ломоносова», и мы его используем, когда изучаем далекие планеты – экзопланеты, находящиеся у других звезд.

Истинное движение планет

Видимое движение планеты складывается из движения в пространстве наблюдателя и самой планеты. Вот посмотрите, как в 2007 г. Марс «гулял» на фоне звездного неба.

Ехал-ехал, остановился, поехал назад, вновь остановился, а затем продолжил движение вперед. Как-то странно он себя ведет, не правда ли? А ничего странного в этом нет, если вспомнить, что мы наблюдаем его с движущейся Земли.

Марс обращается по своей орбите в одном направлении, не меняя его. Мы вместе с Землей обращаемся вокруг Солнца в том же направлении, но движение Земли происходит быстрее и по более короткой орбите. При этом оно складывается с более медленным движением Марса по более длинной орбите. Вот и получаются в сумме такие «кренделя», которые сильно озадачивали древних астрономов. Вся грандиозная картина звездного неба движется идеально равномерно, а планеты на фоне звезд блуждают туда-сюда. Нужно было как-то объяснить такое поведение планет и научиться его прогнозировать, создав для этого математическую теорию. И создали, взяв за основу простую механическую модель. Планета равномерно обращается по малой окружности (эпицикл), центр которой движется по большой окружности (деферент), в центре которой, – кто бы сомневался! – располагается неподвижная Земля.

Складывая два равномерных круговых движения, получаем с точки зрения земного наблюдателя петлеобразную траекторию планеты. Гениально!

Окончательный вид этой теории придал во II веке н. э. греческий математик, астроном и географ Клавдий Птолемей в своем гениальном «Альмагесте».

Он довел эту модель до великолепного состояния. Птолемей понимал, что видимое движение планет значительно сложнее, чем можно изобразить с помощью одного эпицикла, насаженного на деферент. Значит, эту небесную «коробку передач» нужно было усложнить. На первый эпицикл Птолемей «посадил» второй эпицикл с иным периодом, размером и наклоном; на него – третий… Что вам это напоминает? Ну, конечно же, ряд Фурье! Любое циклическое движение можно разложить на сумму простых синусоидальных колебаний. Птолемей не знал фурье-анализа, но он интуитивно представлял сложное движение планет в виде серии простых синусоидальных (гармонических) колебаний. Все это изложено в книге Клавдия Птолемея «Альмагест, или Математическое сочинение в тринадцати томах». В переводе с древнегреческого на русский она впервые была издана в 1998 г. Хотите заработать комплекс неполноценности – попробуйте ее прочитать.

Теорией Птолемея ученые пользовались полторы тысячи лет, до эпохи Коперника – завидное долголетие для любой научной теории. Но Коперник задался вопросом, почему у разных планет много одинаковых эпициклов с одинаковыми периодами. Он предложил поместить в центр системы не Землю, а Солнце, поскольку понимал, что на самом деле мы наблюдатели и мы движемся, поэтому и планеты перед нашими глазами синхронно описывают петли. Коперник поместил в центр Солнце, но не смог отказаться от круговых орбит. Поэтому в его системе мира у планет сохранились некоторые эпициклы.

Теория Коперника была проще теории Птолемея. Почему же она не сразу завоевала признание ученых? Потому что она противоречила некоторым наблюдательным фактам. Если Земля совершает периодическое движение по орбите, то должны наблюдаться не только петли на траекториях планет, но и регулярное параллактическое смещение звезд, а его в ту эпоху заметить не удавалось. Во второй половине XVI в. точность астрономических наблюдений не превышала 1 минуты дуги, а параллаксы звезд, как мы теперь знаем, не превышают 1 угловой секунды. Астрономам понадобилось три с половиной столетия, чтобы изобрести телескоп, усовершенствовать свои методы наблюдения и повысить их точность в 100 раз, прежде чем они надежно зафиксировали параллаксы ближайших звезд. Но кто мог знать в эпоху Коперника, что звезды от нас так далеки!

