Источником энергии для клетки может служить. Обеспечение клеток энергией

Из клеток состоят все живые организмы, кроме вирусов. Они обеспечивают все необходимые для жизни растения или животного процессы. Клетка и сама может быть отдельным организмом. И разве может такая сложная структура жить без энергии? Конечно, нет. Так как же происходит обеспечение клеток энергией? Оно базируется на процессах, которые мы рассмотрим ниже.

Обеспечение клеток энергией: как это происходит?

Немногие клетки получают энергию извне, они вырабатывают ее сами. обладают своеобразными "станциями". И источником энергии в клетке является митохондрия — органоид, который ее вырабатывает. В нем происходит процесс клеточного дыхания. За счет него и происходит обеспечение клеток энергией. Однако присутствуют они только у растений, животных и грибов. В клетках бактерий митохондрии отсутствуют. Поэтому у них обеспечение клеток энергией происходит в основном за счет процессов брожения, а не дыхания.

Строение митохондрии

Это двумембранный органоид, который появился в эукариотической клетке в процессе эволюции в результате поглощения ею более мелкой Этим можно объяснить то, что в митохондриях присутствует собственная ДНК и РНК, а также митохондриальные рибосомы, вырабатывающие нужные органоидам белки.

Внутренняя мембрана обладает выростами, которые называются кристы, или гребни. На кристах и происходит процесс клеточного дыхания.

То, что находится внутри двух мембран, называется матрикс. В нем расположены белки, ферменты, необходимые для ускорения химических реакций, а также молекулы РНК, ДНК и рибосомы.

Клеточное дыхание — основа жизни

Оно проходит в три этапа. Давайте рассмотрим каждый из них более подробно.

Первый этап — подготовительный

Во время этой стадии сложные органические соединения расщепляются на более простые. Так, белки распадаются до аминокислот, жиры — до карбоновых кислот и глицерина, нуклеиновые кислоты — до нуклеотидов, а углеводы — до глюкозы.

Гликолиз

Это бескислородный этап. Он заключается в том, что вещества, полученные во время первого этапа, расщепляются далее. Главные источники энергии, которые использует клетка на данном этапе, — молекулы глюкозы. Каждая из них в процессе гликолиза распадается до двух молекул пирувата. Это происходит во время десяти последовательных химических реакций. Вследствие первых пяти глюкоза фосфорилируется, а затем расщепляется на две фосфотриозы. При следующих пяти реакциях образуется две молекулы и две молекулы ПВК (пировиноградной кислоты). Энергия клетки и запасается именно в виде АТФ.

Весь процесс гликолиза можно упрощенно изобразить таким образом:

2НАД+ 2АДФ + 2Н 3 РО 4 + С 6 Н 12 О 6 2Н 2 О + 2НАД. Н 2 +2С 3 Н 4 О 3 + 2АТФ

Таким образом, используя одну молекулу глюкозы, две молекулы АДФ и две фосфорной кислоты, клетка получает две молекулы АТФ (энергия) и две молекулы пировиноградной кислоты, которую она будет использовать на следующем этапе.

Третий этап — окисление

Данная стадия происходит только при наличии кислорода. Химические реакции этого этапа происходят в митохондриях. Именно это и есть основная часть во время которой высвобождается больше всего энергии. На этом этапе вступая в реакцию с кислородом, расщепляется до воды и углекислого газа. Кроме того, при этом образуется 36 молекул АТФ. Итак, можно сделать вывод, что главные источники энергии в клетке — глюкоза и пировиноградная кислота.

Суммируя все химические реакции и опуская подробности, можно выразить весь процесс клеточного дыхания одним упрощенным уравнением:

6О 2 + С 6 Н 12 О 6 + 38АДФ + 38Н 3 РО 4 6СО 2 + 6Н2О + 38АТФ.

Таким образом, в ходе дыхания из одной молекулы глюкозы, шести молекул кислорода, тридцати восьми молекул АДФ и такого же количества фосфорной кислоты клетка получает 38 молекул АТФ, в виде которой и запасается энергия.

Разнообразие ферментов митохондрий

Энергию для жизнедеятельности клетка получает за счет дыхания — окисления глюкозы, а затем пировиноградной кислоты. Все эти химические реакции не могли бы проходить без ферментов — биологических катализаторов. Давайте рассмотрим те из них, которые находятся в митохондриях — органоидах, отвечающих за клеточное дыхание. Все они называются оксидоредуктазами, потому что нужны для обеспечения протекания окислительно-восстановительных реакций.

