Задачи на построение сечений многогранников. Исследовательская работа на тему "методы построения сечений многогранников"

На этом уроке мы рассмотрим тетраэдр и его элементы (ребро тетраэдра, поверхность, грани, вершины). И решим несколько задач на построение сечений в тетраэдре, используя общий метод для построения сечений.

Тема: Параллельность прямых и плоскостей

Урок: Тетраэдр. Задачи на построение сечений в тетраэдре

Как построить тетраэдр? Возьмем произвольный треугольник АВС . Произвольную точку D , не лежащую в плоскости этого треугольника. Получим 4 треугольника. Поверхность, образованная этими 4 треугольниками, и называется тетраэдром (Рис. 1.). Внутренние точки, ограниченные этой поверхностью, также входят в состав тетраэдра.

Рис. 1. Тетраэдр АВСD

Элементы тетраэдра
А, B , C , D - вершины тетраэдра .
AB , AC , AD , BC , BD , CD - ребра тетраэдра .
ABC , ABD , BDC , ADC - грани тетраэдра .

Замечание: можно принять плоскость АВС за основание тетраэдра , и тогда точка D является вершиной тетраэдра . Каждое ребро тетраэдра является пересечением двух плоскостей. Например, ребро АВ - это пересечение плоскостей АВ D и АВС . Каждая вершина тетраэдра - это пересечение трех плоскостей. Вершина А лежит в плоскостях АВС , АВ D , А D С . Точка А - это пересечение трех означенных плоскостей. Этот факт записывается следующим образом: А = АВС АВ D АС D .

Тетраэдр определение

Итак, тетраэдр - это поверхность, образованная четырмя треугольниками.

Ребро тетраэдра - линия перечесения двух плоскостей тетраэдра.

Составьте из 6 спичек 4 равных треугольника. На плоскости решить задачу не получается. А в пространстве это сделать легко. Возьмем тетраэдр. 6 спичек - это его ребра, четыре грани тетраэдра и будут четырьмя равными треугольниками. Задача решена.

Дан тетраэдр АВС D . Точка M принадлежит ребру тетраэдра АВ , точка N принадлежит ребру тетраэдра В D и точка Р принадлежит ребру D С (Рис. 2.). Постройте сечение тетраэдра плоскостью MNP .

Рис. 2. Рисунок к задаче 2 - Построить сечение тетраэдра плоскостью

Решение :
Рассмотрим грань тетраэдра D ВС . В этой грани точки N и P принадлежат грани D ВС , а значит, и тетраэдру. Но по условию точки N, P принадлежат секущей плоскости. Значит, NP - это линия пересечения двух плоскостей: плоскости грани D ВС и секущей плоскости. Предположим, что прямые NP и ВС не параллельны. Они лежат в одной плоскости D ВС. Найдем точку пересечения прямых NP и ВС . Обозначим ее Е (Рис. 3.).

Рис. 3. Рисунок к задаче 2. Нахождение точки Е

Точка Е принадлежит плоскости сечения MNP , так как она лежит на прямой , а прямая целиком лежит в плоскости сечения MNP .

Также точка Е лежит в плоскости АВС , потому что она лежит на прямой ВС из плоскости АВС .

Получаем, что ЕМ - линия пересечения плоскостей АВС и MNP, так как точки Е и М лежат одновременно в двух плоскостях - АВС и MNP. Соединим точки М и Е , и продолжим прямую ЕМ до пересечения с прямой АС . Точку пересечения прямых ЕМ и АС обозначим Q .

Итак, в этом случае NPQМ - искомое сечение.

Рис. 4. Рисунок к задаче 2.Решение задачи 2

Рассмотрим теперь случай, когда NP параллельна BC . Если прямая NP параллельна какой-нибудь прямой, например, прямой ВС из плоскости АВС , то прямая NP параллельна всей плоскости АВС .

Искомая плоскость сечения проходит через прямую NP , параллельную плоскости АВС , и пересекает плоскость по прямой МQ . Значит, линия пересечения МQ параллельна прямой NP . Получаем, NPQМ - искомое сечение.

