Виды теплопередачи.

В естественных условиях передача внутренней энергии тем теплообмена всегда происходит в строго определенном направлении: от тела с более высокой температурой к телу с более низкой температурой. Когда же температуры тел становятся одинаковыми, наступает состояние теплового равновесия: тела обмениваются энергией в равных количествах.

Совокупность явлений, связанных с переходом тепловой энергии из одних частей пространства в другие, который обусловлен различием температур этих частей, называют в общем случае теплообменом. В природе существует несколько видов теплообмена. Существуют три способа передачи количества теплоты от одного тела к другому: теплопроводность, конвекция и излучение.

        Теплопроводность.

Поместим в пламя спиртовки конец металлического стержня. К стержню на равных расстояниях друг от друга прикрепим с помощью воска несколько спичек. При нагревании одного конца стержня восковые шарики плавятся, и спички одна за другой падают. Это свидетельствует о том, что, внутренняя энергия передается от одного конца стержня к другому.

Рисунок 1 Демонстрация процесса теплопроводности

Выясним причину этого явления.

При нагревании конца стержня интенсивность движения частиц, из которых состоит металл, возрастает, их кинетическая энергия увеличивается. Вследствие хаотичности теплового движения они сталкиваются с более медленными частицами соседнего холодного слоя металла и передают им часть своей энергии. В результате этого внутренняя энергия передается от одного конца стержня к другому.

Передача внутренней энергии от одной части тела к другой в результате теплового движения его частиц называется теплопроводностью.

        Конвекция

Передача внутренней энергии путем теплопроводности происходит главным образом в твердых телах. В жидких и газообразных телах передача внутренней энергии осуществляется и другими способами. Так, при нагревании воды плотность ее нижних, более горячих, слоев уменьшается, а верхние слои остаются холодными и плотность их не изменяется. Под действием сил тяжести более плотные холодные слои воды опускаются вниз, а нагретые поднимаются вверх: происходит механическое перемешивание холодных и нагретых слоев жидкости. Вся вода прогревается. Аналогичные процессы происходят и в газах.

Передача внутренней энергии вследствие механического перемешивания нагретых и холодных слоев жидкости или газа называется конвекцией.

Явление конвекции играет большую роль в природе и технике. Конвекционные потоки вызывают постоянное перемешивание воздуха в атмосфере, благодаря чему состав воздуха во всех местах Земли практически одинаков. Конвекционные течения обеспечивают непрерывное поступление свежих порций кислорода к пламени в процессах горения. Вследствие конвекции происходит выравнивание температуры воздуха в жилых помещениях при отоплении, а также воздушное охлаждение приборов при работе различной радиоэлектронной аппаратуры.

Рисунок 2 Обогрев и выравнивание температуры воздуха в жилых помещениях при отоплении вследствие конвекции

        Излучение

Передача внутренней энергии может происходить и путем электромагнитного излучения. Это легко обнаружить на опыте. Включим в сеть электронагревательную печь. Она хорошо обогревает руку, когда мы подносим ее не только сверху, но и сбоку печи. Теплопроводность воздуха очень мала, а конвекционные потоки поднимаются вверх. В этом случае энергия от раскаленной электрическим током спирали в основном передается способом излучения.

Передача внутренней энергии путем излучения осуществляется не частицами вещества, а частицами электромагнитного поля - фотонами. Они не существуют внутри атомов «в готовом виде», подобно электронам или протонам. Фотоны возникают при переходе электронов из одного электронного слоя в другой, расположенный ближе к ядру, и при этом уносят с собой определенную порцию энергии. Достигая другого тела, фотоны поглощаются его атомами и целиком передают им свою энергию.

Передача внутренней энергии от одного тела к другому вследствие ее переноса частицами электромагнитного поля - фотонами, называется электромагнитным излучением. Любое тело, температура которого выше температуры окружающей среды, излучает свою внутреннюю энергию в окружающее пространство. Количество энергии, излучаемое телом в единицу времени, резко возрастает с повышением его температуры.

Рисунок 3 Опыт, иллюстрирующий передачу внутренней энергии горячего чайника через излучение

Рисунок 4 Излучение от Солнца

        Явления переноса в термодинамически неравновесных системах. Теплопроводность

В термодинамически неравновесных системах возникают особые необратимые процессы, называемые явлениями переноса, в результате которых происходит пространственный перенос энергии, массы, количества движения. К явлениям переноса относятся теплопроводность (обусловлена переносом энергии), диффузия (обусловлена переносом массы) и внутреннее трение (обусловлено переносом количества движения). Для этих явлений перенос энергии, массы и количества движения всегда происходит в направлении, обратном их градиенту, т. е. система приближается к состоянию термодинамического равновесия.

Если в одной области газа средняя кинетическая энергия молекул больше, чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. е., иными словами, выравнивание температур.

Процесс передачи энергии в форме теплоты подчиняется закону теплопроводности Фурье: количество теплоты q, которое переносится за единицу времени через единицу площади, прямо пропорционально - градиенту температуры, равному скорости изменения температуры на единицу длины х в направлении нормали к этой площади:

, (1)

где λ - коэффициент теплопроводности или теплопроводность. Знак минус показывает, что при теплопроводности энергия переносится в сторону убывания температуры. Теплопроводность λ равна количеству теплоты, переносимой через единицу площади за единицу времени при температурном градиенте, равном единице.

