Химическое равновесие. Химическое равновесие и создание условий для его смещения

Переход химической системы из одного равновесного состояния в другое называется смещением (сдвигом) равновесия . В силу динамического характера химического равновесия оно оказывается чувствительным к внешним условиям и способно реагировать на их изменение.

Направление смещения положения химического равновесия в результате изменения внешних условий определяется правилом, впервые сформулированным французским химиком и металловедом Анри Луи Ле Шателье в 1884 году и названным в его честь принципом Ле Шателье :

Если на систему, находящуюся в состоянии равновесия, оказывают внешнее воздействие, то в системе происходит такое смещение равновесия, которое ослабляет это воздействие.

Существует три основных параметра, изменяя которые, можно смещать химическое равновесие. Это – температура, давление и концентрация. Рассмотрим их влияние на примере равновесной реакции:

1) Влияние температуры . Поскольку для данной реакции DH°<0, следовательно, прямая реакция идет с выделением тепла (+Q), а обратная реакция – с поглощением тепла (-Q):

2NO (Г) + O 2 (Г) 2NO 2 (Г)

При повышении температуры, т.е. при внесении в систему дополнительной энергии, равновесие смещается в сторону обратной эндотермической реакции, которая этот избыток энергии расходует. При уменьшении температуры, наоборот, равновесие смещается в сторону той реакции, которая идет с выделением тепла, чтобы оно компенсировало охлаждение, т.е. равновесие смещается в сторону прямой реакции.

При повышении температуры равновесие смещается в сторону эндотермической реакции, идущей с поглощением энергии.

При понижении температуры равновесие смещается в сторону экзотермической реакции, идущей с выделением энергии.

2) Влияние объема . При повышении давления в большей степени возрастает скорость реакции, протекающей с уменьшением объема (DV<0). При понижении давления ускоряется реакция, протекающая с увеличением объема (DV>0).

При протекании рассматриваемой реакции из 3 моль газообразных веществ образуется 2 моль газов:

2NO (Г) + O 2 (Г) 2NO 2 (Г)

3 моль газа 2 моль газа

V ИСХ > V ПРОД

DV = V ПРОД - V ИСХ <0

Поэтому при повышении давление равновесие смещается в сторону меньшего объема системы, т.е. продуктов реакции. При понижении давления смещение равновесия происходит в сторону исходных веществ, занимающих больший объем

При повышении давления равновесие смещается в сторону реакции, идущей с образованием меньшего количества молей газообразных веществ.

При понижении давления равновесие смещается в сторону реакции, идущей с образованием большего количества молей газообразных веществ.



3) Влияние концентрации . При повышении концентрации возрастает скорость реакции, по которой вводимое вещество расходуется. Действительно при внесении в систему дополнительного количества кислорода система «расходует» его на протекание прямой реакции. При понижении концентрации O 2 этот недостаток компенсируется путем распада продукта реакции (NO 2) на исходные вещества.

При повышении концентрации исходных веществ или понижении концентрации продуктов равновесие смещается в сторону прямой реакции.

При понижении концентрации исходных веществ или повышении концентрации продуктов равновесие смещается в сторону обратной реакции.

Введение катализатора в систему не влияет на смещение положения химического равновесия, поскольку катализатор одинаково увеличивает скорость как прямой, так и обратной реакции.

Если система находится в состоянии равновесия, то она будет пребывать в нем до тех пор, пока внешние условия сохраняются постоянными. Если же условия изменятся, то система выйдет из равновесия - скорости прямого и обратного процессов изменятся неодинаково - будет протекать реакция. Наибольшее значение имеют случаи нарушения равновесия вследствие изменения концентрации какого-либо из веществ, участвующих в равновесии, давления или температуры.

Рассмотрим каждый из этих случаев.

Нарушение равновесия вследствие изменения концентрации какого-либо из веществ, участвующих в реакции. Пусть водород, иодоводород и пары иода находятся в равновесии друг с другом при определенных температуре и давлении. Введем в систему дополнительно некоторое количество водорода. Согласно закону действия масс, увеличение концентрации водорода повлечет за собой увеличение скорости прямой реакции - реакции синтеза HI, тогда как скорость обратной реакции не изменится. В прямом направлении реакция будет теперь протекать быстрее, чем в обратном. В результате этого концентрации водорода и паров иода будут уменьшаться, что повлечет за собою замедление прямой реакции, а концентрация HI будет возрастать, что вызовет ускорение обратной реакции. Через некоторое время скорости прямой и обратной реакций вновь сравняются- установится новое равновесие. Но при этом концентрация HI будет теперь выше, чем она была до добавления , а концентрация - ниже.

