Цепная реакция. Цепная реакция деления и атомный реактор

Управляемая цепная реакция.

Если цепную реакцию ограничить в ее развитии так, чтобы число нейтронов, образующихся в единицу времени, достигнув некоторого большого значения, далее перестало бы возрастать, то будет иметь место спокойно протекающая самоподдерживающаяся цепная реакция деления. Управлять реакцией удастся лишь в том случае, если окажется возможным регулировать коэффициент k эфф размножения нейтронов достаточно медленно и плавно, причем для оптимальной системы k эфф всего на 0,5% должен превышать единицу. Советские физики Я.Б. Зельдович и Ю.Б. Харитон теоретически показали (1939 г.), что управляемую цепную реакцию можно осуществить на природном уране.

Для развития цепного процесса в природном уране нейтроны необходимо замедлять до тепловых скоростей, поскольку в этом случае резко возрастает вероятность их захвата ядрами U с последующим делением. Для этой цели используются специальные вещества-замедлители .

Управление стационарно текущей цепной реакцией (k эфф =1) существенно упрощается благодаря наличию запаздывающих нейтронов (см.п.3.6). Оказывается, время T «разгона» реакции (время за которое число делений увеличивается в e»2,71 раз) при небольшой степени надкритичности (k эфф – 1 << 1) определятся только запаздывающими нейтронами:

T = t з ×b / (k эфф - 1),

где t з - среднее время жизни запаздывающих нейтронов (t з ~14,4с),

b - доля запаздывающих нейтронов (b ~ 0,68 % для U).

Поскольку величина t з ×b имеет порядок ~ 5×10 -2 c., то интенсивность реакции будет нарастать достаточно медленно, и реакция хорошо регулируется.

Управлять величиной k эфф можно путем автоматического введения в активную зону веществ, сильно поглощающих нейтроны, - поглотителей.

12.3.1. Ядерный реактор

Устройство, в котором осуществляется и поддерживается стационарная ядерная реакция деления, называется ядерным реактором, или атомным котлом.

Первый ядерный реактор построен под руководством Э. Ферми в конце 1942 года (США). Первый европейский реактор создан в 1946 году в Москве под руководством И. В. Курчатова.

В настоящее время в мире работает около тысячи ядерных реакторов различных типов, которые отличаются:

· по принципу работы (реакторы на тепловых, быстрых и т.д. нейтронах);

· по виду замедлителей (на тяжелой воде, графите и др.);

· по используемому топливу (урановые, ториевые, плутониевые);

· по целевому назначению (исследовательские, медицинские, энергетические, для воспроизводства ядерного горючего и др.)

Основными частями ядерного реактора (см. рис. 4.5) являются:

· активная зона (1), где находится ядерное топливо, протекает цепная реакция деления, выделяется энергия;

· отражатель нейтронов (2), окружающий активную зону;

· система регулирования цепного процесса в виде стержней-поглотителей (3) нейтронов;

· радиационная защита (4) от излучений;

· теплоноситель (5).

В гомогенных реакторах ядерное топливо и замедлитель перемешаны, образуют однородную смесь (например, соли актиноурана и тяжелая вода). В гетерогенных реакторах (рис. 4.6) ядерное топливо размещено в активной зоне в виде ТВЭЛов (тепловыделяющих элементов ) - блоков-стержней (1) небольшого сечения, заключенных в герметическую оболочку, слабо поглощающую нейтроны. Между ТВЭЛами находится замедлитель (2).

Нейтроны, образующиеся при делении ядер, не успев поглотиться в ТВЭЛах, попадают в замедлитель, где теряют свою энергию, замедляясь до тепловых скоростей. Попадая затем снова в один из ТВЭЛов, тепловые нейтроны имеют уже большую вероятность поглотиться способными к делению ядрами ( U, U, Pu). Те нейтроны, которые захватываются ядрами U, тоже играют положительную роль, восполняя в какой-то мере расход ядерного горючего.

Хорошими замедлителями являются легкие ядра: дейтерий, бериллий, углерод, кислород. Наилучшим замедлителем нейтронов является соединение дейтерия с кислородом - тяжелая вода . Однако, ввиду ее дороговизны, чаще используется углерод в виде очень чистого графита . Применяют также бериллий и его окись. ТВЭЛы и замедлитель составляют обычно правильную решетку (например, уран-графитовую).

За счет энергии деления ТВЭЛы разогреваются. Для охлаждения они размещаются в потоке теплоносителя (воздух, вода, водяной пар, He, CO 2 и др.).

Вследствие того, что в замедлителе и в ядрах-осколках деления происходит потеря нейтронов, реактор должен иметь надкритические размеры и вырабатывать излишек нейтронов. Управление цепным процессом (т.е. устранение излишка нейтронов) осуществляется управляющими стержнями (3) (см. рис. 4.5 или 4.6) из материалов, сильно поглощающих нейтроны (бористая сталь, кадмий).