Очевидно, что теплота Q, прошедшая посредством теплопроводности через площадь S за время t, пропорциональна площади S, времени t и градиенту температуры :

Можно показать, что

(2)

где с V - удельная теплоемкость газа при постоянном объеме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объеме), ρ - плотность газа, <υ> - средняя арифметическая скорость теплового движения молекул, <l > - средняя длина свободного пробега.

Т.е. видно от каких причин зависит количество энергии, передаваемое путем теплопроводности, например, из комнаты через стенку на улицу. Очевидно, что из комнаты на улицу передается энергии тем больше, чем больше площадь стенки S, чем больше разность температур Δt в комнате и на улице, чем больше времени t происходит теплообмен между комнатой и улицей и чем меньше толщина стенки (толщина слоя вещества) d: ~.

Кроме того, количество энергии, передаваемое путем теплопроводности, зависит от материала, из которого изготовлена стенка. Различные вещества при одинаковых условиях передают путем теплопроводности разное количество энергии. Количество энергии, которое передается путем теплопроводности через каждую единицу площади слоя вещества за единицу времени при разности температур между его поверхностями в 1°С и при его толщине в 1 м (единицу длины), может служить мерой способности вещества передавать энергию путем теплопроводности. Эту величину называют коэффициентом теплопроводности. Чем больше коэффициент теплопроводности λ, тем больше энергии передается слоем вещества. Наибольшей теплопроводностью обладают металлы, несколько меньшей – жидкости. Наименьшей теплопроводностью обладает сухой воздух и шерсть. Этим и объясняются теплоизолирующие свойства одежды у человека, перьев у птицы и шерсти у животных.

Теплопередача - это важный физический процесс. Он предполагает перенос теплоты и является сложным процессом, который состоит из совокупности простых превращений.

Существуют определенные виды теплопередачи: конвекция, теплопроводность, тепловое излучение.

Особенности процесса

Теория теплообмена является наукой об особенностях передачи теплоты. Теплопередача - это перенос энергии в газообразных, жидких, твердых средах.

Теория о теплоте появилась в середине XVIII века. Ее автором стал М. В. Ломоносов, который сформулировал механическую теорию теплоты, воспользовавшись законом сохранения и превращения энергии.


Варианты теплообмена

Теплопередача - это составная часть теплотехники. Разные тела могут обмениваться своей внутренней энергией в форме теплоты. Вариант теплообмена является самопроизвольным процессом передачи теплоты в свободном пространстве, который наблюдается при неравномерном распределении температур.

Разность в значениях температур является обязательным условием проведения теплообмена. Распространение тепла происходит от тел, имеющих более высокую температуру, к телам, обладающим меньшим ее показателем.

Результаты исследований

Теплопередача - это процесс переноса тепла и внутри твердого тела, но при условии, что есть разность температур.

Многочисленные исследования свидетельствуют о том, что теплопередача ограждающих конструкций является сложным процессом. Для того чтобы упростить изучение сути явлений, связанных с передачей тепла, выделяют элементарные операции: кондукцию, излучение, конвекцию.

Теплопроводность: общая информация

Чаще всего используется какой вид теплопередачи? Переносом вещества внутри тела можно изменить температуру, например, нагревая металлический стержень, увеличить скорость теплового движения атомов, молекул, повысить показатель внутренней энергии, увеличить теплопроводность материала. По мере соударения частиц происходит постепенная передача энергии, в результате чего весь стержень меняет свою температуру.

Если рассматривать газообразные и жидкие вещества, то передача энергии путем теплопроводности в них имеет незначительные показатели.


Конвекция

Такие способы теплопередачи связаны с переносом теплоты при движении в газах или жидкостях из области с одним температурным значением в область с другим ее показателем. Существует подразделение конвекции на два вида: вынужденную и свободную.

Во втором случае происходит перемещение жидкости под воздействием разности в плотностях ее отдельных частей из-за нагревания. К примеру, в помещении от горячей поверхности радиатора холодный воздух поднимается вверх, получая от батареи дополнительное тепло.

В тех случаях, когда для перемещения тепла необходимо применение насоса, вентилятора, мешалки, ведут речь о вынужденной конвекции. Прогревание по всему объему жидкости в этом случае происходит существенно быстрее, нежели при свободной конвекции.


Излучение

Какой вид теплопередачи характеризует изменение температурного показателя в газообразной среде? Речь идет о тепловом излучении.

Именно оно предполагает перенос тепла в виде электромагнитных волн, подразумевающий двойной переход тепловой энергии в излучение, затем обратно.

Особенности передачи тепла

Для того чтобы проводить расчет теплопередачи, необходимо иметь представление о том, что для теплопроводности и конвекции нужна материальная среда, а для излучения в этом нет необходимости. В процессе теплообмена между телами наблюдается уменьшение температуры у того тела, у которого этот показатель имел большую величину.

На такую же точно величину повышается температура холодного тела, что подтверждает полноценный процесс обмена энергией.

Интенсивность теплообмена зависит от разности в температурах между телами, которые обмениваются энергией. Если она практически отсутствует, процесс завершается, устанавливается тепловое равновесие.


Характеристика процесса теплопроводности

Коэффициент теплопередачи связан со степенью нагретости тела. Температурным полем называют сумму показателей температур для разных точек пространства в определенный момент времени. При изменении значения температуры в единицу времени поле является нестационарным, для неизменной величины – стационарным видом.

Изотермическая поверхность

Независимо от температурного поля, всегда можно выявить точки, имеющие одинаковое температурное значение. Геометрическое расположение их образует определенную изотермическую поверхность.