Точка М лежит на боковой грани А D В тетраэдра АВС D . Постройте сечение тетраэдра плоскостью, которое проходит через точку М параллельно основанию АВС .

Рис. 5. Рисунок к задаче 3 Построить сечение тетраэдра плоскостью

Решение:
Секущая плоскость φ параллельна плоскости АВС по условию, значит, эта плоскость φ параллельна прямым АВ , АС , ВС .
В плоскости АВ D через точку М проведем прямую PQ параллельно АВ (рис. 5). Прямая PQ лежит в плоскости АВ D . Аналогично в плоскости АС D через точку Р проведем прямую РR параллельно АС . Получили точку R . Две пересекающиеся прямые PQ и РR плоскости РQR соответственно параллельны двум пересекающимся прямым АВ и АС плоскости АВС , значит, плоскости АВС и РQR параллельны. РQR - искомое сечение. Задача решена.

Дан тетраэдр АВС D . Точка М - точка внутренняя, точка грани тетраэдра АВ D . N - внутренняя точка отрезка D С (Рис. 6.). Построить точку пересечения прямой NM и плоскости АВС .

Рис. 6. Рисунок к задаче 4

Решение:
Для решения построим вспомогательную плоскость D МN . Пусть прямая D М пересекает прямую АВ в точке К (Рис. 7.). Тогда, СК D - это сечение плоскости D МN и тетраэдра. В плоскости D МN лежит и прямая NM , и полученная прямая СК . Значит, если NM не параллельна СК , то они пересекутся в некоторой точке Р . Точка Р и будет искомая точка пересечения прямой NM и плоскости АВС .

Рис. 7. Рисунок к задаче 4. Решение задачи 4

Дан тетраэдр АВС D . М - внутренняя точка грани АВ D . Р - внутренняя точка грани АВС . N - внутренняя точка ребра D С (Рис. 8.). Построить сечение тетраэдра плоскостью, проходящей через точки М , N и Р .

Рис. 8. Рисунок к задаче 5 Построить сечение тетраэдра плоскостью

Решение:
Рассмотрим первый случай, когда прямая MN не параллельна плоскости АВС . В прошлой задаче мы нашли точку пересечения прямой MN и плоскости АВС . Это точка К , она получена с помощью вспомогательной плоскости D МN , т.е. мы проводим D М и получаем точку F . Проводим СF и на пересечении MN получаем точку К .

Рис. 9. Рисунок к задаче 5. Нахождение точки К

Проведем прямую КР . Прямая КР лежит и в плоскости сечения, и в плоскости АВС . Получаем точки Р 1 и Р 2 . Соединяем Р 1 и М и на продолжении получаем точку М 1 . Соединяем точку Р 2 и N . В результате получаем искомое сечение Р 1 Р 2 NМ 1 . Задача в первом случае решена.
Рассмотрим второй случай, когда прямая MN параллельна плоскости АВС . Плоскость МNР проходит через прямую МN параллельную плоскости АВС и пересекает плоскость АВС по некоторой прямой Р 1 Р 2 , тогда прямая Р 1 Р 2 параллельна данной прямой MN (Рис. 10.).

Рис. 10. Рисунок к задаче 5. Искомое сечение

Теперь проведем прямую Р 1 М и получим точку М 1 . Р 1 Р 2 NМ 1 - искомое сечение.

Итак, мы рассмотрели тетраэдр, решили некоторые типовые задачи на тетраэдр. На следующем уроке мы рассмотрим параллелепипед.

1. И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М. : Мнемозина, 2008. - 288 с. : ил. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни)

2. Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений

3. Е. В. Потоскуев, Л. И. Звалич. - 6-е издание, стереотип. - М. : Дрофа, 008. - 233 с. :ил. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики

Дополнительные веб-ресурсы

2. Как построить сечение тетраэдра. Математика ().

3. Фестиваль педагогических идей ().

Сделай дома задачи по теме "Тетраэдр", как находить ребро тетраэдра, грани тетраэдра, вершины и поверхность тетраэдра

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил. Задания 18, 19, 20 стр. 50

2. Точка Е середина ребра МА тетраэдра МАВС . Постройте сечение тетраэдра плоскостью, проходящей через точки В, С и Е .