Параметры реактора рассчитываются так, что при полностью введенных в активную зону стержнях-поглотителях реакция не идет. При постепенном извлечении стержней коэффициент размножения нейтронов растет, и при некотором их положении k эфф достигает единицы, реактор начинает работать. Перемещение стержней-поглотителей производится с пульта управления. Регулирование упрощается благодаря наличию запаздывающих нейтронов.

Основная характеристика ядерного реактора его мощность. Мощности в 1 МВт соответствует цепной процесс, при котором происходит 3×10 16 актов делений в 1 секунду. В реакторе имеются аварийные стержни, введение которых при внезапном увеличении мощности реакции немедленно ее сбрасывает.

В процессе работы ядерного реактора в нем происходит постепенное выгорание ядерного топлива , накапливаются осколки деления, образуются трансурановые элементы. Накопление осколков вызывает уменьшение k эфф. Этот процесс называется отравлением реактора (если осколки радиоактивные) и зашлаковыванием (если осколки стабильные). При отравлении k эфф уменьшается на (1¸3)%. Чтобы реакция не прекращалась, из активной зоны постепенно (автоматически) извлекаются специальные (компенсирующие) стержни. Когда ядерное топливо полностью выгорает, его извлекают (после прекращения реакции) и загружают новое.

Среди ядерных реакторов особое место занимают реакторы-размножители на быстрых нейтронах - бридеры . В них выработка электроэнергии сопровождается воспроизводством вторичного ядерного горючего (плутония) за счет реакции (3.5), благодаря чему используется эффективно не только изотоп U, но и U.(см.§3.6). Это позволяет кардинально решить проблему обеспечения ядерным горючим: на каждые 100 использованных ядер в таком реакторе производится 150 новых, способных к делению. Техника реакторов на быстрых нейтронах находится в стадии поисков наилучших инженерных решений. Первая опытно-промышленная станция такого типа (г. Шевченко) используется для производства электроэнергии и опреснения морской воды (Каспийское море).

УРАВНЕНИЕ ЦЕПНОЙ РЕАКЦИИ. КЛАССИФИКАЦИЯ НЕЙРОНОВ

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ГАЗОРАЗРЯДНОГО СЧЕТЧИКА

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ИОНИЗАЦИОННОЙ КАМЕРЫ

В зависимости от подаваемого напряжения детектор может работать в режиме ионизационной камеры, пропорционального счётчика и счётчика Гейгера-Мюллера.

Простейшим ионизационным детектором является ионизационная камера , представляющая собой конденсатор, состоящий из двух параллельных пластин, пространство между которыми заполнено воздухом или газом. К электродам прикладывается напряжение порядка 100 вольт, что соответствует 1 участку ВАХ. При отсутствии ионизирующего излучения промежуток между электродами является диэлектриком и ток в цепи отсутствует.

При действии ионизирующего излучения между электродами происходит ионизация молекул и атомов газа и образование положительных и отрицательных ионов. Отрицательные ионы движутся к положительному электроду, а положительные ионы наоборот. В цепи возникает ток. Напряжение между электродами подбирается таким, чтобы все образовавшиеся ионы достигли электродов, не успев рекомбинироваться, но и не разогнались бы до такой степени, чтобы вызвать вторичную ионизацию.

Ионизационные камеры просты в эксплуатации, характеризуются высокой эффективностью регистрации, но недостатками является низкая чувствительность. Напряжение, подаваемое на электроды ионизационной камеры должно составлять порядка 100 В.


Газоразрядный счётчик представляет собой металлический или стеклянный цилиндр, внутренняя поверхность покрытая металлом, который является катодом. Вдоль оси цилиндра натягивается тонкая металлическая нить диаметром порядка 100 микрон, которая является анодом.

Пропорциональные счётчики работают при напряжениях, соответствующих участку 2 ВАХ. При напряжении 100‑1000 В между электродами создаётся высокая напряжённость электрического поля и образовавшиеся первичные ионы создают вторичную ионизацию атомов и молекул газа. В таких счётчиках величина тока зависит от уровня ионизирующего излучения.

Счётчики Гейгера-Мюллера работают на 3 участке ВАХ при напряжениях превышающих 1000 В. При действии ионизирующего излучения в пространстве между электродами образуются положительные ионы и отрицательные электроны, которые двигаясь к аноду создают вторичную ионизацию. За счёт высокой напряжённости электрического поля вблизи анода, связанной с малой его площадью, вторичные электроны ускоряются настолько, что вновь ионизируют газ. Число электронов возрастает лавинообразно, возникает коронный разряд, который действует после прекращения ионизирующего излучения. Заряд обрывается включением большого сопротивления 1 МОм.


Счётчики Гейгера-Мюллера характеризуются высокой эффективностью регистрации и большой амплитудой сигнала (около 40 вольт). Недостатки: малая разрешающая способность и большое время восстановления.