В одной точке пространства не допускается одновременного нахождения двух разных температур, поэтому изотермические поверхности не могут пересекаться между собой. Можно сделать вывод о том, что изменение в теле значения температуры проявляется лишь в тех направлениях, которые пересекают изотермические поверхности.

Максимальный скачок отмечается в направлении нормали к поверхности. Температурный градиент представляет собой отношение наибольшего показателя температур к промежутку между изотермами и является векторной величиной.

Он показывает интенсивность изменения температуры внутри тела, определяет коэффициент теплопередачи. То количество теплоты, которое будет переноситься через любую изотермическую поверхность, называют тепловым потоком.

Под его плотностью подразумевают отношение к единице площади самой изотермической поверхности. Эти величины являются векторами, противоположными по направлению.


Закон Фурье

Он является основным законом теплопроводности. Суть его заключается в пропорциональности плотности теплового потока градиенту температуры.

Коэффициент теплопроводности характеризует способность тел пропускать теплоту, он зависит от физических свойств вещества и его химического состава, влажности, температуры, пористости. Влага при заполнении пор стимулирует повышение теплопроводности. При высокой пористости внутри тела содержится повышенное количество воздуха, что сказывается на уменьшении показателя теплопроводности.

Определенный коэффициент сопротивления теплопередаче есть у всех материалов, найти его можно в справочниках.

Теплопроводность в твердой стенке

В качестве обязательного условия для данного процесса считается разность температур поверхностей стенки. В такой ситуации образуется поток теплоты, который направлен от стенки с большим значением температуры к поверхности стенки с небольшой температурой.

По закону Фурье тепловой поток будет пропорционален площади стенки, а также температурному напору, и обратно пропорционален толщине этой стенки.

Приведенное сопротивление теплопередаче зависит от теплопроводности материала, из которого изготовлены стенки. Если они включают в себя несколько разных слоев, их считают многослойными поверхностями.

В качестве примера подобных материалов можно назвать стены домов, где на кирпичный слой наносят внутреннюю штукатурку, а также внешнюю облицовку. В случае загрязнения наружной поверхности передающей тепловую энергию, к примеру, радиаторов либо двигателей, грязь можно рассмотреть как наложение нового слоя, имеющего незначительный коэффициент теплопроводности.

Именно из-за этого снижается теплообмен, возникает угроза перегревания работающего двигателя. Аналогичный эффект вызывает нагар и накипь. При увеличении количества слоев стенки растет ее максимальное термическое сопротивление, уменьшается величина теплового потока.

Для многослойных стенок распределение температуры является ломаной линией. Во многих теплообменных аппаратах осуществляется прохождение теплового потока через стенки круглых трубок. Если нагревающее тело движется внутри таких трубок, то в таком случае тепловой поток направлен к наружным стенкам от внутренних частей. При наружном варианте наблюдается обратный процесс.


Теплопередача: особенности процесса

Существует взаимодействие между тепловым излучением, конвекцией, теплопроводностью. Например, в процессе конвекции происходит тепловое излучение. Теплопроводность в пористых материалах невозможна без излучения и конвекции.

При проведении практических вычислений деление сложных процессов на отдельные явления не всегда целесообразно и возможно. В основном результат суммарного воздействия нескольких простейших явлений приписывают тому процессу, который считается основным в конкретном случае.

Второстепенные процессы при таком подходе учитывают только для количественных вычислений.

В современных теплообменных аппаратах происходит передача теплоты от одного вида жидкости к другой жидкости через стенку, которая их разделяет. Важным фактором, который влияет на коэффициент теплообмена, является форма стенки. Если она плоская, в таком случае можно выделить три этапа теплопередачи:

    к поверхности стенки от нагревающей жидкости;теплопроводностью через стенку;к нагреваемой жидкости к поверхности стенки.

Полное термическое сопротивление теплопередачи является величиной, которая обратна коэффициенту теплопередачи.

Заключение

Теплопроводность является процессом передачи внутренней энергии от нагретых участков тела к его холодным частям. Подобный процесс осуществляется с помощью беспорядочно движущихся атомов, молекул, электронов. Такой процесс может происходить в телах, которые имеют неоднородное распределение значений температур, но будет отличаться в зависимости от агрегатного состояния рассматриваемого вещества.

Можно рассматривать данную величину в качестве количественной характеристики способности тела к провождению тепла. Удельной теплопроводностью называют количество тепла, которое может проходить через материал, имеющий толщину 1м, площадь 1 м²/сек.

Долгое время считали, что существует взаимосвязь между передачей тепловой энергии и перетеканием от тела к телу теплорода. Но после проведения многочисленных экспериментов была выявлена зависимость подобных процессов от температуры.

В реальности при проведении математических расчетов, касающихся определения количества теплоты, передаваемой разными способами, учитывают проводимость путем конвекции, а также проникающее излучение. Коэффициент теплопередачи связан со скоростью передвижения жидкости, характером движения, его природой, а также с физическими параметрами движущейся среды.

В качестве носителей лучистой энергии выступают электромагнитные колебания, имеющие разную длину волн. Излучать их могут любые тела, температура которых превышает нулевое значение.

Излучение является результатом процессов, происходящих внутри тела. При попадании его на другие тела наблюдается частичное ее поглощение и частичное поглощение телом.

Закон Планка определяет зависимость плотности поверхностного потока излучения черного тела от абсолютной температуры и длины волны.

