Истинная и средняя теплоемкость газов. Теплоемкость

Хром - элемент побочной подгруппы 6-ой группы 4-го периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 24. Обозначается символом Cr (лат. Chromium). Простое вещество хром- твёрдый металл голубовато-белого цвета.

Химические свойства хрома

При обычных условиях хром реагирует только со фтором. При высоких температурах (выше 600°C) взаимодействует с кислородом, галогенами, азотом, кремнием, бором, серой, фосфором.

4Cr + 3O 2 – t° →2Cr 2 O 3

2Cr + 3Cl 2 – t° → 2CrCl 3

2Cr + N 2 – t° → 2CrN

2Cr + 3S – t° → Cr 2 S 3

В раскалённом состоянии реагирует с парами воды:

2Cr + 3H 2 O → Cr 2 O 3 + 3H 2

Хром растворяется в разбавленных сильных кислотах (HCl, H 2 SO 4)

В отсутствии воздуха образуются соли Cr 2+ , а на воздухе – соли Cr 3+ .

Cr + 2HCl → CrCl 2 + H 2 ­

2Cr + 6HCl + O 2 → 2CrCl 3 + 2H 2 O + H 2 ­

Наличие защитной окисной плёнки на поверхности металла объясняет его пассив-ность по отношению к концентрированным растворам кислот – окислителей.

Соединения хрома

Оксид хрома (II) и гидроксид хрома (II) имеют основной характер.

Cr(OH) 2 + 2HCl → CrCl 2 + 2H 2 O

Соединения хрома (II) — сильные восстановители; переходят в соединения хрома (III) под действием кислорода воздуха.

2CrCl 2 + 2HCl → 2CrCl 3 + H 2 ­

4Cr(OH) 2 + O 2 + 2H 2 O → 4Cr(OH) 3

Оксид хрома (III) Cr 2 O 3 – зелёный, нерастворимый в воде порошок. Может быть получен при прокаливании гидроксида хрома (III) или дихроматов калия и аммония:

2Cr(OH) 3 – t° → Cr 2 O 3 + 3H 2 O

4K 2 Cr 2 O 7 – t° → 2Cr 2 O 3 + 4K 2 CrO 4 + 3O 2 ­

(NH 4) 2 Cr 2 O 7 – t° → Cr 2 O 3 + N 2 ­+ 4H 2 O­ (реакция «вулканчик»)

Амфотерный оксид. При сплавлении Cr 2 O 3 со щелочами, содой и кислыми солями получаются соединения хрома со степенью окисления (+3):

Cr 2 O 3 + 2NaOH → 2NaCrO 2 + H 2 O

Cr 2 O 3 + Na 2 CO 3 → 2NaCrO 2 + CO 2 ­

При сплавлении со смесью щёлочи и окислителя получают соединения хрома в степени окисления (+6):

Cr 2 O 3 + 4KOH + KClO 3 → 2K 2 CrO 4 + KCl + 2H 2 O

Гидроксид хрома (III) С r (ОН) 3 . Амфотерный гидроксид. Серо-зеленый, разлагается при нагревании, теряя воду и образуя зеленый метагидроксид СrО(ОН). Не растворяется в воде. Из раствора осаждается в виде серо-голубого и голубовато-зеленого гидрата. Реагирует с кислотами и щелочами, не взаимодействует с гидратом аммиака.

Обладает амфотерными свойствами — растворяется как в кислотах, так и в щелочах:

2Cr(OH) 3 + 3H 2 SO 4 → Cr 2 (SO 4) 3 + 6H 2 O Сr(ОН) 3 + ЗН + = Сr 3+ + 3H 2 O

Cr(OH) 3 + KOH → K , Сr(ОН) 3 + ЗОН — (конц.) = [Сr(ОН) 6 ] 3-

Cr(OH) 3 + KOH → KCrO 2 +2H 2 O Сr(ОН) 3 + МОН = МСrO 2(зел.) + 2Н 2 O (300-400 °С, М = Li, Na)