Все оксидоредуктазы можно разделить на две группы:

  • оксидазы;
  • дегидрогеназы;

Дегидрогеназы, в свою очередь, делятся на аэробные и анаэробные. Аэробные содержат в своем составе кофермент рибофлавин, который организм получает из витамина В2. Аэробные дегидрогеназы содержат в качестве коферментов молекулы НАД и НАДФ.

Оксидазы более разнообразны. В первую очередь они делятся на две группы:

  • те, которые содержат медь;
  • те, в составе которых присутствует железо.

К первым относятся полифенолоксидазы, аскорбатоксидаза, ко вторым — каталаза, пероксидаза, цитохромы. Последние, в свою очередь, делятся на четыре группы:

  • цитохромы a;
  • цитохромы b;
  • цитохромы c;
  • цитохромы d.

Цитохромы а содержат в своем составе железоформилпорфирин, цитохромы b — железопротопорфирин, c — замещенный железомезопорфирин, d — железодигидропорфирин.

Возможны ли другие пути получения энергии?

Несмотря на то что большинство клеток получают ее в результате клеточного дыхания, существуют также анаэробные бактерии, для существования которых не нужен кислород. Они вырабатывают необходимую энергию путем брожения. Это процесс, в ходе которого с помощью ферментов углеводы расщепляются без участия кислорода, вследствие чего клетка и получает энергию. Различают несколько видов брожения в зависимости от конечного продукта химических реакций. Оно бывает молочнокислое, спиртовое, маслянокислое, ацетон-бутановое, лимоннокислое.

Для примера рассмотрим Его можно выразить вот таким уравнением:

С 6 Н 12 О 6 С 2 Н 5 ОН + 2СО 2

То есть одну молекулу глюкозы бактерия расщепляет до одной молекулы этилового спирта и двух молекул оксида (IV) карбона.

Данный видеоурок посвящен теме «Обеспечение клеток энергией». На этом занятии мы рассмотрим энергетические процессы в клетке и изучим, как происходит обеспечение клеток энергией. Вы узнаете также, что такое клеточное дыхание, из каких этапов оно состоит. Подробно обсудите каждый из этих этапов.

БИОЛОГИЯ 9 КЛАСС

Тема: Клеточный уровень

Урок 13. Обеспечение клеток энергией

Степанова Анна Юрьевна

к. б.н., доц. МГУИЭ

Москва

Сегодня мы поговорим об обеспечении клеток энергией. Энергия используется для различных химических реакций, протекающих в клетке. Одни организмы используют энергию солнечного света для биохимических процессов - это растения, а другие используют энергию химических связей в веществах, получаемых в процессе питания, - это животные организмы. Вещества из пищи извлекаются с помощью расщепления или биологического окисления в процессе клеточного дыхания.

Клеточное дыхание - это биохимический процесс в клетке, протекающий в присутствии ферментов, в результате которого выделяется вода и углекислый газ, энергия запасается в виде макроэнергетических связей молекул АТФ. Если этот процесс протекает в присутствии кислорода, то он носит название «аэробный». Если же он происходит без кислорода, то он называется «анаэробным.

Биологическое окисление включает три основных стадии:

1. ​Подготовительную,

2​. Бескислородную (гликолиз),

3​. Полное расщепление органических веществ (в присутствии кислорода).

Подготовительный этап. Поступившие с пищей вещества расщепляются до мономеров. Этот этап начинается в желудочно-кишечном тракте или в лизосомах клетки. Полисахариды распадаются на моносахариды, белки – на аминокислоты, жиры – на глицерины и жирные кислоты. Выделяющаяся на этой стадии энергия рассеивается в виде тепла. Надо отметить, что для энергетических процессов клетки используют именно углеводы, а лучше - моносахариды. А мозг может использовать для своей работы только моносахарид - глюкозу.

Глюкоза в процессе гликолиза распадается на две трехуглеродные молекулы пировиноградной кислоты. Дальнейшая их судьба зависит от присутствия в клетке кислорода. Если в клетке присутствует кислород, то пировиноградная кислота приходит в митохондрии для полного окисления до углекислого газа и воды (аэробное дыхание). Если кислорода нет, то в животных тканях пировиноградная кислота превращается в молочную кислоту. Эта стадия проходит в цитоплазме клетки. В результате гликолиза образуется всего две молекулы АТФ.