Простейшие виды теплообмена, которые были рассмотрены выше, не существуют по отдельности, они взаимосвязаны друг с другом. Сочетание их является сложным теплообменом, который предполагает серьезное изучение и детальное рассмотрение.

В теплотехнических расчетах используют суммарный коэффициент передачи тепла, который представляет собой совокупность коэффициентов теплоотдачи соприкосновением, которое учитывает теплопроводность, конвекцию, излучение.

При правильном подходе и учете отдельных тепловых явлений можно с высокой достоверностью рассчитать количество теплоты, переданное телу.

Всего существует три простых (элементарных) вида передачи тепла:

§ Теплопроводность

§ Конвекция

§ Тепловое излучение

Существуют также различные виды сложного переноса тепла, которые являются сочетанием элементарных видов. Основные из них:

§ теплоотдача (конвективный теплообмен между потоками жидкости или газа и поверхностью твёрдого тела);

§ теплопередача (теплообмен от горячей жидкости к холодной через разделяющую их стенку);

§ конвективно-лучистый перенос тепла (совместный перенос тепла излучением и конвекцией);

§ термомагнитная конвекция

§ Коли́чество теплоты́ - энергия, которую получает или теряет тело при теплопередаче. Количество теплоты является одной из основныхтермодинамических величин.

§ Количество теплоты является функцией процесса, а не функцией состояния, то есть количество теплоты, полученное системой, зависит от способа, которым она была приведена в текущее состояние.

§ Единицы измерения: Джоули Дж

27.Внутренняя энергия тел и способы ее измерения

Внутренняя энергия – это одно из фундаментальных понятий в физике. К формированию этого понятия можно подойти различными путями, например, авторы учебника формирование этого понятия начинают с опыта о кажущемся нарушении закона сохранения энергии при соударении неупругих тел. Опыт: шар падает на спальную плиту. Непонятно, до удара, шар и стальная плита обладали внутренней энергией. Второй способ: используется идея о том, что работа представляет собой меру изменчивости или превращения энергии. Если тело способно совершить работу, то оно обладает энергией. Здесь можно предложить опыт с картофелем пистолетом (колба закрывается картофельной пробкой и помещается под колпак воздушного насоса, откачав воздух, пробка вылетает). Возникает вопрос: Обладал ли воздух в колбе энергией? (Да).

Дальнейшая задача состоит в том. Чтобы ознакомить учащихся со способами измерения внутренней энергии. Для этого проводится ряд опытов: нитью натирают цилиндр и резиновая пробка вылетает; в сосуд наливают немного воды, накачивают в него воздух, пробка вылетает и в сосуде наблюдается пар; в шарообразную колбу с изогнутым концом, в трубку наливается вода (капелька) держа колбу в руках капелька будет перемещаться по трубке. На основе опытов приходим к выводу, что внутреннюю энергию можно изменить двумя способами: теплообмен и совершение работы.

Виды теплопередачи: теплопроводность, конвекция, излучение.

Теплопроводность . Из жизненного опыта ученикам известен процесс передачи энергии от одного тела другому. Однако, они не подставляют себе различия тел по теплопроводности. Поэтому необходимо рассмотреть этот вопрос, используя опыт: берут стальную и медную проволоки, на равных расстояниях приклеивают парафином (пластилином) спички. Из опыта дел вывод: разные тела обладают разной теплопроводностью. При изучении вопроса можно сделать проблемную ситуацию: в картонной коробке кипятят воду.

Полезно также подчеркнуть, что при теплопроводности происходит перенос энергии, связанной с хаотическим движением микрочастиц, само же вещество не переносится. Для закрепления материала решают качественные задачи.

Конвекция . При изучении конвекции можно предложить следующие опыты: U образная трубка с перегородкой в верхней части, заполняется водой, выше уровня перегородки, затем с одного конца внизу нагревается (в трубки помещаются марганцовка, в одну трубку к низу, в другую сверху…); в трубку с двух сторон вставляют пробки с термометрами и начинают ее нагревать (термометр, находящийся выше покажет большую температуру). При конвекции происходит перенос вещества.

Излучение . Излучение, как вид переноса, связано с излучением и поглощением частицами вещества электромагнитных волн и поэтому не может быть объяснено обстоятельно 8-классникам, поэтому при ознакомлении учащихся с этим видом теплопередачи, следует проводить широко экспериментально. Здесь можно поставить проблемный опыт. Капля жидкости в трубке термоскопа перемещается вправо, указывая на расширение воздуха в термоскопе от нагревания. Формулируют проблему: "Почему капля в термоскопе перемещается и тогда, когда нагреватель расположен на одном и том же уровне с термоскопом?". Подчеркивается, что в данном случае тепло передается от нагретого тела с помощью невидимых глазом лучей – тепловых лучей. Здесь же подчеркивается, что при излучении наличие среды необязательно, перенос энергии может происходить и в вакууме (передача энергии от Солнца к Земле).

Количество теплоты . Единицы количества теплоты . Процесс совершения механической работы и процесс теплопередачи имеют общий признак – изменяют внутреннюю энергию тела.

Меру изменения внутренней энергии путем совершения работы назвали количеством работы, а меру изменения внутренней энергии в процессе теплопередачи назвали количеством теплоты.