Уравнение цепной реакции:

где K – количество вторичных нейтронов (2-3); q – тепловая энергия

Цепная ядерная реакция заключается в том, что под воздействием нейтронов ядра атома урана распадаются на более лёгкие ядра, называемые осколки деления . При этом образуются вторичные нейтроны и выделяется тепловая энергия. Вторичные нейтроны вновь воздействуя на ядра урана приводят к их делению с образованием новых нейтронов и выделению энергии. Процесс повторяется, развивается лавинообразно и может привести к ядерному взрыву.

Однако такое представление ядерной реакции является идеализированным, т.к. в результате захвата нейтронов примесями и вылета нейтронов из активной области ядерная реакция может затухать.

Для характеристики процессов, протекающих в ядерной реакции, вводится понятие коэффициент размножения K , который равен отношению количества нейтронов в данный момент времени к количеству нейтронов в предыдущий момент времени.

К > 1 Ядерная реакция нарастает и может привести к взрыву

К < 1 Ядерная реакция затухает

К = 1 Ядерная реакция протекает стабильно

Классификация нейтронов в зависимости от величины их энергии:

УСЛОВИЯ ПРОТЕКАНИЯ ЯДЕРНОЙ РЕАКЦИИ :

1) Уран должен быть очищен от примесей и продуктов распада;

2) При цепной реакции на быстрых нейтронах необходимо обогащение естественного урана, где его концентрация составляет 0,7% до концентрации 15%.

3) При цепной реакции на тепловых нейтронах необходимо избежать резонансного захвата нейтроном ураном-238. Для этого используются замедлители, изготовленные из графита.

4) Система ядерного топлива и замедлитель должна быть чередующаяся, т.е. гетерогенная.

5) Система должна быть сферической;

6) Для осуществления ядерной реакции должно быть достаточным количество ядерного топлива. Минимальное значение ядерного топлива, при котором еще протекает ядерная реакция, называется критическая масса.

Цепна́я я́дерная реа́кция - последовательность единичных ядерных реакций , каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной ядерной реакции является цепная реакция деления ядер тяжёлых элементов, при которой основное число актов деления инициируется нейтронами , полученными при делении ядер в предыдущем поколении.

Энциклопедичный YouTube

    1 / 3

    Ядерная физика. Ядерные реакции. Цепная ядерная реакция деления. АЭС

    Ядерные силы Энергия связи частиц в ядре Деление ядер урана Цепная реакция

    Ядерные реакции

    Субтитры

Механизм энерговыделения

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергии. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер , для преодоления которого микрочастица должна получить извне какое-то количество энергии - энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога , ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций , такое повышение обычно составляет сотни кельвинов, в случае же ядерных реакций - это минимум 10 7 К из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются как продукты экзоэнергетической реакции.

Цепные реакции

Цепные реакции широко распространены среди химических реакций, где роль частиц с неиспользованными связями выполняют свободные атомы или радикалы . Механизм цепной реакции при ядерных превращениях могут обеспечить нейтроны , не имеющие кулоновского барьера и возбуждающие ядра при поглощении. Появление в среде необходимой частицы вызывает цепь следующих, одна за другой реакций, которая продолжается до обрыва цепи вследствие потери частицы-носителя реакции. Основных причин потерь две: поглощение частицы без испускания вторичной и уход частицы за пределы объёма вещества, поддерживающего цепной процесс. Если в каждом акте реакции появляется только одна частица-носитель, то цепная реакция называется неразветвлённой . Неразветвлённая цепная реакция не может привести к энерговыделению в больших масштабах.

Если в каждом акте реакции или в некоторых звеньях цепи появляется более одной частицы, то возникает разветвленная цепная реакция, ибо одна из вторичных частиц продолжает начатую цепь, а другие дают новые цепи, которые снова ветвятся. Правда, с процессом ветвления конкурируют процессы, приводящие к обрывам цепей, и складывающаяся ситуация порождает специфические для разветвленных цепных реакций предельные или критические явления. Если число обрывов цепей больше, чем число появляющихся новых цепей, то самоподдерживающаяся цепная реакция (СЦР) оказывается невозможной. Даже если её возбудить искусственно, введя в среду какое-то количество необходимых частиц, то, поскольку число цепей в этом случае может только убывать, начавшийся процесс быстро затухает. Если же число образующихся новых цепей превосходит число обрывов, цепная реакция быстро распространяется по всему объёму вещества при появлении хотя бы одной начальной частицы.

Область состояний вещества с развитием цепной самоподдерживающейся реакции отделена от области, где цепная реакция вообще невозможна, критическим состоянием . Критическое состояние характеризуется равенством между числом новых цепей и числом обрывов.