Для полного окисления глюкозы обязательно необходим кислород. На третьем этапе в митохондриях происходит полное окисление пировиноградной кислоты до углекислого газа и воды. В результате образуется еще 36 молекул АТФ.

Всего на трех этапах образуется 38 молекул АТФ из одной молекулы глюкозы, учитывая две АТФ, полученные в процессе гликолиза.

Таким образом, мы рассмотрели энергетические процессы, происходящие в клетках. Охарактеризовали этапы биологического окисления. На этом наш урок окончен, всего вам доброго, до свидания!

Отличие дыхания от горения . Дыхание, происходящее в клетке, нередко сравнивают с процессом горения. Оба процесса происходят в присутствии кислорода, выделении энергии и продуктов окисления. Но, в отличие от горения, дыхание - это упорядоченный процесс биохимических реакций, протекающий в присутствии ферментов. При дыхании углекислый газ возникает как конечный продукт биологического окисления, а в процессе горения образование углекислого газа происходит путем прямого соединения водорода с углеродом. Также во время дыхания образуется определенное количество молекул АТФ. То есть дыхание и горение - это принципиально разные процессы.

Биомедицинское значение. Для медицины важен не только метаболизм глюкозы, но также фруктозы и галактозы. Особенно важна в медицине способность к образованию АТФ в отсутствии кислорода. Это позволяет поддерживать интенсивную работу скелетной мышцы в условиях недостаточной эффективности аэробного окисления. Ткани с повышенной гликолитической активностью способны сохранять активность в периоды кислородного голодания. В сердечной мышце возможности осуществления гликолиза ограничены. Она тяжело переносит нарушение кровоснабжения, что может привести к ишемии. Известно несколько болезней, обусловленных отсутствием ферментов, которые регулируют гликолиз:

Гемолитическая анемия (в быстрорастущих раковых клетках гликолиз идет со скоростью превышающей возможности цикла лимонной кислоты), что способствует повышенному синтезу молочной кислоты в органах и тканях. Повышенное содержание молочной кислоты в организме может быть симптомом рака.

Брожение. Микробы способны получать энергию в процессе брожения. Брожение известно людям с незапамятных времен, например, при изготовлении вина. Еще ранее было известно о молочнокислом брожении. Люди потребляли молочные продукты, не подозревая, что эти процессы связаны с деятельностью микроорганизмов. Это впервые доказал Луи Пастер. Причем разные микроорганизмы выделяют разные продукты брожения. Сейчас мы поговорим о спиртовом и молочнокислом брожении. В результате образуется этиловый спирт, углекислота и выделяется энергия. Пивовары и виноделы использовали некоторые виды дрожжей для стимуляции брожения, в результате которого сахара превращаются в спирт. Брожение производят главным образом дрожжи, а также некоторые бактерии и грибы. В нашей стране традиционно используются дрожжи сахаромицеты. В Америке - бактерии рода псевдомонас. А в Мексике используются бактерии «подвижные палочки». Наши дрожжи, как правило, сбраживают гексозы (шестиуглеродные моносахариды), такие как глюкоза или фруктоза. Процесс образования спирта можно представить следующим образом: из одной молекулы глюкозы образуется две молекулы спирта, две молекулы углекислого газа и две молекулы АТФ. Этот способ менее выгоден, чем аэробные процессы, но позволяет поддерживать жизнь в условиях отсутствия кислорода. А теперь давайте поговорим о кисломолочном брожении. Одна молекула глюкозы образует две молекулы молочной кислоты и при этом выделяется две молекулы АТФ. Молочнокислое брожение широко используется для производства молочных продуктов: сыр, простокваша, йогурты. Также молочная кислота используется при изготовлении безалкогольных напитков.

Когда знакомишься с фундаментальными трудами человечества, нередко ловишь себя на мысли, что с развитием науки вопросов становится больше, чем ответов. В 80-х и 90-х годах молекулярная биология и генетика расширили представле-ние о клетках и клеточном взаимодействии. Был выделен целый класс клеточных факторов, которые регулируют межкле-точное взаимодействие. Это имеет важное значение для понимания функционирования многоклеточного человеческого организма и особенно клеток иммунной системы. Но с каждым годом биологи открывают все больше подобных межклеточ-ных факторов и все трудней воссоздать картину целостного организма. Таким образом, вопросов возникает больше, чем появляется ответов.