Далее выясняют от чего зависит количество теплоты Q полученное или отданное телом. Для расчета количества теплоты необходимо ввести понятие удельной теплоемкости. Необходимо выяснить с учащимися, что количество теплоты, полученное (отданное) телом при теплопередаче зависит от рода вещества. Эту зависимость характеризую. Особой величиной, называемой удельной теплоемкостью вещества. Это можно проверить, проводя следующий эксперимент: используют прибор Тиндаля и замечают, что алюминиевый цилиндр погружается больше в парафин, затем железный и медный. Делают вывод: тела из разных веществ, но одной массы, отдают при охлаждении и требуют при нагревании на одну температуру разное количество теплоты.

После этого вводим понятие удельной теплоемкости. Для закрепления необходимо работать с таблицей удельных теплоемкостей, ставя следующие вопросы: 1. Что означает, что удельная теплоемкость воды 4200 Дж/ кг К? 2. Найдите вещество для которого теплоемкость наибольшая и т.п.

Введя понятие удельной теплоемкости, можно рассчитать количество теплоты необходимое для нагрева тела массой 1 кг на температуру для случая m вещества: . Далее изучается испарение, кипение, находят количество теплоты необходимое для плавления, для парообразования и т.д. Необходимо расплавить лед, испарить воду.

AB – процесс нагревания Q 1 =mc л (T-T 1); BC – плавление Q 2 =λm; CD – нагревание Q 3 =mc H 2O (T 2 -T o); DE – парообразование Q 2 =μm

Любое материальное тело обладает такой характеристикой как теплота, которая может увеличиваться и уменьшаться. Теплота не является материальной субстанцией: как часть внутренней энергии вещества она возникает вследствие движения и взаимодействия молекул. Поскольку теплота различных веществ может отличаться, происходит процесс передачи тепла от более нагретой субстанции к веществу с меньшим количеством теплоты. Этот процесс носит название теплопередача. Основные и механизмы их действия мы рассмотрим в этой статье.

Определение теплопередачи

Теплообмен, или процесс переноса температуры, может происходить как внутри материи, так и от одного вещества к другому. При этом интенсивность теплообмена во многом зависит от физических свойств материи, температуры веществ (если в теплообмене участвуют несколько субстанций) и законов физики. Теплопередача - это процесс, который всегда протекает в одностороннем порядке. Главный принцип теплообмена заключается в том, что наиболее нагретое тело всегда отдаёт тепло объекту с меньшей температурой. Например, при глажке одежды горячий утюг отдаёт тепло брюкам, а не наоборот. Теплопередача - явление, зависимое от временного показателя, характеризующее необратимое распространение тепла в пространстве.

Механизмы теплопередачи

Механизмы теплового взаимодействия веществ могут приобретать разные формы. Известны три вида теплообмена в природе:

  1. Теплопроводность - механизм межмолекулярной передачи тепла из одного участка тела в другой или в иной объект. Свойство основывается на неоднородности температуры в рассматриваемых субстанциях.
  2. Конвекция - теплообмен между текучими средами (жидкая, воздушная).
  3. Лучевое воздействие - передача тепла от нагретых и нагреваемых за счёт своей энергии тел (источников) в виде электромагнитных волн с постоянным спектром.

Рассмотрим перечисленные виды теплообмена более подробно.

Теплопроводность

Чаще всего теплопроводность наблюдается в твёрдых телах. Если под воздействием каких-либо факторов у одного и того же вещества появляются участки с разными температурами, то тепловая энергия из более нагретого участка перейдёт к холодному. Подобное явление в некоторых случаях можно наблюдать даже визуально. Например, если взять металлический стержень, скажем, иголку, и нагреть его на огне, то через какое-то время увидим, как тепловая энергия передаётся по иголке, образуя на определённом участке свечение. При этом в месте, где температура выше, свечение ярче и, наоборот, где t ниже, оно темнее. Теплопроводность может наблюдаться также между двумя телами (кружкой горячего чая и рукой)

Интенсивность передачи теплового потока зависит от многих факторов, соотношение которых выявил французский математик Фурье. К этим факторам относится в первую очередь градиент температуры (соотношение разности температур на концах стержня к расстоянию от одного конца к другому), площадь сечения тела, а также коэффициент теплопроводности (у всех веществ он разный, но самый высокий наблюдается у металлов). Самый значительный коэффициент теплопроводности наблюдается у меди и алюминия. Неудивительно что именно эти два металла чаще используются в изготовлении электропроводов. Следуя закону Фурье, величину теплового потока можно увеличить или уменьшить, изменив один из этих параметров.

Конвекционные виды теплообмена

Конвекция, свойственная в основном для газов и жидкостей, имеет два компонента: межмолекулярную теплопроводность и движение (распространение) среды. Механизм действия конвекции происходит следующим образом: при повышении температуры текучей субстанции её молекулы начинают более активное движение и при отсутствии пространственных ограничений объём вещества увеличивается. Следствием данного процесса будет уменьшение плотности субстанции и её движение вверх. Яркий пример конвекции - это движение нагретого радиатором воздуха от батареи к потолку.

Различают свободные и вынужденные конвективные виды теплообмена. Теплопередача и движение массы при свободном типе происходит за счёт неоднородности субстанции, то есть горячая жидкость поднимается над холодной естественным образом без оказания влияния внешних сил (например, обогрев комнаты посредством центрального отопления). При вынужденной конвекции движение массы происходит под действием внешних сил, например, помешивание чая ложкой.