3. В тетраэдре МАВС точка М принадлежит грани АМВ, точка Р - грани ВМС, точка К - ребру АС. Постройте сечение тетраэдра плоскостью, проходящей через точки М, Р, К.

4. Какие фигуры могут получиться в результате пересечения плоскостью тетраэдра?

В этом методе мы первым действием (после нахождения вторичных проекций данных точек) строим след секущей плоскости на плоскости верхнего или нижнего основания призмы или усечённой пирамиды или на основании пирамиды

Зад 2. Дано изображение треугольной призмы ABCA 1 B 1 C 1 и трёх точек M , N , P , которые лежат соответственно на ребре СС 1 и гранях ABB 1 A 1 , BCC 1 B 1 . Построить сечение призмы плоскостью , проходящей через M , N , P .

Решение. Мы уже имеем одну точку на верхнем основании призмы, поэтому и след мы будем строить на верхнем основании. Строим вторичные проекции точек N и P на верхнее основание.Затем: 1 .N P N 3 P 3 =X ; 2 .M X =p –след; 3 .p B 1 C 1 =D .

Дальнейшие действия уже были показаны выше на чертеже.

Зад 3. Реш. Мы будем строить след секущей плоскости на нижнем основании призмы.

Строим:1. M N E D =X , M P EP 3 =Y ;

2. p =XY – след;3. p B C =G , p D C =H .

Нам нужно найти точку на ребре BB 1 или на ребре AA 1 .

ВграниABB 1 A 1 мы уже имеем одну точку P . Поэтому нижнее ребро этой грани, т.е. AB , мы продолжаем до пересечения со следом.

4. A B p =Z .

5. P Z AA 1 =F ; P Z BB 1 =K .Дальнейшие действия уже показаны выше.

Если окажется, что линия AB не пересекается со следом, то искомая FK тоже будет параллельна следу. Зад 4. Реш. 1. P N P o N o =X ;

2. M N CN o =Y ;3. p =XY – след;

3. C B p =Z ;4. Z M S B =E ;

5. E N S A =G 6. GEMF – иск сечение.

17. Построение сечения цилиндра.

Если секущая плоскость задана тремя точками, то мы всегда можем найти её след на плоскости основания цилиндра или конуса и точку (P , O ) на его оси. Поэтому считаем, что секущая плоскость задана именно этими элементами.

Сначала рас-им случай, когда плоскость пересекает только боковую поверхность цилиндра. Тогда сечением цилиндра будет эллипс (;¯ и его изображение – тоже эллипс. Мы знаем способ построения эллипса, если известны два его сопряжённых диаметра. Мы сейчас покажем, как можно найти изображение главных диаметров эллипса (;¯.

Пусть  и  1 – эллипсы, изображающие нижнее и верхнее основания цилиндра, O и O 1 – их центры. Проведём диаметр A 3 B 3 нижнего основания, параллельный следу и сопряжённый ему диаметр C 3 D 3 . Для построения C 3 D 3 мы используем хорду K 3 L 3 , один конец которой принадлежит контурной образующей. Напомним, что A 3 B 3 и C 3 D 3 изображают перпендикулярные диаметры. Продолжим C 3 D 3 до пересечения со следом. Получим точ X . Прям.PX наз-ём осью сечения.

Поднимем точки C 3 и D 3 до оси сечения. Получим C и D . Отрезок CD является изображением большогодиаметра сечения. Поднимем отрезок A 3 B 3 на высоту OP . Получим отрезок AB , который является изображением малого диаметра сечения. Отр-и AB и CD –сопряж-ые диам. эллипса .