Достижение критического состояния определяется рядом факторов. Деление тяжелого ядра возбуждается одним нейтроном, а в результате акта деления появляется более одного нейтрона (например, для 235 U число нейтронов, родившихся в одном акте деления, в среднем равно от 2 до 3). Следовательно, процесс деления может породить разветвленную цепную реакцию, носителями которой будут служить нейтроны. Если скорость потерь нейтронов (захватов без деления, вылетов из реакционного объёма и т. д.) компенсирует скорость размножения нейтронов таким образом, что эффективный коэффициент размножения нейтронов в точности равен единице, то цепная реакция идёт в стационарном режиме. Введение отрицательных обратных связей между эффективным коэффициентом размножения и скоростью энерговыделения позволяет осуществить управляемую цепную реакцию, которая используется, например, в ядерной энергетике . Если коэффициент размножения больше единицы, цепная реакция развивается экспоненциально; неуправляемая цепная реакция деления используется в

Рассмотрим механизм цепной реакции деления. При делении тяжелых ядер под действием нейтронов возникают новые нейтроны. Например, при каждом делении ядра урана 92 U 235 в среднем возникает 2.4 нейтрона. Часть этих нейтронов снова может вызвать деление ядер. Такой лавинообразный процесс называется цепной реакцией .
Цепная реакция деления идет в среде, в которой происходит процесс размножения нейтронов. Такая среда называется активной зоной . Важнейшей физической величиной, характеризующей интенсивность размножения нейтронов, является коэффициент размножения нейтронов в среде k ∞ . Коэффициент размножения равен отношению количества нейтронов в одном поколении к их количеству в предыдущем поколении. Индекс ∞ указывает, что речь идет об идеальной среде бесконечных размеров. Аналогично величине k ∞ определяется коэффициент размножения нейтронов в физической системе k. Коэффициент k является характеристикой конкретной установки.
В делящейся среде конечных размеров часть нейтронов будет уходить из активной зоны наружу. Поэтому коэффициент k зависит еще от вероятности Р для нейтрона не уйти из активной зоны. По определению

k = k ∞ P. (1)

Величина Р зависит от состава активной зоны, ее размеров, формы, а также от того, в какой степени окружающее активную зону вещество отражает нейтроны.
С возможностью ухода нейтронов за пределы активной зоны связаны важные понятия критической массы и критических размеров. Критическим размером называется размер активной зоны, при котором k = 1. Критической массой называется масса активной зоны критических размеров. Очевидно, что при массе ниже критической цепная реакция не идет, даже если > 1. Наоборот, заметное превышение массы над критической ведет к неуправляемой реакции - взрыву.
Если в первом поколении имеется N нейтронов, то в n-м поколении их будет Nk n . Поэтому при k = 1 цепная реакция идет стационарно, при k < 1 реакция гаснет, а при k > 1 интенсивность реакции нарастает. При k = 1 режим реакции называется критическим , при k > 1 – надкритическим и при k < 1 – подкритическим .
Время жизни одного поколения нейтронов сильно зависит от свойств среды и имеет порядок от 10 –4 до 10 –8 с. Из-за малости этого времени для осуществления управляемой цепной реакции надо с большой точностью поддерживать равенство k = 1, так как, скажем, при k = 1.01 система почти мгновенно взорвется. Посмотрим, какими факторами определяются коэффициенты k ∞ и k.
Первой величиной, определяющей k ∞ (или k), является среднее число нейтронов, испускаемых в одном акте деления. Число зависит от вида горючего и от энергии падающего нейтрона. В табл. 1 приведены значения основных изотопов ядерной энергетики как для тепловых, так и для быстрых (Е = 1 МэВ) нейтронов.

Энергетический спектр нейтронов деления для изотопа 235 U приведен на рис. 1. Такого рода спектры сходны для всех делящихся изотопов: имеется сильный разброс по энергиям, причем основная масса нейтронов имеет энергии в области 1–3 МэВ. Возникшие при делении нейтроны замедляются, диффундируют на некоторое расстояние и поглощаются либо с делением, либо без него. В зависимости от свойств среды нейтроны успевают до поглощения замедлиться до различных энергий. При наличии хорошего замедлителя основная масса нейтронов успевает замедлиться до тепловых энергий порядка 0.025 эВ. В этом случае цепная реакция называется медленной , или, что то же самое, тепловой . При отсутствии специального замедлителя нейтроны успевают замедлиться лишь до энергий 0.1–0.4 МэВ, так как все делящиеся изотопы – тяжелые и поэтому замедляют плохо. Соответствующие цепные реакции называются быстрыми (подчеркнем, что эпитеты “быстрый” и “медленный” характеризуют скорость нейтронов, а не скорость реакции). Цепные реакции, в которых нейтроны замедляются до энергий от десятков до одного кэВ, называются промежуточными .
При столкновении нейтрона с тяжелым ядром всегда возможен радиационный захват нейтрона (n,γ). Этот процесс будет конкурировать с делением и тем самым уменьшать коэффициент размножения. Отсюда вытекает, что второй физической величиной, влияющей на коэффициенты k ∞ , k, является вероятность деления при захвате нейтрона ядром делящегося изотопа. Эта вероятность для моноэнергетических нейтронов, очевидно, равна

, (2)

где nf , nγ – соответственно сечения деления и радиационного захвата. Для одновременного учета как числа нейтронов на акт деления, так и вероятности радиационного захвата вводится коэффициент η , равный среднему числу вторичных нейтронов на один захват нейтрона делящимся ядром.