Лучистый теплообмен

Лучистая или радиационная теплопередача может происходить без контакта с другим объектом или субстанцией, поэтому возможна даже в Радиационный теплообмен присущ всем телам в большей или меньшей степени и проявляется в виде электромагнитных волн с непрерывным спектром. Яркий тому пример - солнечные лучи. Механизм действия выглядит следующим образом: тело непрерывно излучает определённое количество теплоты в окружающее его пространство. Когда эта энергия попадает на другой объект или субстанцию, часть её поглощается, вторая часть проходит насквозь, а третья отражается в окружающую среду. Любой объект может как излучать тепло, так и поглощать, при этом тёмные вещества способны поглощать больше тепла, чем светлые.

Комбинированные механизмы теплопередачи

В природе виды процессов теплообмена редко встречаются по отдельности. Гораздо чаще их можно наблюдать в совокупности. В термодинамике эти сочетания даже имеют названия, скажем, теплопроводность + конвекция - это конвективный теплообмен, а теплопроводность + тепловое излучение называют радиационно-кондуктивной теплопередачей. Кроме этого, выделяют такие комбинированные виды теплообмена, как:

  • Теплоотдача - движение тепловой энергии между газом или жидкостью и твёрдым веществом.
  • Теплопередача - передача t от одной материи к другой через механическое препятствие.
  • Конвективно-лучистый теплообмен образуется при совмещении конвекции и теплового излучения.

Виды теплообмена в природе (примеры)

Теплообмен в природе играет огромную роль и не ограничивается нагреванием земного шара солнечными лучами. Обширные конвекционные потоки, такие как передвижение воздушных масс, во многом определяют погоду на всей нашей планете.

Теплопроводность ядра Земли приводит к появлению гейзеров и извержению вулканических пород. Это лишь малая часть в глобальных масштабах. В совокупности они образуют виды конвективного теплообмена и радиационно-кондуктивные типы теплопередачи необходимые для поддержания жизни на нашей планете.

Использование теплообмена в антропологической деятельности

Тепло - это важная составляющая почти всех производственных процессов. Сложно сказать, какой вид теплообмена человеком используется больше всего в народном хозяйстве. Наверное, все три одновременно. Благодаря процессам теплопередачи происходит выплавка металлов, производство огромного количества товаров, начиная с предметов повседневного использования и заканчивая космическими судами.

Крайне важное значение для цивилизации имеют тепловые агрегаты, способные преобразовывать тепловую энергию в полезную силу. Среди них можно назвать бензиновые, дизельные, компрессорные, турбинные установки. Для своей работы они используют различные виды теплообмена.

Цели урока:

Общеобразовательная: обобщить основные знания по теме «Виды теплопередачи», познакомить восьмиклассников с проявлениями теплопроводности, конвекции, излучения в природе и технике;

Развивающая: продолжить формирование у обучающихся ключевых умений, имеющих универсальное значение для различных видов деятельности - выделение проблемы, принятие решения, поиска, анализа и обработки информации;

Воспитательная: воспитывать коллективизм, творческое отношение к порученному делу.

Подготовительная работа

Урок проводится в виде защиты учебных проектов по темам «Теплопроводность в природе и технике», «Конвекция в природе и технике», «Излучение в природе и технике». Ученики или учитель выбирают руководителя, который формирует на добровольных началах группу. Тема проекта определяется по соглашению или в результате жеребьевки.
Задание каждой группы включает теоретическое обоснование, эксперимент, мультимедийную презентацию.

Учащиеся самостоятельно распределяют обязанности, осуществляют поиск и сбор информации, ее анализ и представление, продумывают план эксперимента, подготавливают необходимое оборудование для его выполнения, обсуждают и объясняют наблюдаемое.
В ходе работы над проектом учитель и ученики тесно сотрудничают, в частности, проводятся консультации, на которых учитель осуществляет контроль и корректировку деятельности учащихся.

Оформление урока

Необходимо подготовить экран и мультимедийный проектор. На экран должен быть спроецирован слайд с названием темы урока. Оборудование для экспериментов следует разместить на демонстрационном столе.

Цели урока:

1. Образовательные:

Обобщить и систематизировать знания учащихся по теме: «Виды теплопередачи»;

Уметь описывать и объяснять такие физические явления, как теплопроводность, конвекция и излучение;

Уметь использовать полученные знания в повседневной жизни.

2. Развивающие:

Развитие слухового и зрительного восприятия;

Развитие мышления, речи, памяти, внимания;


Поиск, анализ и обработка информации. 


3. Воспитательные:

 Воспитание личностных качеств (аккуратности, умений работать в коллективе, дисциплинированности);

 воспитание познавательного интереса к предмету;


способствовать воспитанию всестороннеразвитой личности ребёнка.

Оборудование: экран и мультимедийный проектор, презентация; оборудование, подготовленное каждой группой.

Ход урока.


I . Организационный этап (2 мин.)

Цель: включить учащихся в учебную деятельность, определить содержательные рамки урока:

Ознакомление с планом урока.

II. Актуализация знаний учащихся (35 мин.)

(Сл.1)

Цель: актуализировать знания о видах теплопередачи, обобщить и систематизировать знания о теплопередачи, конвекции и излучении, применить полученные знания в повседневной жизни.

(Сл.2)

1. Что с точки зрения физики объединяет следующие пословицы? (на слайде)

А) За горячее железо нехватайся. Затем кузнец клещи куёт, чтоб рук не ожечь.

Б) Наша изба неравного тепла. На печи тепло, на полу холодно.

В) Красное солнышко на белом свете чёрную землю греет.

Ответ: внутренняя энергия тел изменяется в результате теплопередачи.

2. В чём различие с точки зрения физики явлений, о которых говорится в пословицах ?