Процесс изменения концентраций, вызванный нарушением равновесия, называется смещением или сдвигом равновесия. Если при этом происходит увеличение концентраций веществ, стоящих в правой части уравнения (и, конечно, одновременно уменьшение концентраций веществ, стоящих слева), то говорят, что равновесие смещается вправо, т. е. в направлении течения прямой реакции; при обратном изменении концентраций говорят о смещении равновесия влево - в направлении обратной реакции. В рассмотренном примере равновесие сместилось вправо. При этом то вещество , увеличение концентрации которого вызвало нарушение равновесия, вступило в реакцию - его концентрация понизилась.

Таким образом, при увеличении концентрации какого-либо из веществ, участвующих в равновесии, равновесие смещается в сторону расхода этого вещества; при уменьшении концентрации какого-либо из веществ равновесие смещается в сторону образования этого вещества.

Нарушение равновесия вследствие изменения давления (путем уменьшения или увеличения объема системы). Когда в реакции участвуют газы, равновесие может нарушиться при изменении объема системы.

Рассмотрим влияние давления на реакцию между монооксидом азота и кислородом:

Пусть смесь газов , и находится в химическом равновесии при определенной температуре и давлении. Не изменяя температуры, увеличим давление так, чтобы объем системы уменьшился в 2 раза. В первый момент парциальные давления и концентрации всех газов возрастут вдвое, но при этом изменится соотношение между скоростями прямой и обратной реакций - равновесие нарушится.

В самом деле, до увеличения давления концентрации газов имели равновесные значения , и , а скорости прямой и обратной реакций были одинаковы и определялись уравнениями:

В первый момент после сжатия концентрации газов увеличатся вдвое по сравнению с их исходными значениями и будут равны соответственно , и . При этом скорости прямой и обратной реакций будут определяться уравнениями:

Таким образом, в результате увеличения давления скорость прямой реакции возросла в 8 раз, а обратной - только в 4 раза. Равновесие в системе нарушится - прямая реакция будет преобладать над обратной. После того как скорости сравняются, вновь установится равновесие, но количество в системе возрастет, равновесие сместится вправо.

Нетрудно видеть, что неодинаковое изменение скоростей прямой и обратной реакций связано с тем, что в левой и в правой частях уравнения рассматриваемой реакции различно число молекул газов: одна молекула кислорода и две молекулы монооксида азота (всего три молекулы газов) превращаются в две молекулы газа - диоксида азота. Давление газа есть результат ударов его молекул о стенки сосуда; при прочих равных условиях давление газа тем выше, чем больше молекул заключено в данном объеме газа. Поэтому реакция, протекающая с увеличением числа молекул газов, приводит к возрастанию давления, а реакция, протекающая с уменьшением числа молекул газов, - к его понижению.

Помня об этом, вывод о влиянии давления на химическое равновесие можно сформулировать так:

При увеличении давления путем сжатия системы равновесие сдвигается в сторону уменьшения числа молекул газов, т. е. в сторону понижения давления, при уменьшении давления равновесие сдвигается в сторону возрастания числа молекул газов, т. е. в сторону увеличения давления.

В том случае, когда реакция протекает без изменения числа молекул газов, равновесие не нарушается при сжатии или при расширении системы. Например, в системе

равновесие не нарушается при изменении объема; выход HI не зависит от давления.

Нарушение равновесия вследствие изменения температуры. Равновесие подавляющего большинства химических реакций сдвигается при изменении температуры. Фактором, который определяет направление смещения равновесия, является при этом знак теплового эффекта реакции. Можно показать, что при повышении температуры равновесие смещается в направлении эндотермической, а при понижении - в направлении экзотермической реакции.

Так, синтез аммиака представляет собой экзотермическую реакцию

Поэтому при повышении температуры равновесие в системе сдвигается влево - в сторону разложения аммиака, так как этот процесс идет с поглощением теплоты.

Наоборот, синтез оксида азота (II) представляет собой эндотермическую реакцию:

Поэтому при повышении температуры равновесие в системе сдвигается вправо - в сторону образования .

Закономерности, которые проявляются в рассмотренных примерах нарушения химического равновесия, представляют собою частные случаи общего принципа, определяющего влияние различных факторов на равновесные системы. Этот принцип, известный под названием принципа Ле Шателье, в применении к химическим равновесиям можно сформулировать так:

Если на систему, находящуюся в равновесии, оказать какое-либо воздействие, то в результате протекающих в ней процессов равновесие сместится в таком направлении, что оказанное воздействие уменьшится.

Действительно, при введении в систему одного из веществ, участвующих в реакции, равновесие смещается в сторону расхода этого вещества. "При повышении давления оно смещается так, что давление в системе снижается; при повышении температуры равновесие смещается в сторону эндотермической реакции - температура в системе падает.

Принцип Ле Шателье распространяется не только на химические, но и на различные физико-химические равновесия. Смещение равновесия при изменении условий таких процессов, как кипение, кристаллизация, растьорение, происходит в соответствии с принципом Ле Шателье.