Найти ещё точки, в которых эллипс переходит с видимой стороны цилиндра на невидимую, а значит, сплошная линия переходит в пунктир. Это точки пересечения секущей плоскости с контурными образующими. ПустьY 3 =K 3 L 3 C 3 D 3 . Поднимем Y 3 до оси сечения. Получим точку Y . Поднимем хорду K 3 L 3 на высоту YY 3 . Получим отрезок KL . Мы нашли требуемую точку K , а попутно, ещё одну дополнительную точку L . Точка M , изобр-щая пересечение секущей плоск-и со второй контурной образующей симметрична точкеK относительно точкиP .Допол-но построим точN , симметричнуюL относ-нточки P

Покажем способ, как можно найти любое кол-во точек на сечении без испол-ия этих диаметров.

выбираем люб. точкуV 3 на эллипсе . Проводим диаметрV 3 T 3 и продолжаем его до пересечения со следом.Получим точкуU . Поднимаем точки V 3 и T 3 до прямой UP . Получаем две точки V и T на сечении. Выбирая вместо V 3 другую точку, получим др. 2 точки на сеч.Если выбрать точку K 3 , лежащую на контурно образующей, мы найдём точки K и M , в которых сплошная линия на сечении должна перейти в пунктирную.

1. Понятие о позиционной задаче. Напомним, что плоскость называется секущей плоскостью многогранника, если по обе стороны от этой плоскости имеются точки многогранника. Сечением многогранника плоскостью называется многоугольник, сторонами которого являются отрезки, по которым секущая плоскость пересекает грани многогранника.

На рис. 30 изображена треугольная призма . (На этом проекционном чертеже изображения точек обозначены теми же буквами, что и соответствующие точки-оригиналы). Представим, что нам необходимо отметить точки: а) М , лежащую на ребре ; б) N , лежащую в грани ; в) , лежащую внутри призмы.

Если мы изобразим эти точки так, как это сделано на рисунке а), то лишь про точку М можно условно сказать, что она лежит на ребре . Положение точек N и K по этому рисунку определить нельзя. Рисунок б) уже позволяет заключить, что точка N лежит в грани , а точка –


внутри призмы. За счет чего можно сделать эти выводы? Дело в том, что на втором рисунке мы задали проекции точек N и K на плоскость основания параллельно боковым ребрам призмы. Строго говоря, для того, чтобы быть уверенным, что и точка М лежит на ребре , одних зрительных восприятий также недостаточно. (В проектировании, с помощью которого выполнялось изображение призмы, точка М служит проекцией любой точки прямой, параллельной направлению проектирования и через нее проходящей.)


Если же указать, что при проектировании, параллельном боковым ребрам призмы, точка М проектируется на основание в точку А , то такая уверенность появляется.

Аналогичная ситуация показана на рис. 31. Здесь нужно отметить точки: а) М на боковом ребре SA ; б) N – в грани SАB ;
в) К – внутри пирамиды. Разница заключается в том, что на правом рисунке используется центральное проектирование отмечаемых точек на плоскость основания пирамиды из ее вершины S .

Для того чтобы сделать изображение наглядным, в рассмотренных примерах приходится использовать не одно проектирование, а два. Первое проектирование, с помощью которого выполнено изображение многогранника, называется внешним. Второе проектирование носит вспомогательный характер. Оно связано с самой фигурой, – это, как правило, проектирование на плоскость, содержащую одну из граней многогранника. Мы будем иметь дело только с призмами и пирамидами, а в качестве такой плоскости чаще всего выбирать плоскость их основания. Вспомогательное проектирование называется внутренним. Из рассмотренных примеров видно, что для призмы удобно использовать внутреннее параллельное проектирование, а для пирамиды – центральное.

Пусть F 0 – некоторая фигура в пространстве, которая параллельно проектируется на плоскость p (внешнее проектирование). Для того чтобы изображение фигуры было наглядным, мы выбираем в пространстве некоторую плоскость , отличную от плоскости p , и рассматриваем новое проектирование, параллельное или центральное, точек фигуры F 0 на эту плоскость (внутреннее проектирование).

Рассмотрим в пространстве точку М 0 и ее проекцию на плоскость p 0 ¢ при внутреннем проектировании. Обе эти точки спроектируем на плоскость p . При этом проекция М точки М 0 называется основной (или просто проекцией), а проекция М¢ точки – вторичной.