Сr(ОН) 3 →(120 o C H 2 O ) СrO(ОН) →(430-1000 0 С – H 2 O ) Cr 2 O 3

2Сr(ОН) 3 + 4NаОН (конц.) + ЗН 2 O 2(конц.) =2Na 2 СrO 4 + 8Н 2 0

Получение : осаждение гидратом аммиака из раствора солей хрома(Ш):

Сr 3+ + 3(NH 3 Н 2 O) = С r (ОН) 3 ↓ + ЗNН 4+

Cr 2 (SO 4) 3 + 6NaOH → 2Cr(OH) 3 ↓+ 3Na 2 SO 4 (в избытке щелочи — осадок растворяется)

Соли хрома (III) имеют фиолетовую или тёмно-зелёную окраску. По химическим свойствам напоминают бесцветные соли алюминия.

Соединения Cr (III) могут проявлять и окислительные, и восстановительные свойства:

Zn + 2Cr +3 Cl 3 → 2Cr +2 Cl 2 + ZnCl 2

2Cr +3 Cl 3 + 16NaOH + 3Br 2 → 6NaBr + 6NaCl + 8H 2 O + 2Na 2 Cr +6 O 4

Соединения шестивалентного хрома

Оксид хрома (VI) CrO 3 — ярко-красные кристаллы, растворимые в воде.

Получают из хромата (или дихромата) калия и H 2 SO 4 (конц.).

K 2 CrO 4 + H 2 SO 4 → CrO 3 + K 2 SO 4 + H 2 O

K 2 Cr 2 O 7 + H 2 SO 4 → 2CrO 3 + K 2 SO 4 + H 2 O

CrO 3 — кислотный оксид, со щелочами образует жёлтые хроматы CrO 4 2- :

CrO 3 + 2KOH → K 2 CrO 4 + H 2 O

В кислой среде хроматы превращаются в оранжевые дихроматы Cr 2 O 7 2- :

2K 2 CrO 4 + H 2 SO 4 → K 2 Cr 2 O 7 + K 2 SO 4 + H 2 O

В щелочной среде эта реакция протекает в обратном направлении:

K 2 Cr 2 O 7 + 2KOH → 2K 2 CrO 4 + H 2 O

Дихромат калия – окислитель в кислой среде:

К 2 Сr 2 O 7 + 4H 2 SO 4 + 3Na 2 SO 3 = Cr 2 (SO 4) 3 + 3Na 2 SO 4 + K 2 SO 4 + 4H 2 O

K 2 Cr 2 O 7 + 4H 2 SO 4 + 3NaNO 2 = Cr 2 (SO 4) 3 + 3NaNO 3 + K 2 SO 4 + 4H 2 O

K 2 Cr 2 O 7 + 7H 2 SO 4 + 6KI = Cr 2 (SO 4) 3 + 3I 2 + 4K 2 SO 4 + 7H 2 O

K 2 Cr 2 O 7 + 7H 2 SO 4 + 6FeSO 4 = Cr 2 (SO 4) 3 + 3Fe 2 (SO 4) 3 + K 2 SO 4 + 7H 2 O

Хромат калия К 2 Cr О 4 . Оксосоль. Желтый, негигроскопичный. Плавится без разложения, термически устойчивый. Хорошо растворим в воде (желтая окраска раствора отвечает иону СrO 4 2-), незначительно гидролизуется по аниону. В кислотной среде переходит в К 2 Cr 2 O 7 . Окислитель (более слабый, чем К 2 Cr 2 O 7). Вступает в реакции ионного обмена.

Качественная реакция на ион CrO 4 2- — выпадение желтого осадка хромата бария, разлагающегося в сильнокислотной среде. Применяется как протрава при крашении тканей, дубитель кож, селективный окислитель, реактив в аналитической химии.