Химическое равновесие, отвечающее равенству скоростей прямой и обратной реакций ( = ) и минимальному значению энергии Гиббса (∆ G р,т = 0), является наиболее устойчивым состоянием системы при заданных условиях и остается неизменным до тех пор, пока сохраняются постоянными параметры, при которых равновесие установилось.

При изменении условий равновесие нарушается и смещается в сторону прямой или обратной реакции. Смещение равновесия связано с тем, что внешнее воздействие в разной степени изменяет скорость двух взаимно противоположных процессов. Через некоторое время система вновь становится равновесной, т.е. она переходит из одного равновесного состояния в другое. Новое равновесие характеризуется новым равенством скоростей прямой и обратной реакций и новыми равновесными концентрациями всех веществ в системе.

Направление смещения равновесия в общем случае определяется принципом Ле Шателье: если на систему, находящуюся в состоянии устойчивого равновесия, оказать внешнее воздействие, то смещение равновесия происходит в сторону процесса, ослабляющего эффект внешнего воздействия .

Смещение равновесия может быть вызвано изменением температуры, концентрации (давления) одного из реагентов.

Температура – тот параметр, от которого зависит величина константы равновесия химической реакции. Вопрос смещения равновесия при изменении температуры в зависимости от условий использования реакции решается путем использования уравнения изобары (1.90) - =

1. Для изотермического процесса ∆ r Н 0 (т) < 0, в правой части выражения (1.90) R > 0, T > 0, следовательно первая производная логарифма константы равновесия по температуре отрицательна < 0, т.е. ln Kp (и сама константа Кр) являются убывающими функциями температуры. При увеличении температуры константа химического равновесия (Кр) уменьшается и что согласно закону действующих масс (2.27), (2.28)соответствует смещению химического равновесия в сторону обратной (эндотермической) реакции. Именно в этом проявляется противодействие системы оказанному воздействию.

2. Для эндотермического процесса ∆ r Н 0 (т) > 0 производная логарифма константы равновесия по температуре положительна ( > 0), тема образом ln Kp и Кр являются возрастающими функциями температуры, т.е. в соответствии с законом действующих масс при увеличении температуры равновесие смещается в сторону прямой (эндотермической реакции). Однако надо помнить, что скорость как изотермического так и эндотермического процессов при повышении температуры возрастает, а при понижении понижается, но изменение скоростей и при изменении температуры неодинаково, поэтому, варьируя температуру, можно смещать равновесия в заданном направлении. Смещение равновесия может быть вызвано изменением концентрации одного из компонентов: добавлением вещества в равновесную систему или выводом из системы.

По принципу Ле Шателье при изменении концентрации одного из участников реакции равновесие смещается в сторону компенсирующую изменение, т.е. при увеличении концентрации одного из исходных веществ – в правую сторону, а при увеличении концентрации одно из продуктов реакции – в левую. Если в обратимой реакции участвуют газообразные вещества, то при изменении давления, одинаково и одновременно изменяются все их концентрации. Изменяются и скорости процессов, а следовательно, может произойти и смещение химического равновесия. Так, например, при увеличении давления (по сравнению с равновесным) на систему СаСО 3(К) СО (к) + СО 2(г) возрастает скорость обратной реакции = что приведет к смещению равновесия в левую сторону. При понижении давления на туже систему скорость обратной реакции уменьшается, и равновесие смещается в правую сторону. При увеличении давления на систему 2HCl H 2 +Cl 2 , находящуюся в состоянии равновесия, смещение равновесия не произойдет, т.к. обе скорости и возрастут одинаково.

Для системы 4HCl + О 2 2Cl 2 + 2Н 2 О (г) увеличение давления приведет к увеличению скорости прямой реакции и смещению равновесия вправо.

И так, в соответствии с принципом Ле Шателье при повышении давления равновесие смещается в сторону образования меньшего количества молей газообразных веществ в газовой смеси и соответственно в сторону уменьшения давления в системе.

И наоборот, при внешнем воздействии, вызывающем понижение давления, равновесие смещается в сторону образования большего количества молей газообразных веществ, что вызовет увеличение давления в системе и будет противодействовать произведенному воздействию.

Принцип Ле Шателье имеет большое практическое значение. На его основе можно подобрать такие условия осуществления химического взаимодействия, которые обеспечат максимальный выход продуктов реакции.

    Понятие химического равновесия

Равновесным считается состояние системы, которое остается неизменным, причем это состояние не обусловлено действием каких-либо внешних сил. Состояние системы реагирующих веществ, при котором скорость прямой реакции становится равной скорости обратной реакции, называется химическим равновесием . Такое равновесие называется еще подвижны м или динамическим равновесием.