Ответ: в этих пословицах говорится о разных способах передачи тепла.

А как называются различнык способы передачи тепла в физике? (Виды теплопередачи)

3. А теперь сформулируйте тему нашего урока.

Виды теплопередачи”

Учитель: На нашем уроке мы вспомним всё, что изучали по теме: «Виды теплопередачи». Сегодня мы обобщим, систематизируем и закрепим свои знания по данной теме. Полученные знания применим в повседневной жизни.

Построим систему знаний, элементы которой мы узнали при изучении данной темы. Представим это для наглядности в виде схемы.(шаблоны на партах учащихся).

Работаем вместе (заполняем вместе).

(Сл.3)

1) Как будет называться главная фигура, отражающая название темы и схемы?

Ш. - Виды теплопередачи.

У. - Зафиксируем это.Фигура 1-она будет главной в схеме; внесем в нее текст(название), выделим фигуру или текст цветом.

2) Что изменяется в результате теплопередачи? Какаой вид энергии изменяется в результате теплопередачи?

Ш. - Внутренняя энергия тел.

У. - Виды теплопередачи связаны с изменением внутренней энергией тел.

Зафиксируем это в фигуре 2.

3) Какому важному закону подчиняются виды теплопередачи, связанные с изменением внутренней энергии тел?

Ш. - Закону сохранения и превращения энергии.

У. - Верно. Запишем это в фигуре 3. Так как это - один из важнейших законов природы, фигуру 3 разместим над фигурами 1и 2.

4,5,6) С какими конкретными видами теплопередачи мы познакомились?

Ш. - Теплопроводность, конвекция, излучение.

У. - Правильно. Отразим это в схеме, а фигуры расположим под главной в один ряд, так как каждая соотносится с самостоятельным физическим явлением.

Остальные графы обобщающей таблицы, необходимо заполнить на протяжении всего урока, слушая выступления групп и используя полученные нами знания.

У. Наш урок посвящен защите учебных проектов. Мы повторим виды теплопередачи, познакомимся с проявлениями теплопроводности, конвекции, излучения в природе и технике. Три группы выбрали один из видов теплопередачи. Задание включало теорию, эксперимент и создание компьютерной презентации. По итогам защиты группа должна подготовить фотоотчет. Обратите внимание на то, что время защиты проекта не должно превышать 5-7мин.

4. Защита проектов.

(Сл.4)

1. О каком виде теплопередачи говорится в первой пословице?

(Сл.5) (теплопроводность) .

I группа

Теплопроводность - явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте.

Теплопроводность — вид теплообмена, при котором происходит передача внутренней энергии от частиц более нагретой части тела к частицам менее нагретой части.

Эксперимент

Демонстрация разной теплопроводности серебряной(деревянной) ложки и ложки из нержавеющей стали после нагревания их в горячей воде.

Разные вещества имеют разную теплопроводность. Теплопроводность у металлов хорошая. Например, медь используется при устройстве паяльников. Теплопроводность стали в 10 раз меньше теплопроводности меди. Малой теплопроводностью обладают древесина и некоторые виды пластмасс. Это их свойство используется при изготовлении ручек для нагревательных предметов, например, чайников, кастрюль и сковородок.

Плохой теплопроводностью обладают войлок, пористый кирпич шерсть, пух, мех (обусловленная наличием между их волокнами воздуха), поэтому эти материалы, наряду с древесиной, широко используются в жилищном строительстве.

Мы принесли различные теплоизоляционные материалы- паклю, пенопласт, которые применяют в строительстве. Регулирование теплообмена является одной из основных задач строительной техники. В тех случаях, когда теплообмен является нежелательным, его стараются уменьшить. Для этого используют теплоизоляцию.

Тонкий слой воздуха между оконными стеклами предохраняет наше жилище от холода так хорошо, как и кирпичная стена. Это говорит о том, что воздух обладает плохой теплопроводностью. У жидкостей и газов теплопроводность очень мала, но и а газах и в жидкостях может передаваться тепло.

Как вам ни покажется странным, но и, снег, особенно рыхлый, обладает очень плохой теплопроводностью. Этим объясняется то, что сравнительно тонкий слой снега предохраняет озимые посевы от вымерзания.

Мех животных из-за плохой теплопроводности предохраняет их от охлаждения зимой и перегрева летом.

(Сл.11) 2. А о каком виде теплопередачи говорится во второй пословице?

(Сл.12) (конвекция).

II группа

Конвекция - вид теплопередачи, при котором энергия переносится струями газа и жидкости.

Существует два вида конвекции: естественная и вынужденная.

Естественная конвекция - самопроизвольное охлаждение, нагревание, перемещение.

Вынужденная конвекция - перемещение с помощью насоса, мешалки и т.п.

Конвекция в жидкостях. Жидкости и газы нагреваются снизу, так как у них плохая теплопроводность. У горячих слоёв жидкости (газа) плотность уменьшается, и они поднимаются вверх, уступая место более холодным. Возникает циркуляция («движение по кругу») слоёв.

В твердых телах конвекции нет, так как их частицы не обладают большой подвижностью.

Много проявлений конвекции можно обнаружить в природе и жизни человека. Конвекция также находит применение в технике.

Эксперимент

Демонстрация горения свечи, которую частично накрывают стеклянным цилиндром без дна (внизу оставляют свободное пространство); прекращение горения свечи при полном опускании стеклянного цилиндра.