Уравнения важнейших реакций:

2K 2 CrO 4 +H 2 SO 4(30%)= K 2 Cr 2 O 7 +K 2 SO 4 +H 2 O

2K 2 CrO 4(т) +16HCl (кон ц., гор.) =2CrCl 3 +3Cl 2 +8H 2 O+4KCl

2K 2 CrO 4 +2H 2 O+3H 2 S=2Cr(OH) 3 ↓+3S↓+4KOH

2K 2 CrO 4 +8H 2 O+3K 2 S=2K[Сr(ОН) 6 ]+3S↓+4KOH

2K 2 CrO 4 +2AgNO 3 =KNO 3 +Ag 2 CrO 4(красн.) ↓

Качественная реакция:

К 2 СгO 4 + ВаСl 2 = 2КСl + ВаCrO 4 ↓

2ВаСrO 4 (т)+ 2НСl (разб.) = ВаСr 2 O 7(p) + ВаС1 2 + Н 2 O

Получение : спекание хромита с поташом на воздухе:

4(Сr 2 Fe ‖‖)O 4 + 8К 2 CO 3 + 7O 2 = 8К 2 СrO 4 + 2Fе 2 O 3 + 8СO 2 (1000 °С)

Дихромат калия K 2 Cr 2 O 7 . Оксосоль. Техническое название хромпик . Оранжево-красный, негигроскопичный. Плавится без разложения, при дальнейшем нагревании разлагается. Хорошо растворим в воде (оранжевая окраска раствора отвечает иону Сr 2 O 7 2-). В щелочной среде образует К 2 CrO 4 . Типичный окислитель в растворе и при сплавлении. Вступает в реакции ионного обмена.

Качественные реакции — синее окрашивание эфирного раствора в присутствии Н 2 O 2 , синее окрашивание водного раствора при действии атомарного водорода.

Применяется как дубитель кож, протрава при крашении тканей, компонент пиротехнических составов, реагент в аналитической химии, ингибитор коррозии металлов, в смеси с Н 2 SO 4 (конц.) — для мытья химической посуды.

Уравнения важнейших реакций:

4К 2 Cr 2 O 7 =4K 2 CrO 4 +2Cr 2 O 3 +3O 2 (500-600 o C)

K 2 Cr 2 O 7 (т) +14HCl (кон ц) =2CrCl 3 +3Cl 2 +7H 2 O+2KCl (кипячение)

K 2 Cr 2 O 7 (т) +2H 2 SO 4(96%) ⇌2KHSO 4 +2CrO 3 +H 2 O (“хромовая смесь”)

K 2 Cr 2 O 7 +KOH (конц) =H 2 O+2K 2 CrO 4

Cr 2 O 7 2- +14H + +6I — =2Cr 3+ +3I 2 ↓+7H 2 O

Cr 2 O 7 2- +2H + +3SO 2(г) =2Cr 3+ +3SO 4 2- +H 2 O

Cr 2 O 7 2- +H 2 O +3H 2 S (г) =3S↓+2OH — +2Cr 2 (OH) 3 ↓

Cr 2 O 7 2- (конц) +2Ag + (разб.) =Ag 2 Cr 2 O 7 (т. красный) ↓

Cr 2 O 7 2- (разб.) +H 2 O +Pb 2+ =2H + + 2PbCrO 4 (красный) ↓

K 2 Cr 2 O 7(т) +6HCl+8H 0 (Zn)=2CrCl 2(син) +7H 2 O+2KCl

Получение: обработка К 2 СrO 4 серной кислотой:

2К 2 СrO 4 + Н 2 SO 4 (30%) = К 2 Cr 2 O 7 + К 2 SO 4 + Н 2 O

Теплоемкость – теплофизическая характеристика, которая определяет способность тел отдавать или воспринимать теплоту, чтобы изменять температуру тела. Отношение количества теплоты, подведенной (или отведенной) в данном процессе, к изменению температуры называется теплоемкостью тела (системы тел):C=dQ/dT, где - элементарное количество теплоты; - элементарное изменение температуры.

Теплоемкость численно равна количеству теплоты, которое необходимо подвести к системе, чтобы при заданных условиях повысить ее температуру на 1 градус. Единицей теплоемкости будет Дж/К.

В зависимости от количественной единицы тела, к которому подводится теплота в термодинамике, различают массовую, объемную и мольную теплоемкости.

Массовая теплоемкость - это теплоемкость, отнесенная к единице массы рабочего тела,c=C/m

Единицей измерения массовой теплоемкости является Дж/(кг×К). Массовую теплоемкость называют также удельной теплоемкостью.