Если для точки М 0 фигуры F 0 известны ее проекция и вторичная проекция, то по изображению мы можем судить о положении этой точки на оригинале. В этом случае говорят, что точка М 0 , принадлежащая фигуре F 0 , является заданной на проекционном чертеже. Изображение фигуры F 0 , на котором каждая точка фигуры является заданной, называется полным.

На проекционных чертежах часто приходится решать задачи о нахождении пересечения различных фигур. Такие задачи называются позиционными. Если некоторое изображение является полным, то на этом изображении разрешима любая позиционная задача.

В заключение заметим следующее. Если M 0 ¢ , N 0 ¢, K 0 ¢, ... – образы точек M 0 , N 0 , K 0 , ... при внутреннем проектировании, то при внешнем проектировании (параллельном) образы MM¢ , NN ¢, KK ¢, ... параллельных прямых M 0 M 0 ¢, N 0 N 0 ¢, K 0 K 0 ¢, ... на плоскости p также будут параллельными. Если же M 0 ¢, N 0 ¢, K 0 ¢, ... – образы точек M 0 , N 0 , K 0 , ... при внутреннем центральном проектировании с центром S 0 , то образы MM ¢, NN ¢, KK ¢, ... прямых M 0 M 0 ¢, N 0 N 0 ¢, K 0 K 0 ¢, ... при внешнем проектировании пересекаются на плоскости p в одной точке S. Эта точка будет образом точки S 0 .

Среди позиционных задач нас будут интересовать только задачи, связанные с построением сечений многоугольников. Рассмотрим основные методы построения таких сечений. Обычно при решении стереометрических задач образы точек фигуры на проекционном чертеже обозначают теми же буквами, что и соответствующие им точки на фигуре-оригинале. Мы также в дальнейшем будем придерживаться этого правила.

2. Построения сечений, основанные на свойствах параллельных прямых и плоскостей. Данный способ особенно часто используется при построении сечений параллелепипедов. Это объясняется тем, что противоположные грани параллелепипеда параллельны. По теореме о пересечении параллельных плоскостей третьей плоскостью линии пересечения параллельных граней являются параллельными отрезками.

Задача 1. Основанием четырехугольной пирамиды SABCD является параллелограмм. Постройте сечение пирамиды плоскостью, проходящей через точку , лежащую на боковом ребре AS , параллельно диагонали BD основания.

Сколько таких плоскостей можно построить? Какие фигуры могут получаться в сечении?

Решение. В плоскости основания пирамиды проведем произвольную прямую a , параллельную диагонали BD . Через эту прямую и точку проходит плоскость a , и притом единственная. По признаку параллельности прямой и плоскости и, значит, плоскость a является искомой.

В плоскости основания существует бесконечно много прямых, параллельных прямой BD, поэтому существует бесконечно много плоскостей, удовлетворяющих условию задачи.


Вид многоугольника, получающегося в сечении, зависит от числа граней, которые пересекает плоскость a . Так как четырехугольная пирамида имеет пять граней, то в сечении могут получаться треугольники, четырехугольники и пятиугольники.

На рис. 32 показаны различные случаи расположения прямой a относительно параллелограмма ABCD . Очевидно, что в зависимости от этого расположения будет определяться вид многоугольника-сечения.

Слева на рис. 33 рассмотрен случай, когда прямая a 1 пересекает стороны AD , AB в точках M , N соответственно и лежит с точкой в одном полупространстве с границей BSD . Здесь сечением является треугольник MKN.

На правом рисунке показан случай, когда прямая a 3 лежит с точкой по разные стороны от плоскости BSD и пересекает стороны DC , BC основания в точках M , N соответственно. Обозначим через Х точку пересечения прямых AD и a 3 . Так как прямая AD лежит в плоскости грани ASD , то в этой грани лежит и точка Х . С другой стороны, точка Х принадлежит прямой a 3 , лежащей в секущей плоскости. Поэтому прямая будет линией пересечения секущей плоскости и плоскости грани ASD. Это позволяет найти точку R=SD ÇKX . Аналогично, точка позволяет построить вершину T ÎBS искомого сечения. В рассмотренном случае секущая плоскость пересекает все грани пирамиды и сечение является пятиугольником.