, (3)

величина η зависит от вида горючего и от энергии нейтронов. Значения η для важнейших изотопов для тепловых и быстрых нейтронов приведены в той же табл. 1. Величина η является важнейшей характеристикой ядер горючего. Цепная реакция может идти только при η > 1. Качество горючего тем выше, чем больше значение η .

Таблица 1. Значения ν , η для делящихся изотопов

Ядро 92 U 233 92 U 235 94 Pu 239
Тепловые нейтроны
(Е = 0.025 эВ)
ν 2.52 2.47 2.91
η 2.28 2.07 2.09
Быстрые нейтроны
(E = 1 МэВ)
ν 2.7 2.65 3.0
η 2.45 2.3 2.7

Качество ядерного горючего определяется его доступностью и коэффициентом η . В природе встречаются только, три изотопа, которые могут служить ядерным топливом или сырьем для его получения. Это изотоп тория 232 Th и изотопы урана 238 U и 235 U. Из них первые два цепной реакции не дают, но могут быть переработаны в изотопы, на которых реакция идет. Изотоп 235 U сам дает цепную реакцию. В земной коре тория в несколько раз больше, чем урана. Природный торий практически состоит только из одного изотопа 232 Th. Природный уран в основном состоит из изотопа 238 U и только на 0.7% из изотопа 235 U.
На практике крайне важен вопрос об осуществимости цепной реакции на естественной смеси изотопов урана, в которой на одно ядро 235 U приходится 140 ядер 238 U. Покажем, что на естественной смеси медленная реакция возможна, а быстрая – нет. Для рассмотрения цепной реакции на естественной смеси удобно ввести новую величину – среднее сечение поглощения нейтрона, отнесенное к одному ядру изотопа 235 U. По определению

Для тепловых нейтронов = 2.47, = 580 барн, = 112 барн, = 2.8 барн (обратите внимание на малость последнего сечения). Подставив эти цифры в (5), мы получим, что для медленных нейтронов в естественной смеси

Это означает, что 100 тепловых нейтронов, поглотившись в естественной смеси, создадут 132 новых нейтрона. Отсюда прямо следует, что цепная реакция на медленных нейтронах в принципе возможна на естественном уране. В принципе, потому что для реального осуществления цепной реакции надо уметь замедлять нейтроны с малыми потерями.
Для быстрых нейтронов ν = 2.65, 2 барн, 0.1 барн. Если учитывать деление только на изотопе 235 U, получим

235 (быстр.) 0.3. (7)

Но надо еще учесть, что быстрые нейтроны с энергиями больше 1 МэВ могут с заметной относительной интенсивностью делить и ядра изотопа 238 U, которого в естественной смеси очень много. Для деления на 238 U коэффициент равен примерно 2.5. В спектре деления примерно 60% нейтронов имеют энергии выше эффективного порога 1.4 МэВ деления на 238 U. Но из этих 60% только один нейтрон из 5 успевает произвести деление, не замедлившись до энергии ниже пороговой за счет упругого и особенно неупругого рассеяния. Отсюда для коэффициента 238 (быстр.) получается оценка