Объемная теплоемкость - теплоемкость, отнесенная к единице объема рабочего тела, где и - объем и плотность тела при нормальных физических условиях. C’=c/V=c p . Объемная теплоемкость измеряется в Дж/(м 3 ×К).

Мольная теплоемкость - теплоемкость, отнесенная к количеству рабочего тела (газа) в молях,C m =C/n, где n - количество газа в молях.

Мольную теплоемкость измеряют в Дж/(моль×К).

Массовая и мольная теплоемкости связаны следующим соотношением:

Объемная теплоемкость газов выражается через мольную как

Где м 3 /моль - мольный объем газа при нормальных условиях.

Уравнение Майера: С р – С v = R.

Учитывая, что теплоемкость непостоянна, а зависит от температуры и других термических параметров, различают истинную и среднюю теплоемкости. В частности, если хотят подчеркнуть зависимость теплоёмкости рабочего тела от температуры, то записывают её как C(t), а удельную – как c(t). Обычно под истинной теплоёмкостью понимают отношение элементарного количества теплоты, которое сообщается термодинамической системе в каком-либо процессе к бесконечно малому приращению температуры этой системы, вызванному сообщенной теплотой. Будем считать C(t) истинной теплоёмкостью термодинамической системы при температуре системы равной t 1 , а c(t) - истинной удельной теплоёмкостью рабочего тела при его температуре равной t 2 . Тогда среднюю удельную теплоёмкость рабочего тела при изменении его температуры от t 1 до t 2 можно определить как



Обычно в таблицах приводятся средние значения теплоемкости c ср для различных интервалов температур, начинающихся с t 1 =0 0 C. Поэтому во всех случаях, когда термодинамический процесс проходит в интервале температур от t 1 до t 2 , в котором t 1 ≠0, количество удельной теплоты q процесса определяется с использованием табличных значений средних теплоемкостей c ср следующим образом.

Теплоёмкость – это отношение количества теплоты δQ, полученной веществом при бесконечно малом изменении его состояния в каком-либо процессе, к изменению температуры dT вещества (символ С, единица Дж/К):

С (T) = δQ/dT

Теплоемкость единицы массы (кг, г) называется удельной (единица Дж/(кг К) и Дж/(г К)), а теплоемкость 1 моль вещества – молярной теплоемкостью (единица Дж/(моль К)).

Различают истинную теплоёмкость.

С = δQ/dT

Среднюю теплоемкость.

Ĉ = Q/(T 2 – Т 1)

Средняя и истинная теплоемкости связаны соотношением

Количество теплоты, поглощенное телом при изменении его состояния, зависит не только от начального и конечного состояния тела (в частности, от температуры), но и от условий перехода между этими состояниями. Следовательно, от условий нагревания тела зависит и его теплоемкость.

В изотермическом процессе (Т = const):

C T = δQ T /dT = ±∞

В адиабатическом процессе (δQ = 0):

C Q = δQ/dT = 0

Теплоемкость при постоянном объеме, если процесс проводят при постоянном объеме – изохорная теплоемкость С V .

Теплоемкость при постоянном давлении, если процесс проводят при постоянном давлении – изобарная теплоемкость С Р.

При V = const (изохорный процесс):

C V = δQ V /dT = (ϭQ/ϭT) V = (ϭU/ϭT) V

δQ V = dU = C V dT

При Р = const (изобарный процесс)%

C p = δQ p /dT = (ϭQ/ϭT) p = (ϭH/ϭT) p

Теплоемкость при постоянном давлении С р больше, чем теплоемкость при постоянном объеме С V . При нагревании при постоянном давлении часть теплоты идет на производство работы расширения, а часть на увеличение внутренней энергии тела; при нагревании же при постоянном объеме вся теплота расходуется на увеличение внутренней энергии.