Не знал этого и Тихо Браге – лучший астроном эпохи Коперника. Он был уверен в непревзойденной точности своих наблюдений, однако звездных параллаксов заметить не смог, а потому решил, что Земля стоит на месте. И ведь в рамках научного метода он был абсолютно прав. Сегодня, используя орбитальное движение Земли, мы измеряем расстояние до звезд именно по их параллактическому смещению. Но кто мог знать в ту эпоху, что оно такое маленькое?

Опираясь на наблюдения, Тихо Браге не позволил Земле сдвинуться с места, но и теория Коперника ему тоже нравилась своей элегантностью. Поэтому Тихо создал свою, эклектическую, модель мира: Земля покоится в центре, Луна и Солнце обращаются вокруг нее, а все остальные планеты – вокруг Солнца. В ту эпоху это была вполне научная теория, объяснявшая все наблюдательные факты. Но просуществовала она недолго. Молодой сотрудник Тихо Браге немецкий математик Иоганн Кеплер перевернул своими расчетами всю небесную механику.

К концу жизни Тихо Браге понял, что хоть он и первоклассный наблюдатель, но математик он слабый, а потому для обработки своих многолетних наблюдении пригласил Иоганна Кеплера – прекрасного математика с плохим зрением, человека, который ни разу в жизни не смотрел в телескоп. Вы знаете, что Кеплер, взяв за основу теорию Коперника, нашел для орбит наилучшую форму, которая объясняла их видимое движение – эллипс, и вывел эмпирические законы движения планет – Первый, Второй и Третий законы Кеплера.

Первые два закона описывают орбиту планеты и характер движения по ней, а третий закон связывает между собой орбитальные параметры двух разных планет одной системы. Вот эти законы:

  1. Каждая планета обращается по эллипсу, в одном из фокусов которого находится Солнце.
  2. Каждая планета движется в плоскости, проходящей через центр Солнца, причем за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади.
  3. Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей орбит планет.

Эти эмпирические законы движения планет помогли Исааку Ньютону сформулировать закон всемирного тяготения (F ~ 1/R2) и сами получили теоретическое обоснование в рамках ньютоновой механики. Ньютон уточнил и расширил законы Кеплера. Он доказал, что кроме эллиптических орбит, характерных для гравитационно связанных систем, возможно движение и по другим коническим сечениям – параболе и гиперболам, описывающим однократное сближение (пролет) двух гравитационно не связанных тел.

Второй закон Кеплера оказался частным случаем фундаментального закона природы о сохранении момента импульса в изолированной системе. А третий закон, сформулированный Кеплером для двух маломассивных тел (планеты 1 и 2), обращающихся вокруг одного массивного (звезда),

Ньютон обобщил на случай двух разных двойных систем (1 и 2) с произвольными массами компонентов (M 1 , m 1 и M 2 , m 2)

Астрономы с успехом применили эту формулу не только к спутниковым системам разных планет Солнечной системы, но и к двойным звездам, получив возможность определять их массы. Это сделало закон гравитации Ньютона поистине всемирным.

Освоение космоса давно шагнуло за рамки воображения:

– каждый год космонавты отправляются за пределы Земли;

– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;

– огромные телескопы наблюдают за звездами с орбиты нашей планеты.

Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.

Будьте в курсе научных открытий – всего за час!

Книга:

<<< Назад
Вперед >>>

Наблюдения и измерения Тихо Браге позволили его ученику, немецкому ученому Иоганну Кеплеру, сделать следующий шаг в развитии астрономии.