Таким образом, на быстрых нейтронах цепная реакция в естественной смеси (235 U + 238 U) идти не может. Экспериментально установлено, что для чистого металлического урана коэффициент размножения достигает значения единицы при обогащении 5.56%. Практически оказывается, что реакцию на быстрых нейтронах можно поддерживать лишь в обогащенной смеси, содержащей не меньше 15% изотопа 235 U.
Естественную смесь изотопов урана можно обогащать изотопом 235 U. Обогащение является сложным и дорогостоящим процессом из-за того, что химические свойства обоих изотопов почти одинаковы. Приходится пользоваться небольшими различиями в скоростях химических реакций, диффузии и др., возникающими вследствие различия масс изотопов. Цепную реакцию на 235 U практически всегда осуществляют в среде с большим содержанием 238 U. Часто используется естественная смесь изотопов, для которой η = 1.32 в области тепловых нейтронов, так как 238 U также полезен. Изотоп 238 U делится нейтронами с энергией выше 1 МэВ. Это деление приводит к небольшому дополнительному размножению нейтронов.
Сравним цепные реакции деления на тепловых и быстрых нейтронах.
У тепловых нейтронов сечения захвата велики и сильно меняются при переходе от одного ядра к другому. На ядрах некоторых элементов (например, на кадмии) эти сечения в сотни и более раз превосходят сечения на 235 U. Поэтому к активной зоне установок на тепловых нейтронах предъявляются требования высокой чистоты по отношению к некоторым примесям.
Для быстрых нейтронов все сечения захвата малы и не так уж сильно отличаются друг от друга, так что проблемы высокой чистоты материалов не возникает. Другим преимуществом быстрых реакций является более высокий коэффициент воспроизводства.
Важное отличительное свойство тепловых реакций состоит в том, что в активной зоне топливо значительно сильнее разбавлено, т. е. на одно ядро топлива приходится значительно больше не участвующих в делении ядер, чем в быстрой реакции. Например, в тепловой реакции на естественном уране на ядро топлива 235 U приходится 140 ядер сырья 238 U, а в быстрой реакции на ядро 235 U может приходиться не более пяти-шести ядер 238 U. Разбавленность топлива в тепловой реакции приводит к тому, что одна и та же энергия в тепловой реакции выделяется в значительно большем объеме вещества, чем в быстрой. Тем самым из активной зоны тепловой реакции легче отводить тепло, что позволяет осуществлять эту реакцию с большей интенсивностью, чем быструю.
Время жизни одного поколения нейтронов для быстрой реакции на несколько порядков меньше, чем для тепловой. Поэтому скорость протекания быстрой реакции может заметно измениться через очень короткое время после изменения физических условий в активной зоне. При нормальной работе реактора этот эффект несуществен, поскольку в этом случае режим работы определяется временами жизни запаздывающих , а не мгновенных нейтронов.
В однородной среде, состоящей только из делящихся изотопов одного вида, коэффициент размножения был бы равен η. Однако в реальных ситуациях, кроме делящихся ядер, всегда присутствуют другие, неделящиеся. Эти посторонние ядра будут захватывать нейтроны и тем самым влиять на коэффициент размножения. Отсюда следует, что третьей величиной, определяющей коэффициенты k ∞ , k, является вероятность того, что нейтрон не будет захвачен одним из неделящихся ядер. В реальных установках “посторонний” захват идет на ядрах замедлителя, на ядрах различных конструктивных элементов, а также на ядрах продуктов деления и продуктов захвата.
Для осуществления цепной реакции на медленных нейтронах в активную зону вводят специальные вещества – замедлители, которые превращают нейтроны деления в тепловые. На практике цепная реакция на медленных нейтронах осуществляется на естественном или слегка обогащенном изотопом 235 U уране. Присутствие большого количества изотопа 238 U в активной зоне усложняет процесс замедления и делает необходимым предъявление высоких требований к качеству замедлителя. Жизнь одного поколения нейтронов в активной зоне с замедлителем приближенно можно разбить на две стадии: замедление до тепловых энергий и диффузия с. тепловыми скоростями до поглощения. Для того чтобы основная часть нейтронов успела замедлиться без поглощения, необходимо выполнение условия

где σ упр, σ захв – усредненные по энергиям сечения соответственно упругого рассеяния и захвата, а n – число столкновений нейтрона с ядрами замедлителя, необходимое для достижения тепловой энергии. Число n быстро растет с ростом массового числа замедлителя. Для урана 238 U число n имеет порядок нескольких тысяч. А отношение σ упр /σ захв для этого изотопа даже в сравнительно благоприятной области энергий быстрых нейтронов не превышает 50. Особенно же “опасна” в отношении захвата нейтронов так называемая резонансная область от 1 кэВ до 1 эВ. В этой области полное сечение взаимодействия нейтрона с ядрами 238 U имеет большое число интенсивных резонансов (рис. 2). При низких энергиях радиационные ширины превышают нейтронные. Поэтому в области резонансов отношение σ упр /σ захв становится даже меньше единицы. Это означает, что при попадании в область одного из резонансов нейтрон поглощается практически со стопроцентной вероятностью. А так как замедление на таком тяжелей ядре, как уран, идет “мелкими шагами”, то при прохождении через резонансную область замедляющийся нейтрон обязательно “наткнется” на один из резонансов и поглотится. Отсюда следует, что на естественном уране без посторонних примесей цепную реакцию осуществить нельзя: на быстрых нейтронах реакция не идет из-за малости коэффициента η, а медленные нейтроны не могут образоваться, Для того чтобы избежать резонансного захвата нейтрона, надо использовать для замедления очень легкие ядра, на которых замедление идет “крупными шагами”, что резко увеличивает вероятность благополучного “проскакивания” нейтрона через резонансную область энергий. Наилучшими элементами-замедлителями являются водород, дейтерий, бериллий, углерод. Поэтому используемые на практике замедлители в основном сводятся к тяжелой воде, бериллию, окиси бериллия, графиту, а также обычной воде, которая замедляет нейтроны не хуже тяжелой воды, но поглощает их в гораздо большем количестве. Замедлитель должен быть хорошо очищен. Заметим, что для осуществления медленной реакции замедлителя должно быть в десятки, а то и в сотни раз больше, чем урана, чтобы предотвратить резонансные столкновения нейтронов с ядрами 238 U.

Замедляющие свойства активной среды приближенно могут быть описаны тремя величинами: вероятностью нейтрону избежать поглощения замедлителем во время замедления, вероятностью р избежать резонансного захвата ядрами 238 U и вероятностью f тепловому нейтрону поглотиться ядром горючего, а не замедлителя. Величина f называется обычно коэффициентом теплового использования. Точный расчет этих величин сложен. Обычно для их вычисления пользуются приближенными полуэмпирическими формулами.