Cвязь между С p и С V для любых систем, которые могут совершать только работу расширения. Согласно первому закону термодинамики%

δQ = dU +PdV

Внутренняя энергия является функцией внешних параметров и температуры.

dU = (ϭU/ϭT) V dT + (ϭU/ϭV) T dV

δQ = (ϭU/ϭT) V dT + [(ϭU/ϭV) T + P] dV

δQ/dT = (ϭU/ϭT) V + [(ϭU/ϭV) T + P] (dV/dT)

Величина dV/dT (изменение объема с изменением температуры) представляет собой отношение приращений независимых переменных, то есть величина неопределенная, если не указать характер процесса, при котором происходит теплообмен.



Если процесс изохорный (V = const), то dV = 0, dV/dT = 0

δQ V /dT = C V = (ϭU/ϭT) V

Если процесс изобарный (P = const).

δQ P /dT = C p = C V + [(ϭU/ϭV) T + P] (dV/dT) P

Для любых простых систем справедливо:

C p – C v = [(ϭU/ϭV) T + P] (dV/dT) P

Температура затвердевания и кипения раствора. Криоскопия и эбулиоскопия. Определение молекулярной массы растворенного вещества.

Температура кристаллизации.

Раствор в отличие от чистой жидкости не отвердевает целиком при постоянной температуре; при температуре, называемой температурой начала кристаллизации, начинают выделяться кристаллы растворителя и по мере кристаллизации температура раствора понижается (поэтому под температурой замерзания раствора всегда понимают именно температуру начала кристаллизации). Замерзание растворов можно охарактеризовать величиной понижения температуры замерзания ΔТ зам, равной разности между температурой замерзания чистого растворителя T° зам и температурой начала кристаллизации раствора T зам:

ΔТ зам = T° зам - T зам

Кристаллы растворителя находятся в равновесии с раствором только тогда, когда давление насыщенного пара над кристаллами и над раствором одинаково. Поскольку давление пара растворителя над раствором всегда ниже, чем над чистым растворителем, температура, отвечающая этому условию, всегда будет более низкой, чем температура замерзания чистого растворителя. При этом понижение температуры замерзания раствора ΔT зам не зависит от природы растворенного вещества и определяется лишь соотношением числа частиц растворителя и растворенного вещества.

Понижение температуры замерзания разбавленных растворов

Понижение температуры замерзания раствора ΔT зам прямо пропорционально моляльной концентрации раствора:

ΔT зам = Km

Это уравнение называют вторым законом Рауля. Коэффициент пропорциональности K – криоскопическая постоянная растворителя – определяется природой растворителя.

Температура кипения.

Температура кипения растворов нелетучего вещества всегда выше, чем температура кипения чистого растворителя при том же давлении.

Любая жидкость – растворитель или раствор – кипит при той температуре, при которой давление насыщенного пара становится равным внешнему давлению.

Повышение температуры кипения разбавленных растворов

Повышение температуры кипения растворов нелетучих веществ ΔT к = T к – T° к пропорционально понижению давления насыщенного пара и, следовательно, прямо пропорционально моляльной концентрации раствора. Коэффициент пропорциональности E – эбулиоскопическая постоянная растворителя, не зависящая от природы растворенного вещества.

ΔT к = Em

Второй закон Рауля. Понижение температуры замерзания и повышение температуры кипения разбавленного раствора нелетучего вещества прямо пропорционально моляльной концентрации раствора и не зависит от природы растворенного вещества. Данный закон справедлив только для бесконечно разбавленных растворов.

Эбулиоскопия - метод определения молекулярных масс по повышению точки кипения раствора. Температурой кипения раствора называют температуру, при которой давление пара над ним становится равным внешнему давлению.

Если растворенное вещество нелетуче, то пар над раствором состоит из молекул растворителя. Такой раствор начинает кипеть при более высокой температуре (Т) по сравнению с температурой кипения чистого растворителя (Т0). Разность между температурами кипения раствора и чистого растворителя при данном постоянном давлении называется повышением температуры кипения раствора. Эта величина зависит от природы растворителя и концентрации растворенного вещества.