Признаки химического равновесия

1. Состояние системы остается неизменным во времени при сохранении внешних условий.

2. Равновесие является динамическим, то есть обусловлено протеканием прямой и обратной реакции с одинаковыми скоростями.

3. Любое внешнее воздействие вызывает изменение в равновесии системы; если внешнее воздействие снимается, то система снова возвращается в исходное состояние.

4. К состоянию равновесия можно подойти с двух сторон – как со стороны исходных веществ, так и со стороны продуктов реакции.

5. В состоянии равновесия энергия Гиббса достигает своего минимального значения.

Принцип Ле Шателье

Влияние изменения внешних условий на положение равновесия определяется принципом Ле Шателье (принципом подвижного равновесия): если на систему, находящуюся в состоянии равновесия, производить какое–либо внешнее воздействие, то в системе усилится то из направлений процесса, которое ослабляет эффект этого воздействия, и положение равновесия сместится в том же направлении.

Принцип Ле Шателье применим не только к химическим процессам, но и к физическим, таким как кипение, кристаллизация, растворение и т. д.

Рассмотрим влияние различных факторов на химическое равновесие на примере реакции окисления NO:

2 NO (г) + O 2(г) 2 NO 2(г) ; H о 298 = - 113,4 кДж/моль.

Влияние температуры на химическое равновесие

При повышении температуры равновесие сдвигается в сторону эндотермической реакции, при понижении температуры – в сторону экзотермической реакции.

Степень смещения равновесия определяется абсолютной величиной теплового эффекта: чем больше по абсолютной величине энтальпия реакции H, тем значительнее влияние температуры на состояние равновесия.

В рассматриваемой реакции синтеза оксида азота (IV) повышение температуры сместит равновесие в сторону исходных веществ.

Влияние давления на химическое равновесие

Сжатие смещает равновесие в направлении процесса, который сопровождается уменьшением объема газообразных веществ, а понижение давления сдвигает равновесие в противоположную сторону. В рассматриваемом примере в левой части уравнения находится три объема, а в правой – два. Так как увеличение давления благоприятствует процессу, протекающему с уменьшением объема, то при повышении давления равновесие сместится вправо, т.е. в сторону продукта реакции – NO 2 . Уменьшение давления сместит равновесие в обратную сторону. Следует обратить внимание на то, что, если в уравнении обратимой реакции число молекул газообразных веществ в правой и левой частях равны, то изменение давления не оказывает влияния на положение равновесия.

Влияние концентрации на химическое равновесие

Для рассматриваемой реакции введение в равновесную систему дополнительных количеств NO или O 2 вызывает смещение равновесия в том направлении, при котором концентрация этих веществ уменьшается, следовательно, происходит сдвиг равновесия в сторону образования NO 2 . Увеличение концентрации NO 2 смещает равновесие в сторону исходных веществ.

Катализатор одинаково ускоряет как прямую, так и обратную реакции и поэтому не влияет на смещение химического равновесия.

При введении в равновесную систему (при Р = const) инертного газа концентрации реагентов (парциальные давления) уменьшаются. Поскольку рассматриваемый процесс окисления NO идет с уменьшением объема, то при добавлении ин

Константа химического равновесия

Для химической реакции:

2 NO (г) + O 2(г) 2 NO 2(г)

константа химической реакции К с есть отношение:

(12.1)

В этом уравнении в квадратных скобках – концентрации реагирующих веществ, которые устанавливаются при химическом равновесии, т.е. равновесные концентрации веществ.

Константа химического равновесия связана с изменением энергии Гиббса уравнением:

G T о = – RTlnK . (12.2).

Примеры решения задач

При некоторой температуре равновесные концентрации в системе 2CO (г) + O 2 (г) 2CO 2 (г) составляли: = 0,2 моль/л, = 0,32 моль/л, = 0,16 моль/л. Определить константу равновесия при этой температуре и исходные концентрации CO и O 2 , если исходная смесь не содержала СО 2 .

.

2CO (г) + O 2(г) 2CO 2(г).

Во второй строке под с прореагир понимается концентрация прореагировавших исходных веществ и концентрация образующегося CO 2 , причем, с исходн = с прореагир + с равн .

Используя справочные данные, рассчитать константу равновесия процесса

3 H 2 (Г) + N 2 (Г) 2 NH 3 (Г) при 298 К.

G 298 о = 2·(- 16,71) кДж = -33,42·10 3 Дж.

G T о = - RTlnK.

lnK = 33,42·10 3 /(8,314× 298) = 13,489. K = 7,21× 10 5 .

Определить равновесную концентрацию HI в системе

H 2(г) + I 2(г) 2HI (г) ,

если при некоторой температуре константа равновесия равна 4, а исходные концентрации H 2 , I 2 и HI равны, соответственно, 1, 2 и 0 моль/л.