Эксперимент

На столе два стакана с горячей водой, один стоит на льду, а на крышке другого лежит лед. Учащиеся объясняют, в каком стакане вода остынет быстрее (конвекция в жидкостях).

И чтобы кипяток быстрее остыл, мы ложечкой размешиваем (вынужденная конвекция)

Нагревание и охлаждение жилых помещений основано на явлении конвекции. Так охлаждающие устройства целесообразно располагать наверху, ближе к потолку, чтобы осуществлялась естественная конвекция. Обогревательные приборы располагают внизу.

Бриз - возникает на границе суши и воды, т.к. они нагреваются и остывают по-разному. Вода нагревается и остывает медленнее, чем земля(песок) в 5 раз. Из-за этого днём над сушей образуется область низкого давления, а над морем - область высокого давления. Возникает движение воздушных масс из области высокого давления в область низкого давления, что и называется дневным бризом. Ночью все происходит наоборот.

(Сл.19 ) 3. А о каком виде теплопередачи говорится в третьей пословице?

(Сл.20) (излучение).

III группа

Излучение (лучистый теплообмен) - вид теплопередачи, при котором энергия переносится тепловыми лучами (электромагнитными волнами).

Происходит всегда и везде. Может осуществляться в полном вакууме.

Излучение происходит от всех нагретых тел (от человека, костра, печи и т..д.)

Чем больше температура тела, тем сильнее его тепловое излучение.

Тела не только излучают энергию, но и поглащают.

Тела с темной поверхностью лучше поглощают и излучают энергию, чем тела, имеющие светлую поверхность.

Солнце- источник энергии на Земле.

Как передается солнечное тепло на Землю? Ведь в космическом пространстве нет ни твердых, ни жидких, ни газообразных тел. Следовательно, космическое пространство не может передавать тепло Солнца на Землю ни путем теплопроводности, ни путем конвекции. Дело в том, что тепло от Солнца к Земле передается также как сигнал с радиостанции приемнику, - электромагнитными волнами.

Много проявлений теплового излучения можно обнаружить в природе и жизни человека. Тепловое излучение также находит применение в технике.

Способность тел по разному поглощать энергию излучения используется человеком.

Вспаханная почва, почва с растительностью (Слайд). Днем почва поглощает энергию и нагревается излучением, но быстрее и охлаждается. На ее нагревание и охлаждение влияет присутствие растительности. Так, темная вспаханная почва сильнее нагревается излучением, но быстрее и охлаждается, чем почва, покрытая растительностью.

На теплообмен между почвой и воздухом влияет также погода. В ясные, безоблачные ночи почва сильно охлаждается - излучение от почвы беспрепятственно уходит в пространство. В такие ночи ранней весной возможны заморозки на почве. Если же погода облачная, то облака закрывают Землю и играют роль своеобразных экранов, защищающих почву от потери энергии путем излучения.

Демонстрация макета теплицы. Одним из средств повышения температуры участка почвы и припочвенного воздуха служат теплицы, которые позволяют полнее использовать излучение Солнца. Участок почвы покрывают стеклянными рамами или прозрачными пленками. Стекло хорошо пропускает видимое солнечное излучение, которое, попадая на темную почву, нагревает ее, но хуже пропускает невидимое излучение, испускаемое нагретой поверхностью Земли. Также пленка (стекло) препятствует движению теплого воздуха вверх, т.е. осуществлению конвекции. Таким образом, стекла теплиц действуют как «ловушка» энергии. Внутри теплиц температура выше, чем на незащищенном грунте, примерно на 10° С.(обогревают теплицу лампой и измеряют температуру снаружи и внутри теплицы, и она оказывается различной).

Какой из чайников быстрее остынет?

Для чего самолёты красят серебряной краской, а душ на даче в темный?

(Сл. 26) Термос (строение)

- Как уберечь энергию? (объясняют принцип действия и устройство термоса, акцентируя внимание на видах теплопередачи.)

Пробка (Закрепить конвекцию)

Вакуум (Долой теплопроводность)

Зеркало (Прочь излучение)

(Сл.27)

5. Обсуждение результатов заполнения таблицы

III. Заключение (3 мин)

Подведение итогов по всем этапам работы.

Рефлексия учащихся.

IV На дом:

повторить § 3 - 6, продолжить заполнение табл. дома,

творческое задание: составить кроссворды по теме « Виды теплопередачи».

Желающие ученики могут подготовить к следующему уроку доклады о применении теплопередачи в природе и технике. Примерными темами докладов могут быть: «Значение видов теплопередачи в авиации и при полетах в космос», «Виды теплопередачи в быту», «Теплопередача в атмосфере», «Учет и использование видов теплопередачи в сельском хозяйстве» и др.

Рефлексия

Если вы поняли материал, можете его рассказать и объяснить, то поставьте себе “5”.

Если материал поняли, но есть некоторые сомнения в том, что вы сможете его воспроизвести, то “4”.

Если материал усвоен слабо, то “3”.

Поднимите «смайлики”. С каким настроением у нас закончился урок?

Рефлексия урока .

Учащимся предлагается заполнить листы рефлексии.

сегодня я узнал…

было интересно…

я приобрел…

меня удивило…

урок дал мне для жизни…

мне захотелось…и я

Подведение итогов урока, выставление отметок.

или

III. ЗАКЛЮЧИТЕЛЬНЫЙ ЭТАП (3 мин)

Цель: дать анализ и оценку успешности достижения цели и наметить перспективу последующей работы;; поблагодарить одноклассников, которые помогли получить результаты урока.