Жидкость кипит, когда давление насыщенного пара над ней равно внешнему давлению. При кипении жидкий раствор и пар находятся в равновесии. В случае, если растворенное вещество нелетуче, повышение температуры кипения раствора подчиняется уравнению:

∆ исп Н 1 - энтальпия испарения растворителя;

m 2 - моляльность раствора (количество моль растворенного вещества в расчете на 1 кг растворителя);

Е – эбулиоскопическая постоянная, равная повышению температуры кипения одномоляльного раствора по сравнению с температурой кипения чистого растворителя. Величина Е определяется свойствами только растворителя, но не растворенного вещества.

Криоскопия – метод определения молекулярных масс по понижению температуры замерзания раствора. При охлаждении растворов наблюдается их замерзание. Температура замерзания – температура, при которой образуются первые кристаллы твердой фазы. Если эти кристаллы состоят только из молекул растворителя, то температура замерзания раствора (Т) всегда ниже температуры замерзания чистого растворителя (Т пл). Разность температур замерзания растворителя и раствора называют понижением температуры замерзания раствора.

Количественная зависимость понижения температуры замерзания от концентрации раствора выражается следующим уравнением:

М 1 - молярная масса растворителя;

∆ пл Н 1 - энтальпия плавления растворителя;

m 2 - моляльность раствора;

K – криоскопическая постоянная, зависящая от свойств только растворителя, равная понижению температуры замерзания раствора с моляльностью растворенного в нем вещества, равной единице.

Зависимость давления насыщенного пара растворителя от температуры.

Понижение точки замерзания и повышение точки кипения растворов, их осмотическое давление не зависят от природы растворенных веществ. Такие свойства называют коллигативными. Эти свойства зависят от природы растворителя и концентрации растворенного вещества. Как правило, коллигативные свойства проявляются, когда в равновесии находятся две фазы, одна из которых содержит растворитель и растворенное вещество, а вторая – только растворитель.

Внутренняя энергия системы может изменяться в результате теплообмена. Т.е., если к системе подводится теплота в количестве dQ, а работа не производится dW = 0, то согласно I закона термодинамики

dU = dQ – dW = dQ

Теплота - способ изменения внутренней энергии системы без изменения внешних параметров (dV = 0 ® dW = 0), это микроскопический способ преобразования энергии.

При поглощении системой некоторого количества теплоты dQ внутренняя энергия ее увеличивается на величину dU (согласно формуле (6.32.)). Возрастание внутренней энергии ведет к увеличению интенсив-ности движения частиц, составляющих систему. Согласно выводам статистической физики средняя скорость движения молекул связана с температурой

Т.е. поглощение системой некоторого количества теплоты dQ ведет к увеличению температуры системы на величину dT, пропорциональную dQ.

dT = const . dQ (6.33)

Соотношение (6.33) можно переписать в другом виде:

dQ = C . dT или , (6.34)

где С – константа, называемая теплоемкостью системы.

Итак, теплоемкость – это количество теплоты, необходимое для нагревания термодинамической системы на один градус по шкале Кельвина.

Теплоемкость системы зависит от:

а) состава и температуры системы;

б) размера системы;

в) условий, при которых происходит переход теплоты.




Схема 6.6. Виды теплоемкости

Т.е. С (теплоемкость), как и Q, является функцией процесса, а не состояния и относится к экстенсивным параметрам.

По количеству нагреваемого вещества различают:

1) удельную теплоемкость С уд, отнесенную к 1 кг или 1 г вещества;

2) молярную (мольную) теплоемкость С м, отнесенную к 1 моль вещества.

Размерность {С уд } = Дж/г. К

{С м } = Дж/моль. К

Между удельной и молярной теплоемкостями имеется соотношение

С м = С уд. М, (6.35)

где М – молярная масса.

При описании физико-химических процессов обычно пользуются молярной теплоемкостью С м (в дальнейшем индекс писать не будем).

Различают также среднюю и истинную теплоемкости.

Средняя теплоемкость – это отношение некоторого количества теплоты к разности температур

(6.36)

Истинной теплоемкостью С называют отношение бесконечно малого количества теплотыdQ, которое нужно подвести к одному моль вещества, к бесконечно малому приращению температуры – dT.

Установим связь между истинной и средней теплоемкостями.