Решение. Пусть к некоторому моменту времени прореагировало x моль/л H 2.

.

Решая это уравнение, получаем x = 0,67.

Значит, равновесная концентрация HI равна 2× 0,67 = 1,34 моль/л.

Используя справочные данные, определить температуру, при которой константа равновесия процесса: H 2(г) + HCOH (г) CH 3 OH (г) становится равной 1. Принять, что Н о Т » Н о 298 , а S о T » S о 298 .

Если К = 1, то G о T = - RTlnK = 0;

G о T » Н о 298 - ТD S о 298 . Тогда ;

Н о 298 = -202 – (- 115,9) = -86,1 кДж = - 86,1× 10 3 Дж;

S о 298 = 239,7 – 218,7 – 130,52 = -109,52 Дж/К;

К.

Для реакции SO 2(Г) + Cl 2(Г) SO 2 Cl 2(Г) при некоторой температуре константа равновесия равна 4. Определить равновесную концентрацию SO 2 Cl 2 , если исходные концентрации SO 2 , Cl 2 и SO 2 Cl 2 равны 2, 2 и 1 моль/л соответственно.

Решение. Пусть к некоторому моменту времени прореагировало x моль/л SO 2.

SO 2(Г) + Cl 2(Г) SO 2 Cl 2(Г)

Тогда получаем:

.

Решая это уравнение, находим: x 1 = 3 и x 2 = 1,25. Но x 1 = 3 не удовлетворяет условию задачи.
Следовательно, = 1,25 + 1 = 2,25 моль/л.

Задачи для самостоятельного решения

12.1. В какой из приведенных реакций повышение давления сместит равновесие вправо? Ответ обосновать.

1) 2 NH 3 (г) 3 H 2 (г) + N 2 (г)

2) ZnCO 3 (к) ZnO (к) + CO 2 (г)

3) 2HBr (г) H 2 (г) + Br 2 (ж)

4) CO 2 (г) + C (графит) 2CO (г)


12.2. При некоторой температуре равновесные концентрации в системе

2HBr (г) H 2 (г) + Br 2 (г)

составляли: = 0,3 моль/л, = 0,6 моль/л, = 0,6 моль/л. Определить константу равновесия и исходную концентрацию HBr.


12.3. Для реакции H 2(г) + S (г) H 2 S (г) при некоторой температуре константа равновесия равна 2. Определить равновесные концентрации H 2 и S, если исходные концентрации H 2 , S и H 2 S равны, соответственно, 2, 3 и 0 моль/л.

Химическое равновесие и принципы его смещения (принцип Ле Шателье)

В обратимых реакциях при определенных условиях может наступить состояние химического равновесия. Это состояние, при котором скорость обратной реакции становится равной скорости прямой реакции. Но для того, чтобы сдвинуть равновесие в ту или иную сторону, нужно поменять условия протекания реакции. Принцип смещения равновесия - принцип Ле Шателье.

Основные положения:

1. Внешнее воздействие на систему, находящуюся в состоянии равновесия, приводит к смещению этого равновесия в направлении, при котором эффект произведенного воздействия ослабляется.

2. При увеличении концентрации одного из реагирующих веществ равновесие смещается в сторону расхода этого вещества, при уменьшении концентрации равновесие смещается в сторону образования этого вещества.

3. При увеличении давления равновесие смещается в сторону уменьшения количества газообразных веществ, то есть в сторону понижения давления; при уменьшении давления равновесие смещается в сторону возрастания количеств газообразных веществ, то есть в сторону увеличения давления. Если реакция протекает без изменения числа молекул газообразных веществ, то давление не влияет на положение равновесия в этой системе.

4. При повышении температуры равновесие смещается в сторону эндотермической реакции, при понижении температуры - в сторону экзотермической реакции.

За принципы благодарим пособие "Начала химии" Кузьменко Н.Е., Еремин В.В., Попков В.А.

Задания ЕГЭ на химическое равновесие (ранее А21)

Задание №1.

H2S(г) ↔ H2(г) + S(г) - Q

1. Повышении давления

2. Повышении температуры

3. Понижении давления

Объяснение: для начала рассмотрим реакцию: все вещества являются газами и в правой части две молекулы продуктов, а в левой только одна, так же реакция является эндотермической (-Q). Поэтому рассмотрим изменение давления и температуры. Нам нужно, чтобы равновесие сместилось в сторону продуктов реакции. Если мы повысим давление, то равновесие сместится в сторону уменьшения объема, то есть в сторону реагентов - нам это не подходит. Если мы повысим температуру, то равновесие сместится в сторону эндотермической реакции, в нашем случае в сторону продуктов, что и требовалось.Правильный ответ - 2.

Задание №2.