Величины p и f зависят не только от относительного количества замедлителя, но и от геометрии его размещения в активной зоне. Активная зона, состоящая из однородной смеси урана и замедлителя, называется гомогенной, а система их чередующихся блоков урана и замедлителя называется гетерогенной (рис. 4). Качественно гетерогенная система отличается тем, что в ней образовавшийся в уране быстрый нейтрон успевает уйти в замедлитель, не достигнув резонансных энергий. Дальнейшее замедление идет уже в чистом замедлителе. Это повышает вероятность p избежать резонансного захвата

p гет > p гом.

С другой стороны, наоборот, став в замедлителе тепловым, нейтрон должен для участия в цепной реакции продиффундировать, не поглотившись в чистом замедлителе, до его границы. Поэтому коэффициент теплового использования f в гетерогенной среде ниже, чем в гомогенной:

f гет < f гом.

Для оценки коэффициента размножения k ∞ теплового реактора используется приближенная формула четырех сомножителей

k ∞ = η pf ε . (11)

Первые три сомножителя мы уже рассматривали ранее. Величина ε называется коэффициентом размножения на быстрых нейтронах . Этот коэффициент вводится для того, чтобы учесть, что часть быстрых нейтронов может произвести деление, не успев замедлиться. По своему смыслу коэффициент ε всегда превышает единицу. Но это превышение обычно невелико. Типичным для тепловых реакций является значение ε = 1.03. Для быстрых реакций формула четырех сомножителей неприменима, так как каждый коэффициент зависит от энергии и разброс по энергиям при быстрых реакциях очень велик.
Поскольку величина η определяется видом топлива, а величина ε для медленных реакций почти не отличается от единицы, то качество конкретной активной среды определяется произведением pf. Так, преимущество гетерогенной среды перед гомогенной количественно проявляется в том, что, например, в системе, в которой на одно ядро естественного урана приходится 215 ядер графита, произведение pf равно 0,823 для гетерогенной среды и 0,595 для гомогенной. А так как для естественной смеси η = 1,34, то мы и получим, что для гетерогенной среды k ∞ > 1, а для гомогенной k ∞ < 1.
Для практического осуществления стационарно текущей цепной реакции надо уметь этой реакцией управлять. Это управление существенно упрощается благодаря вылету запаздывающих нейтронов при делении. Подавляющее большинство нейтронов вылетает из ядра практически мгновенно (т. е. за время, на много порядков меньшее времени жизни поколения нейтронов в активной зоне), но несколько десятых процента нейтронов являются запаздывающими и вылетают из ядер-осколков через довольно большой промежуток времени – от долей секунды до нескольких и даже десятков секунд. Качественно влияние запаздывающих нейтронов можно пояснить так. Пусть коэффициент размножения мгновенно возрос от подкритического значения до такого надкритического, что k < 1 при отсутствии запаздывающих нейтронов. Тогда, очевидно, цепная реакция начнется не сразу, а лишь после вылета запаздывающих нейтронов. Тем самым процесс течения реакции будет регулируемым, если время срабатывания регулирующих устройств будет меньше сравнительно большого времени задержки запаздывающих нейтронов, а не очень малого времени развития цепной реакции. Доля запаздывающих нейтронов в ядерных горючих колеблется от 0.2 до 0.7%. Среднее время жизни запаздывающих нейтронов составляет приблизительно 10 с. При небольшой степени надкритичности скорость нарастания интенсивности цепной реакции определяется только запаздывающими нейтронами.
Захват нейтронов не участвующими в цепной реакции ядрами снижает интенсивность реакции, но может быть полезным в отношении образования новых делящихся изотопов. Так, при поглощении нейтронов изотопов урана 238 U и тория 232 Th образуются (через два последовательных β-распада) изотопы плутония 239 Pu и урана 233 U, являющиеся ядерным горючим:

, (12)
. (13)

Эти две реакции открывают реальную возможность воспроизводства ядерного горючего в процессе течения цепной реакции. В идеальном случае, т. е. при отсутствии ненужных потерь нейтронов, на воспроизводство может идти в среднем – 1 нейтронов на каждый акт поглощения нейтрона ядром горючего.