Во-первых,

Во-вторых, выразим Q из формулы (6.36) (6.37). С другой стороны из формулы (6.34) ® dQ = CdT (6.38). Проинтегрируем (6.38) в интервале T 1 - T 2 и получим

Приравняем правые части выражений (6.37) и (6.39)

Отсюда (6.40)

Это уравнение связывает среднюю теплоемкость с истинной С.

Среднюю теплоемкость рассчитывают в интервале температур от Т 1 до Т 2 . Нередко интервал выбирают от ОК до Т, т.е. нижний предел Т 1 = ОК, а верхний имеет переменное значение, т.е. от определенного интервала перейдем к неопределенному. Тогда уравнение (6.40) примет вид:

Расчет можно провести графически, если известны значения истинной теплоемкости при нескольких температурах. Зависимость С = f(T) представлена кривой АВ на рис. 1.


Рис. 6.7. Графическое определение средней теплоемкости

Интеграл в выражении (6.40) представляет собой площадь фигуры Т 1 АВТ 2 .

Таким образом, измерив площадь, определяем

(6.42)

Рассмотрим значение теплоемкости системы при некоторых условиях:

Согласно I закону термодинамики dQ V = dU. Для простых систем внутренняя энергия является функцией объема и температуры U = U (V,T)

Теплоемкость в этих условиях

(6.43)

dQ p = dH. Для простых систем H = H(p,T);

Теплоемкость

(6.44)

С р и С V - теплоемкости при постоянных p и V.

Если рассматривать 1 моль вещества т.е. С р и С V - молярные теплоемкости

dQ V = C V dT, dQ p = C p dT (6.45)

Для «n» моль вещества dQ V = nC V dT, dQ p = nC p dT

Исходя из выражения (6.45), находим

(6.46)

Зная зависимость теплоемкости вещества от температуры, по формуле (6.46) можно вычислить изменение энтальпии системы в интервале Т 1 ¸Т 2 . В качестве базовой температуры выбирается Т 1 = ОК или 298,15 К. В этом случае разность энтальпий Н(Т) – Н(298) называется высокотемпературной составляющей энтальпии.

Найдем связь между С р и С V . Из выражений (6.43) и (6.44) можно записать:

Из I закона термодинамики с учетом только механической работы для простой системы, для которой U = U(V,T)

dQ = dU + pdV =

т.е. (6.49)

Подставим dQ из выражения (6.46) в (6.48) и (6.49) и получим:

Для простой системы объем можно рассматривать как функцию давления и температуры, т.е.

V = V(p,T) ® dV =

при условии p = const dp = 0,

т.е.

Отсюда ,

Таким образом (6.51)

Для 1 моль идеального газа pV = RT,

C p – C V =

Для 1 моль реального газа и применение уравнения Ван-дер-Ваальса приводит к следующему выражению:

C p – C V =

Для реальных газов С p – C V > R. Эта разность увеличивается по мере увеличения давления, т.к. с увеличением давления растет , связанное со взаимодействием молекул реального газа друг с другом.

Для твердого тела при обычной температуре С p – C V < R и составляет примерно 1 Дж/(моль. К). с понижением температуры разность С p – C V уменьшается и при Т ® ОК С p – C V ® 0.

Теплоемкость обладает свойством аддитивности, т.е. теплоемкость смеси двух веществ

(6.52)

В общем случае

,

где x i - доля веществ «I» в смеси.

Теплоемкость является одной из важнейших термодинамических характеристик индивидуальных веществ.

В настоящее время имеются точные методы измерения теплоемкости в широком интервале температур. Достаточно удовлетворительно разработана теория теплоемкости для простого твердого вещества при невысоких давлениях. Согласно молекулярно-кинетической теории теплоемкости для одного моль газа на каждую степень свободы приходится R/2. Т.е. поскольку молярная теплоемкость идеального газа при постоянном объеме

C V = C n + C в + C к + С э, (6.53)

где C n – теплоемкость газа, связанная с поступательным движением молекул,

С в – с вращательным,

С к – с колебательным,

а С э – с электронными переходами, то для одноатомного идеального газа С V = 3/2R,

для двухатомных и линейных трехатомных молекул

C V = 5/2R + C к

для нелинейных многоатомных молекул

C V = 3R + С к

Теплоемкость С к, связанная с колебательным движением атомов в молекуле, подчиняется законам квантовой механики и не отвечает закону равномерного распределения энергии по степеням свободы.