Остальные случаи взаимного расположения прямой a и основания пирамиды рассмотрите самостоятельно.

Рассмотрим специальные методы построения сечений.

4. Метод следов. Если секущая плоскость не параллельна грани многогранника, то она пересекает плоскость этой грани по прямой. Прямая, по которой секущая плоскость пересекает плоскость грани многогранника, называется следом секущей плоскости на плоскости этой грани. Один из методов построения сечений многогранников основан на использовании следа секущей плоскости на плоскости одной из его граней. Чаще всего при построении сечений призмы и усеченной пирамиды в качестве такой плоскости выбирается плоскость нижнего основания, а в случае пирамиды – плоскость ее основания.

Рассмотрим построение сечений методом следов на примерах.

Задача 2. Дано изображение четырехугольной призмы ABCDA 1 B 1 C 1 D 1 . Задать три точки, принадлежащие ее различным боковым граням, и построить сечение, проходящее через эти три точки.

Решение. Напомним, что для задания точки на проекционном чертеже необходимо задать ее основную и вторичную проекции. В случае призмы для задания вторичных проекций мы договорились использовать внутреннее параллельное проектирование. Поэтому, чтобы задать точку М , лежащую в грани АВВ 1 А 1 , указываем ее проекцию М 1 на плоскость основания параллельно боковым ребрам призмы. Аналогично задаются точки N и K , лежащие в гранях AD 1 DA 1 , CDD 1 C 1 соответственно (рис. 34). Построим след секущей плоскости на плоскости нижнего основания призмы. Параллельные прямые ММ 1 , лежат в одной плоскости и, значит, в общем случае прямые , пересекаются в некоторой точке Х . Так как прямая лежит в секущей плоскости, а прямая – в плоскости нижнего основания, то точка Х принадлежит следу секущей плоскости на плоскости нижнего основания призмы. Аналогично, точки K , N и их вторичные проекции K 1 , N 1 позволяют найти вторую точку Y , принадлежащую искомому следу.

Прямая АВ , лежащая в грани АВВ 1 А 1 , пересекает след XY в точке Z , поэтому прямая MZ лежит как в плоскости грани АВВ 1 А 1 , так и в секущей плоскости. Отрезок ТР , где T=MZ ÇAA 1 , P=MZ ÇBB 1 , будет стороной многоугольника-сечения. Далее последовательно строим его стороны TR и RQ , проходящие через данные точки N и K соответственно. Наконец, строим сторону PQ .

Задача 3. Дано изображение пятиугольной пирамиды SABCDE. Задать точки N и K , принадлежащие боковым ребрам SC , SD соответственно и точку М , лежащую в грани ASE. Построить сечение, проходящее через заданные точки.

Решение. Для задания точек K , N и М воспользуемся внутренним центральным проектированием с центром в вершине пирамиды. При этом проекциями точек K и N будут точки D и C , а проекцией точки М – точка (рис. 35).

Прямые и , лежащие в плоскости , в общем случае пересекаются в точке Х , лежащей в секущей плоскости. С другой стороны, точка Х лежит в плоскости основания, и, значит, она принадлежит следу секущей плоскости на плоскости основания. Второй точкой искомого следа будет точка . Прямая АЕ , лежащая в грани ASE пирамиды, пересекает след XY в точке Z . Проводя прямую , находим сторону LP многоугольника-сечения. Для того чтобы найти вершину сечения, строим точку , а затем прямую .

5. Метод внутреннего проектирования. Суть этого метода заключается в том, что здесь с помощью внутреннего проектирования точки сечения ищутся по их известным вторичным проекциям. Метод внутреннего проектирования особенно удобно применять в тех случаях, когда след секущей плоскости далеко удален от заданной фигуры. Этот метод незаменим и тогда, когда некоторые из прямых, содержащих стороны основания многогранника, пересекают след за пределами чертежа. Рассмотрим применение метода на примерах.