Ядерные (атомные) реакторы

Реактором называется устройство, в котором поддерживается управляемая цепная реакция деления. При работе реактора происходит выделение тепла за счет экзотермичности реакции деления. Основной характеристикой реактора является его мощность – количество тепловой энергии, выделяющейся в единицу времени. Мощность реактора измеряете в мегаваттах (10 6 Вт). Мощность в 1 МВт соответствует цепной реакции, в которой происходит 3·10 16 актов деления в секунду. Имеется большое количество разных видов реакторов. Одна из типичных схем теплового реактора изображена на рис. 5.
Основной частью реактора является активная зона, в которой протекает реакция и тем самым выделяется энергия. В тепловых реакторах и в реакторах на промежуточных нейтронах активная зона состоит из горючего, как правило, смешанного с неделящимся изотопом (обычно 238 U) и из замедлителя. В активной зоне реакторов на быстрых нейтронах замедлителя нет.
Объем активной зоны варьируется от десятых долей литра в некоторых реакторах на быстрых нейтронах до десятков кубометров в больших тепловых реакторах. Для уменьшения утечки нейтронов активной зоне придают сферическую или близкую к сферической форму (например, цилиндр с высотой, примерно равной диаметру, или куб).
В зависимости от относительного расположения горючего и замедлителя различают гомогенные и гетерогенные реакторы. Примером гомогенной активной зоны может служить раствор уранил-сульфатной соли иU 2 SO 4 в обычной или тяжелой воде. Более распространены гетерогенные реакторы. В гетерогенных реакторах активная зона состоит из замедлителя, в который помещаются кассеты, содержащие горючее. Поскольку энергия выделяется именно в этих кассетах, их называют тепловыделяющими элементами или сокращенно твэлами . Активная зона с отражателем часто заключается в стальной кожух.

  • Роль запаздывающих нейтронов в управлении ядерным реактором

Испускаемые при делении ядер вторичные нейтроны могут вызвать новые акты деле­ния, что делает возможным осуществление цепной реакции деления - ядерной реак­ции, в которой частицы, вызывающие ре­акцию, образуются как продукты этой ре­акции. Цепная реакция деления характе­ризуется коэффициентом размножения k нейтронов, который равен отношению числа нейтронов в данном поколении к их числу в предыдущем поколении. Необхо­димым условием для развития цепной ре­акции деления является требование k 1.

Оказывается, что не все образующие­ся вторичные нейтроны вызывают после­дующее деление ядер, что приводит к уменьшению коэффициента размноже­ния. Во-первых, из-за конечных размеров активной зоны (пространство, где проис­ходит цепная реакция) и большой про­никающей способности нейтронов часть из них покинет активную зону раньше, чем будет захвачена каким-либо ядром. Во-вторых, часть нейтронов захватывается ядрами неделящихся примесей, всегда присутствующих в активной зоне. Кроме того, наряду с делением могут иметь место конкурирующие процессы радиационного захвата и неупругого рассеяния.

Коэффициент размножения зависит от природы делящегося вещества, а для дан­ного изотопа - от его количества, а также размеров и формы активной зоны. Мини­мальные размеры активной зоны, при ко­торых возможно осуществление цепной реакции, называются критическими разме­рами. Минимальная масса делящегося ве­щества, находящегося в системе критиче­ских размеров, необходимая для осуще­ствления цепной реакции, называется критической массой.

Скорость развития цепных реакций различна. Пусть Т - среднее время жизни одного поколения, а N - число нейтронов в данном поколении. В следующем поколе­нии их число равно kN, т. е. прирост числа нейтронов за одно поколение dN= kN-N=N (k- 1). Прирост же числа нейтро­нов за единицу времени, т. е. скорость

нарастания цепной реакции,

dN/dt=N(k-1)/T (266.1)

Интегрируя (266.1), получим

N=N 0 e (k-1)t/T ,

где No - число нейтронов в начальный момент времени, а N -их число в момент времени t. N определяется знаком (k-1). При k> 1 идет развивающаяся реакция, число делений непрерывно растет и реак­ция может стать взрывной. При k= 1 идет самоподдерживающаяся реакция, при ко­торой число нейтронов с течением времени не изменяется. При k<1 идет затухаю­щая реакция.

Цепные реакции делятся на управляе­мые и неуправляемые. Взрыв атомной бомбы, например, является неуправляемой реакцией. Чтобы атомная бомба при хра­нении не взорвалась, в ней 235 92 U (или 2 39 94 Pu) делится на две удаленные друг от друга части с массами ниже критических. Затем с помощью обычного взрыва эти массы сближаются, общая масса деляще­гося вещества становится больше крити­ческой и возникает взрывная цепная ре­акция, сопровождающаяся мгновенным выделением огромного количества энергии и большими разрушениями. Взрывная ре­акция начинается за счет имеющихся ней­тронов спонтанного деления или нейтро­нов космического излучения. Управляемые цепные реакции осуществляются в ядер­ных реакторах (см. §267).

В природе имеется три изотопа, кото­рые могут служить ядерным топливом (235 92 U: в естественном уране его содержится примерно 0,7 %) или сырьем для его полу­чения (232 90 Th и 238 92 U: в естественном уране его содержится примерно 99,3%). 232 90 Th служит исходным продуктом для получения искусственного ядерного топлива 233 92 U (см. реакцию (265.2)), a 238 92 U, поглощая нейтроны, посредством двух последова­тельных  - -распадов - для превращения в ядро 2 39 94 Pu:

Реакции (266.2) и (265.2), таким образом, открывают реальную возможность воспро­изводства ядерного горючего в процессе цепной реакции деления.