Химическое равновесие в системе

SO3(г) + NO(г) ↔ SO2(г) + NO2(г) - Q

сместится в сторону образования реагентов при:

1. Увеличении концентрации NO

2. Увеличении концентрации SO2

3. Повышении температуры

4. Увеличении давления

Объяснение: все вещества газы, но объемы в правой и левой частях уравнения одинаковы, поэтому давление на равновесие в системе влиять не будет. Рассмотрим изменение температуры: при повышении температуры равновесие смещается в сторону эндотермической реакции, как раз в сторону реагентов. Правильный ответ - 3.

Задание №3.

В системе

2NO2(г) ↔ N2O4(г) + Q

смещению равновесия влево будет способствовать

1. Увеличение давления

2. Увеличение концентрации N2O4

3. Понижение температуры

4. Введение катализатора

Объяснение: обратим внимание на то, что объемы газообразных веществ в правой и левой частях уравнения не равны, поэтому изменение давления будет влиять на равновесие в данной системе. А именно, при увеличении давления равновесие смещается в сторону уменьшения количества газообразных веществ, то есть вправо. Нам это не подходит. Реакция экзотермическая, поэтому и изменение температуры будет влиять на равновесие системы. При понижении температуры равновесие будет смещаться в сторону экзотермической реакции, то есть тоже вправо. При увеличении концентрации N2O4, равновесие смещается в сторону расхода этого вещества, то есть влево. Правильный ответ - 2.

Задание № 4.

В реакции

2Fe(т) + 3H2O(г) ↔ 2Fe2O3(т) + 3Н2(г) - Q

равновесие сместится в сторону продуктов реакции при

1. Повышении давления

2. Добавлении катализатора

3. Добавлении железа

4. Добавлении воды

Объяснение: количество молекул в правой и левой частях одинаково, так что изменение давления влиять на равновесие в данной системе не будет. Рассмотрим повышение концентрации железа - равновесие должно сместиться в сторону расхода этого вещества, то есть вправо (в сторону продуктов реакции). Правильный ответ - 3.

Задание № 5.

Химическое равновесие

Н2О(ж) + С(т) ↔ Н2(г) + СО(г) - Q

сместится в сторону образования продуктов в случае

1. Повышения давления

2. Повышения температуры

3. Увеличения времени протекания процесса

4. Применения катализатора

Объяснение: изменение давления не будет влиять на равновесие в данной системе, так как не все вещества газообразны. При повышении температуры равновесие смещается в сторону эндотермической реакции, то есть вправо (в сторону образования продуктов).Правильный ответ - 2.

Задание № 6.

При повышении давления химическое равновесие сместится в сторону продуктов в системе:

1. CH4(г) + 3S(т) ↔ CS2(г) + 2H2S(г) - Q

2. C(т) + CO2(г) ↔ 2CO(г) - Q

3. N2(г) + 3H2(г) ↔ 2NH3(г) + Q

4. Ca(HCO3)2(т) ↔ CaCO3(т) + CO2(г) + H2O(г) - Q

Объяснение: на реакции 1 и 4 изменение давления не влияет, потому не все участвующие вещества газообразны, в уравнении 2 в правой и левой частях количества молекул одинаково, так что давление влиять не будет. Остается уравнение 3. Проверим: при повышении давления равновесие должно сместиться в сторону уменьшения количеств газообразных веществ (справа 4 молекулы, слева 2 молекулы), то есть в сторону продуктов реакции. Правильный ответ - 3.

Задание № 7.

Не влияет на смещение равновесия

H2(г) + I2(г) ↔ 2HI(г) - Q

1. Повышение давления и добавление катализатора

2. Повышение температуры и добавление водорода

3. Понижение температуры и добавление йодоводорода

4. Добавление йода и добавление водорода

Объяснение: в правой и левой частях количества газообразных веществ одинаковы, поэтому изменение давления влиять на равновесие в системе не будет, также не будет влиять и добавление катализатора, потому что как только мы добавим катализатор ускориться прямая реакция, а потом сразу же обратная и равновесие в системе восстановится. Правильный ответ - 1.

Задание № 8.

Для смещения вправо равновесия в реакции

2NO(г) + O2(г) ↔ 2NO2(г); ΔH°<0

требуется

1. Введение катализатора

2. Понижение температуры

3. Понижение давления

4. Понижение концентрации кислорода

Объяснение: понижение концентрации кислорода приведет к смещению равновесия в сторону реагентов (влево). Понижение давления сдвинет равновесие в сторону уменьшения количества газообразных вещества, то есть вправо. Правильный ответ - 3.

Задание № 9.