Задача 4. Дано изображение шестиугольной призмы и трех точек, лежащих в трех боковых гранях, никакие две из которых не являются смежными. Построить сечение призмы плоскостью, проходящей через заданные точки.

Решение. Пусть заданные точки М , L , K лежат в гранях , , , а ,, – их вторичные проекции
(рис. 36).

Найдем точку, в которой секущая плоскость пересекает боковое ребро . Для этого с помощью внутреннего проектирования для точки найдем основную проекцию Х , лежащую в секущей плоскости. Искомая точка Х является точкой пересечения прямой, проходящей через точку Х¢ параллельно боковым ребрам призмы, и прямой ML , лежащей в секущей плоскости. Точка Х позволяет построить вершину , а затем сторону QR сечения. Аналогично, используя точку , строим точку Y , прямую KY и находим вершину Р сечения. Далее строятся стороны PQ и PO сечения.

Оставшиеся построения выполняем в следующей последовательности:

1) строим точку Z¢=AK¢ ÇBD ;

2) находим точку Z (Z ÎPK );

3) проводим прямую OZ и находим вершину S (S ÎDD 1) сечения;

4) последовательно строим стороны SR , ST и TO сечения.

Задача 5. Дано изображение четырехугольной пирамиды и трех точек, лежащих на ее боковых ребрах. Построить сечение, проходящее через заданные точки.

Решение. Пусть SABCD – данная пирамида, а M , N , K – данные точки (рис. 37). Вторичными проекциями точек M , N , K во внутреннем центральном проектировании из вершины S на плоскость основания являются точки A , C и D соответственно. Заметим, что в данной задаче стороны и KN сечения сразу строятся. Остается найти только вершину сечения L , лежащую на боковом ребре SB . Для этого построим точку и «поднимем» ее в секущую плоскость с помощью внутреннего проектирования. Прообразом точки Х¢ при этом центральном проектировании будет точка Х=Х¢S ÇMN. Вершина L , принадлежащая ребру SB , лежит на прямой KX.

6. Комбинированный метод . Суть этого метода заключается в сочетании метода следов или метода внутреннего проектирования с построениями, выполняемыми на основе свойств параллельных прямых и плоскостей.

Рассмотрим следующий пример.

Задача 6. Точка М является серединой ребра AD куба ABCDA 1 B 1 C 1 D 1 . Построить сечение куба плоскостью, проходящей через точку М параллельно диагонали ВD основания и диагонали АВ 1 боковой грани АА 1 В 1 В .

Решение. Секущая плоскость a параллельна диагонали BD основания и проходит через точку М , также лежащую в основании, поэтому она пересекает основание по прямой
(рис. 38).

Прямая l будет следом плоскости a на плоскости нижнего основания куба. Обозначим . След m плоскости a на плоскости грани АВВ 1 А 1 строится аналогично. Этот след проходит через точку N , параллельно АВ 1 . Обозначим .

Можно продолжить построение сечения, не прибегая к специальным методам. Однако мы воспользуемся методом следов. Пусть прямая ВС пересекает след l в точке Х . Точки Х и искомой плоскости a лежат и в плоскости грани ВСС 1 В 1 . Обозначим через L точку пересечения прямой и ребра В 1 С 1 . Далее удобно воспользоваться теоремой о пересечении двух параллельных плоскостей третьей плоскостью. В силу этой теоремы , . Здесь R ÎDD 1 , P ÎC 1 D 1 .

Докажите, что полученный в сечении шестиугольник является правильным.

Изображение окружности

1. Эллипс и его свойства. При изображении цилиндра, конуса и шара (сферы) нам придется вычерчивать эллипсы. Эллипс можно определить различными способами. Приведем определение с помощью сжатия плоскости к прямой.


Эллипсом называется линия, которая является образом окружности при сжатии плоскости к прямой, проходящей через центр окружности (рис. 39).

Если заданы окружность, прямая, проходящая через ее центр, и коэффициент сжатия, с помощью приведенного определения легко построить образ любой точки заданной окружности. Выполнив построение нескольких точек-образов и соединив их плавной линией, можно вычертить эллипс, который является образом окружности.