С э в формуле (6.53) не принимается во внимание, С э – это теплоемкость, связанная с электронными переходами в молекуле. Переход электронов на более высокий уровень под действием теплообмена возможен лишь при температурах выше 2000 К.

Теплоемкость твердых веществ с атомной кристаллической решет-кой можно вычислить по уравнению Дебая:

C V = C Д (х), ,

где q – характеристическая температура;

n m – максимальная характеристическая частота колебания атомов в молекуле.

При повышении температуры C V твердых веществ с атомной кристаллической решеткой стремится к предельному значению C V ® 3R. При очень низких температурах

C V ~ T 3 (T < q/12).

Теплоемкости С р по опытным значениям C V (или наоборот) для веществ с атомной кристаллической решеткой можно рассчитать по уравнению:

C p = С V (1 + 0,0214C V )

Для сложного твердого или жидкого вещества хорошей теории пока не существует. Если экспериментальные данные по теплоемкости отсутствуют, то ее можно оценить с помощью эмпирических правил

1) Правило Дюлонга и Пти: атомная теплоемкость при постоянном объеме для любого простого твердого вещества приблизительно равна 25 Дж/(моль. К)

Правило выполняется при высоких температурах (близких к температуре плавления твердого вещества) для элементов, атомная масса которых больше, чем у калия. Как показал Больцман, оно может быть качественно обосновано кинетической теорией:

C V » 25 Дж/(моль. К)(3R)

2) Правило Неймана-Коппа (правило аддитивности) основывается на предположении о неизменяемости теплоемкости элементов при образовании химических связей

С св-ва = 25n

где n – число атомов, входящих в молекулу.

Более близкие к экспериментальным значениям теплоемкости получаются по правилу Неймана-Коппа, если принять для легких элементов значения атомных теплоемкостей представленные в табл. 6.1.

Таблица 6.1.

Значения атомных теплоемкостей для легких элементов

Для остальных элементов C p 0 » 25,94 Дж/(моль. К).

3) Правило аддитивности лежит в основе формулы Келли, которая справедлива для высококипящих чистых неорганических жидкостей (BeO, BeCl 2 , MgBr 2 и др.):

где n – число атомов в молекуле, входящих в молекулу неорганического вещества.

У расплавленных элементов с d- и f-электронами С ат достигает 42¸50 Дж/(моль. К).

4) Приближенный метод расчета для органических жидкостей, использующий атомно-групповые составляющие теплоемкостей

Последние получены при анализе опытных данных большого числа соединений, некоторые из которых сведены в табл. 6.2.

Таблица 6.2.

Некоторые значения атомно-групповых составляющих теплоемкостей

Атом или группа С р, Дж/(моль. К) Атом или группа С р, Дж/(моль. К)
–СН 3 41,32 –О– 35,02
–СН 2 – 26,44 –S– 44,35
СН– 22,68 –Cl 35,98
–СN 58,16 –Br 15,48
–ОН 2 46,02 C 6 H 5 – 127,61
С=О(эфиры) 60,75 –NH 2 (амины) 63,6
С=О(кетоны) 61,5 –NO 2 64,02

Зависимость теплоемкости от температуры

Теплоемкость твердых, жидких и газообразных веществ повышается с температурой. Только теплоемкости одноатомных газов практически не зависят от Т (например, He, Ar и другие благородные газы). Наиболее сложная зависимость С(Т) наблюдается у твердого вещества. Зависимость С(Т) изучается экспериментально, т.к. теория недостаточно разработана.

Обычно зависимость атомной и молярной теплоемкости от температуры выражается в виде интерполяционных уравнений.

С р = а + в. Т + с. Т 2 (для органических веществ) (6.53)

С р = а + в. Т + с / . Т -2 (для неорганических веществ)

Коэффициенты а, в, с, с / - постоянные величины, характерные для данного вещества вычисляются на основании экспериментальных данных и справедливы в определенном интервале температур.