Выход продукта в экзотермической реакции

2NO(г) + O2(г) ↔ 2NO2(г)

при одновременном повышении температуры и понижении давления

1. Увеличится

2. Уменьшится

3. Не изменится

4. Сначала увеличится, потом уменьшится

Объяснение: при повышении температуры равновесие смещается в сторону эндотермической реакции, то есть в сторону продуктов, а при понижении давления равновесие смещается в сторону увеличения количеств газообразных веществ, то есть тоже влево. Поэтому выход продукта уменьшится. Правильный ответ - 2.

Задание № 10.

Увеличению выхода метанола в реакции

СО + 2Н2 ↔ СН3ОН + Q

способствует

1. Повышение температуры

2. Введение катализатора

3. Введение ингибитора

4. Повышение давления

Объяснение: при повышении давления равновесие смещается в сторону эндотермической реакции, то есть в сторону реагентов. Повышение давления смещает равновесие в сторону уменьшения количеств газообразных веществ, то есть в сторону образования метанола.Правильный ответ - 4.

Задания для самостоятельного решения (ответы внизу)

1. В системе

СО(г) + Н2О(г) ↔ СО2(г) + Н2(г) + Q

смещению химического равновесия в сторону продуктов реакции будет способствовать

1. Уменьшение давления

2. Увеличение температуры

3. Увеличение концентрации монооксида углерода

4. Увеличение концентрации водорода

2. В какой системе при повышении давления равновесие смещается в сторону продуктов реакции

1. 2СО2(г) ↔ 2СО(г) + О2(г)

2. С2Н4(г) ↔ С2Н2(г) + Н2(г)

3. PCl3(г) + Cl2(г) ↔ PCl5(г)

4. H2(г) + Cl2(г) ↔ 2HCl(г)

3. Химическое равновесие в системе

2HBr(г) ↔ H2(г) + Br2(г) - Q

сместится в сторону продуктов реакции при

1. Повышении давления

2. Повышении температуры

3. Понижении давления

4. Использовании катализатора

4. Химическое равновесие в системе

С2Н5ОН + СН3СООН ↔ СН3СООС2Н5 + Н2О + Q

смещается в сторону продуктов реакции при

1. Добавлении воды

2. Уменьшении концентрации уксусной кислоты

3. Увеличении концентрации эфира

4. При удалении сложного эфира

5. Химическое равновесие в системе

2NO(г) + O2(г) ↔ 2NO2(г) + Q

смещается в сторону образования продукта реакции при

1. Повышении давления

2. Повышении температуры

3. Понижении давления

4. Применении катализатора

6. Химическое равновесие в системе

СО2(г) + С(тв) ↔ 2СО(г) - Q

сместится в сторону продуктов реакции при

1. Повышении давления

2. Понижении температуры

3. Повышении концентрации СО

4. Повышении температуры

7. Изменение давления не повлияет на состояние химического равновесия в системе

1. 2NO(г) + O2(г) ↔ 2NO2(г)

2. N2(г) + 3H2(г) ↔ 2NH3(г)

3. 2CO(г) + O2(г) ↔ 2CO2(г)

4. N2(г) + O2(г) ↔ 2NO(г)

8. В какой системе при повышении давления химическое равновесие сместится в сторону исходных веществ?

1. N2(г) + 3H2(г) ↔ 2NH3(г) + Q

2. N2O4(г) ↔ 2NO2(г) - Q

3. CO2(г) + H2(г) ↔ CO(г) + H2O(г) - Q

4. 4HCl(г) + O2(г) ↔ 2H2O(г) + 2Cl2(г) + Q

9. Химическое равновесие в системе

С4Н10(г) ↔ С4Н6(г) + 2Н2(г) - Q

сместится в сторону продуктов реакции при

1. Повышении температуры

2. Понижении температуры

3. Использовании катализатора

4. Уменьшении концентрации бутана

10. На состояние химического равновесия в системе

H2(г) + I2(г) ↔ 2HI(г) -Q

не влияет

1. Увеличение давления

2. Увеличение концентрации йода

3. Увеличение температуры

4. Уменьшение температуры

Задания 2016 года

1. Установите соответствие между уравнением химической реакции и смещением химического равновесия при увеличении давления в системе.

Уравнение реакции Смещение химического равновесия

А) N2(г) + O2(г) ↔ 2NO(г) - Q 1. Смещается в сторону прямой реакции

Б) N2O4(г) ↔ 2NO2(г) - Q 2. Смещается в сторону обратной реакции

В) CaCO3(тв) ↔ CaO(тв) +CO2(г) - Q 3. Не происходит смещения равновесия

Г) Fe3O4(тв) + 4CO(г) ↔ 3Fe(тв) + 4CO2(г) + Q

2. Установите соответствие между внешним воздействием на систему:

СО2(г) + С(тв) ↔ 2СО(г) - Q

и смещение химического равновесия.