Oxy так, чтобы ее ось Ox совпала с прямой сжатия l , а начало О было центром окружности w радиуса a (рис. 40). В этой системе координат окружность w определяется уравнением: или

Это значит, что любая точка , координаты которой удовлетворяют уравнению (1), принадлежит окружности w , а точка, координаты которой не удовлетворяют (1) – не принадлежит.

Пусть – коэффициент сжатия, – произвольная точка плоскости, а М 0 – ее проекция на прямую l . При сжатии к точка М переходит в точку такую, что . Так как прямая ММ 1 параллельна оси Oy , то , а проекция М 0 этих точек на прямую сжатия Ox определяется координатами .

Отсюда , . Поэтому формулы сжатия имеют вид

Обратно, формулы (2) определяют сжатие плоскости к оси Ox с коэффициентом сжатия , в котором точка переходит в точку .

Из этих формул , . Подставляя x и y в уравнение (1), получим: . Значит, координаты точки М 1 , являющейся образом точки окружности, удовлетворяют уравнению

где . Это уравнение в системе Oxy определяет эллипс g , который получается при сжатии окружности w к оси Ox . Напомним, что уравнение (3) называется каноническим уравнением эллипса.

Используя каноническое уравнение эллипса, можно изучать его геометрические свойства. Вспомним некоторые понятия, связанные с эллипсом, и его свойства.

Пусть эллипс g задан в прямоугольной системе координат каноническим уравнением (3). Так как x и y входят в это уравнение во второй степени, то можно сделать следующие выводы.

Если , то Îg (рис. 41). Отсюда следует, что начало координат О является центром симметрии эллипса. Центр симметрии эллипса называется его центром .

Если , то , . Отсюда следует, что прямые Ox и Oy являются осями симметрии эллипса. Оси симметрии эллипса называются его осями . Каждая из осей пересекает эллипс в двух точках. Ось Ox имеет уравнение , поэтому из уравнения (3) для абсцисс точек А 1 , А 2 пересечения имеем . Отсюда А 1 (a ;0), А 2 (–a ;0). Аналогично находим, что ось Oy пересекает эллипс в точках В 1 (0;b ) и В 2 (0;–b ). Точки пересечения эллипса с его осями называются вершинами эллипса. Отрезки А 1 А 2 и В 1 В 2 также называются осями эллипса . Центр эллипса О является общей серединой каждого из этих отрезков.



Отрезок, концы которого принадлежат эллипсу,называется хордой этого эллипса. Хорда эллипса, проходящая через его центр, называется диаметром эллипса . Значит, оси эллипса являются его взаимно перпендикулярными диаметрами.

Заметим, что при , имеем . В этом случае A 1 A 2 >B 1 B 2 и отрезки A 1 A 2 , B 1 B 2 называются соответственно большой и малой осями эллипса. При этом числа , называются соответственно большой и малой полуосями эллипса. При , наоборот, . Здесь названия осей меняются соответствующим образом.

Рассмотрим параметрические уравнения эллипса и основанный на них способ построения точек эллипса.

Пусть отрезки А 1 А 2 и В 1 В 2 являются осями эллипса. Построим на них, как на диаметрах, концентрические окружности w 1 и w 2 соответственно (рис. 42). Рассмотрим луч h с началом в точке О . Этот луч пересекает окружности w 1 и w 2 в точках М 1 и М 2 . Через точку М 1 проведем прямую, параллельную малой оси В 1 В 2 , а через точку М 2 – прямую, параллельную большой оси А 1 А 2 . Покажем, что точка М пересечения этих прямых принадлежит эллипсу с заданными осями.

Выберем прямоугольную систему координат Oxy с началом в точке О . Пусть в этой системе точка М имеет координаты (x ;y ). Далее, пусть луч h образует с лучом ОА 1 угол t. Если , то , . Поскольку точки М и М 1 имеют равные абсциссы, а точки М и М 2 – равные ординаты,

Из равенств (4) , , поэтому в силу основного тригонометрического тождества имеем , т.е. построенная точка принадлежит эллипсу с полуосями a и b .

Для любого значения t Î}