Геоцентрическая система мира Птолемея и гелиоцентрическая система Коперника

Рассчитывая орбиту Марса, Кеплер обнаружил, что она представляет собой не окружность, как считал Коперник и другие ученые, а эллипс. Поначалу он не распространял этот вывод на другие планеты , но позже понял, что не только Марс, а все планеты имеют эллипсоидную орбиту Таким образом был открыт первый закон движения планет Кеплера. В современной формулировке он звучит так: каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон движения планет явился логичным следствием первого. Еще до формулировки первого закона, наблюдая за перемещением Марса, Кеплер заметил, что планета движется тем медленнее, чем дальше она находится от Солнца. Эллиптическая форма орбиты полностью объясняет эту особенность движения. За равные промежутки времени прямая, соединяющая планету с Солнцем, описывает равные площади – это второй закон Кеплера.

Второй закон объясняет изменение скорости движения планеты, но не дает никаких расчетов. Формула, позволяющая вычислить, с какой скоростью вращаются планеты и какое время занимает их путь вокруг Солнца, заключается в третьем законе Кеплера.

Исследования Кеплера поставили точку в споре между системами мира Птолемея и Коперника. Он убедительно доказал, что в центре нашей системы находится Солнце, а не Земля. После Кеплера в научном мире больше не предпринимались попытки реанимировать геоцентрическую систему.

Точность трех законов движения планет, открытых Кеплером, подтвердили многочисленные астрономические наблюдения. Тем не менее основания и причины этих законов оставались неясными до тех пор, пока в конце XVII в. не проявился гений Ньютона.

Всем известна история о том, как Ньютон открыл закон всемирного тяготения: ему на голову упало яблоко, и Ньютон понял, что яблоко притянула к себе Земля. В расширенной версии этой легенды присутствует еще и Луна, на которую смотрел ученый, сидя под яблоней.

После падения яблока Ньютон осознал, что сила, заставившая яблоко упасть, и сила, удерживающая Луну на земной орбите, имеет одну и ту же природу.

На самом деле, конечно, все было далеко не так просто До открытия знаменитого закона Ньютон много лет посвятил изучению механики, закономерностей движения и взаимодействия между телами. Он был не первым, кто предположил существование сил тяготения. Об этом говорил еще Галилео Галилей, но он считал, что притяжение к Земле действует только на нашей планете и простирается всего лишь до Луны. Кеплер, открывший законы движения планет, был уверен, что они работают исключительно в космосе и не имеют отношения к земной физике. Ньютон же смог объединить эти два подхода – он был первым, кто осознал, что физические законы, в первую очередь закон всемирного тяготения, универсальны и применимы ко всем материальным телам.

Суть закона всемирного тяготения сводится к тому, что между абсолютно всеми телами во Вселенной существует притяжение. Сила притяжения зависит от двух главных величин – массы тел и расстояния между ними. Чем тяжелее тело, тем сильнее оно притягивает к себе более легкие тела. Земля притягивает Луну и удерживает ее на своей орбите. Луна тоже оказывает на нашу планету определенное воздействие (оно вызывает приливы), но сила притяжения Земли, за счет большей массы, значительнее.

Кроме закона всемирного тяготения, Ньютон сформулировал три закона движения. Первый из них называют законом инерции. Он гласит: если на тело не воздействует сила, оно будет оставаться в состоянии покоя или равномерного прямолинейного движения. Второй закон вводит понятие силы и ускорения, и эти две величины, как доказал Ньютон, зависят от массы тела. Чем больше масса, тем меньшим будет ускорение при определенной приложенной силе. Третий закон Ньютона описывает взаимодействие двух материальных объектов. Самая простая его формулировка гласит: действие равно противодействию.

Открытия, совершенные Исааком Ньютоном, и выведенные им формулы дали астрономии мощный инструмент, позволивший продвинуть эту науку далеко вперед. Многие явления, не имевшие раньше объяснений, раскрыли свою природу. Стало понятно, почему планеты вращаются вокруг Солнца, а спутники вокруг планет, не улетая в открытый космос: их удерживает сила притяжения. Скорость движения планет остается равномерной благодаря закону инерции. Округлая форма небесных тел также получила свое объяснение: она приобретается благодаря гравитации, притяжению к более массивному центру.

<<< Назад
Вперед >>>