А. Увеличение концентрации СО 1. Смещается в сторону прямой реакции

В. Понижение давления 3. Не происходит смещения равновесия

3. Установите соответствие между внешним воздействием на систему

НСООН(ж) + С5Н5ОН(ж) ↔ НСООС2Н5(ж) + Н2О(ж) + Q

Внешнее воздействие Смещение химического равновесия

А. Добавление НСООН 1. Смещается в сторону прямой реакции

В. Разбавление водой 3. Не происходит смещения равновесия

Г. Повышение температуры

4. Установите соответствие между внешним воздействием на систему

2NO(г) + O2(г) ↔ 2NO2(г) + Q

и смещением химического равновесия.

Внешнее воздействие Смещение химического равновесия

А. Уменьшение давления 1. Смещается в сторону прямой реакции

Б. Увеличение температуры 2. Смещается в сторону обратной реакции

В. Увеличение температуры NO2 3. Не происходит смещения равновесия

Г. Добавление О2

5. Установите соответствие между внешним воздействием на систему

4NH3(г) + 3O2(г) ↔ 2N2(г) + 6H2O(г) + Q

и смещением химического равновесия.

Внешнее воздействие Смещение химического равновесия

А. Понижение температуры 1. Смещение в сторону прямой реакции

Б. Повышение давления 2. Смещается в сторону обратной реакции

В. Повышение концентрации в аммиаке 3. Не происходит смещения равновесия

Г. Удаление паров воды

6. Установите соответствие между внешним воздействием на систему

WO3(тв) + 3H2(г) ↔ W(тв) + 3H2O(г) +Q

и смещением химического равновесия.

Внешнее воздействие Смещение химического равновесия

А. Повышение температуры 1. Смещается в сторону прямой реакции

Б. Повышение давления 2. Смещается в сторону обратной реакции

В. Использование катализатора 3. Не происходит смещения равновесия

Г. Удаление паров воды

7. Установите соответствие между внешним воздействием на систему

С4Н8(г) + Н2(г) ↔ С4Н10(г) + Q

и смещением химического равновесия.

Внешнее воздействие Смещение химического равновесия

А. Увеличение концентрации водорода 1. Смещается в сторону прямой реакции

Б. Повышение температуры 2. Смещается в сторону обратной реакции

В. Повышение давления 3. Не происходит смещения равновесия

Г. Использование катализатора

8. Установите соответствие между уравнением химической реакции и одновременным изменением параметров системы, приводящим к смещению химического равновесия в сторону прямой реакции.

Уравнение реакции Изменение параметров системы

А. H2(г) + F2(г) ↔ 2HF(г) + Q 1. Увеличение температуры и концентрации водорода

Б. H2(г) + I2(тв) ↔ 2HI(г) -Q 2. Уменьшение температуры и концентрации водорода

В. CO(г) + H2O(г) ↔ CО2(г) +H2(г) + Q 3. Увеличение температуры и уменьшение концентрации водорода

Г. C4H10(г) ↔ C4H6(г) + 2H2(г) -Q 4. Уменьшение температуры и увеличение концентрации водорода

9. Установите соответствие между уравнением химической реакции и смещением химического равновесия при увеличении давления в системе.

Уравнение реакции Направление смещения химического равновесия

А. 2HI(г) ↔ H2(г) + I2(тв) 1. Смещается в сторону прямой реакции

Б. C(г) + 2S(г) ↔ CS2(г) 2. Смещается в сторону обратной реакции

В. C3H6(г) + H2(г) ↔ C3H8(г) 3. Не происходит смещения равновесия

Г. H2(г) + F2(г) ↔ 2HF(г)

10. Установите соответствие между уравнением химической реакции и одновременным изменением условий ее проведения, приводящим к смещению химического равновесия в сторону прямой реакции.

Уравнение реакции Изменение условий

А. N2(г) + H2(г) ↔ 2NH3(г) + Q 1. Увеличение температуры и давления

Б. N2O4(ж) ↔ 2NO2(г) -Q 2. Уменьшение температуры и давления

В. CO2(г) + C(тв) ↔ 2CO(г) + Q 3. Увеличение температуры и уменьшение давления

Г. 4HCl(г) + O2(г) ↔ 2H2O(г) + 2Cl2(г) + Q 4. Уменьшение температуры и увеличение давления

Ответы: 1 - 3, 2 - 3, 3 - 2, 4 - 4, 5 - 1, 6 - 4, 7 - 4, 8 - 2, 9 - 1, 10 - 1

1. 3223

2. 2111

3. 1322

4. 2221

5. 1211

6. 2312

7. 1211

8. 4133

9. 1113

10. 4322

За задания благодарим сборники упражнений за 2016, 2015, 2014, 2013 г. авторов:

Кавернину А.А., Добротина Д.Ю., Снастину М.Г., Савинкину Е.В., Живейнова О.Г.