Неисчерпаемость человеческого организма и ограниченные возможности его изучения приводят к выводу о необходимос-ти ближайших и последующих приоритетов исследований. Таким приоритетом на сегодняшний день является энергетика клеток живого человеческого организма. Недостаточные знания об энергопроизводстве и об энергообмене клеток в организме становится препятствием для серьезных научных исследований.

Клетка является основной структурной единицей организма: все органы и ткани состоят из клеток. Трудно рассчитывать на успех лекарственных средств или немедикаментозных методов, если они разрабатываются без достаточных знаний об энергетике клеток и межклеточном энергетическом взаимодействии. Можно привести достаточно примеров, когда широко используемые и рекомендуемые средства наносят вред здоровью.

Господствующим в здравоохранении является субстанционный подход. Субстанция - вещество. Логика врачевания предельно простая: обеспечить организм необходимыми веществами (вода, пища, витамины, микроэлементы, а при необходимости лекарства) и вывести из организма продукты обмена (экскременты, избыточные жиры, соли, токсины и т. д.). Экспансия лекарственных средств продолжает торжествовать. Новые поколения людей во многих странах становятся добровольными участниками широкомасштабного эксперимента. Индустрия лекарств требует новых больных. Тем не менее, здоровых людей становится все меньше и меньше.

У создателя популярного справочника по лекарственным средствам как-то спросили о том, сколько лекарств ему лично пришлось опробовать. Ни одного - был ответ. По-видимому, этот умный человек имел блестящие знания о биохимии клетки и умел с пользой применять эти знания в жизни.

Представьте себе миниатюрную частичку живой материи, в форме эллипсоида, диска, шара, примерно 8-15 микрон (мкм) в поперечнике, одновременно являющуюся сложнейшей саморегулирующейся системой. Обычную живую клетку называют дифференцированной, как бы подчеркивая, что множество элементов, входящих в ее состав, четко разделены относительно друг друга. Понятие "недифференцированная клетка", как правило, принадлежит видоизмененной, например, раковой клетке. Дифференцированные клетки отличаются не только строением, внутренним обменом, но и специализацией, например, почечные, печеночные, сердечные клетки.

В общем случае клетка состоит из трех компонентов: клеточной оболочки, цитоплазмы, ядра. В состав клеточной оболоч-ки, как правило, входит трех-, четырехслойная мембрана и наружная оболочка. Два слоя мембраны состоят из липидов (жиров), основную часть которых составляют ненасыщенные жиры - фосфолипиды. Мембрана клетки имеет весьма сложное строение и многообразные функции. Разность потенциалов по обе стороны мембраны может составлять несколько сотен милливольт. Наружная поверхность мембраны содержит отрицательный электрический заряд.

Как правило, клетка имеет одно ядро. Хотя есть клетки, у которых два ядра и более. Функция ядра заключается в хранении и передаче наследственной информации, например, при делении клетки, а также в управлении всеми физиологи-ческими процессами в клетке. В ядре содержатся молекулы ДНК, несущие генетический код клетки. Ядро заключено в двухслойную мембрану.

Цитоплазма составляет основную массу клетки и представляет собой клеточную жидкость с расположенными в ней органеллами и включениями. Органеллы - постоянные компоненты цитоплазмы, выполняющие специфические важные функции. Из них нас больше всего интересуют митохондрии, которые иногда называют электростанциями клетки. Каждая митохондрия имеет две мембранные системы: наружную и внутреннюю. Наружная мембрана гладкая, в ней поровну предс-тавлены липиды и белки. Внутренняя мембрана принадлежит к наиболее сложным типам мембранных систем человеческо-го организма. В ней множество складок, называемых гребешками (кристами), за счет которых мембранная поверхность существенно увеличивается. Можно представить эту мембрану в виде множества грибовидных выростов, направленных во внутреннее пространство митохондрии. На одну митохондрию приходится 10 в 4-10 в 5 степени таких выростов.

Кроме того, во внутренней митохондриальной мембране присутствует еще 50-60 ферментов, общее число молекул разных типов достигает 80. Все это необходимо для химического окисления и энергетического обмена. Среди физических свойств этой мембраны следует отметить высокое электрическое сопротивление, что характерно для так называемых сопрягаю-щих мембран, способных аккумулировать энергию подобно хорошему конденсатору. Разность потенциалов по обе стороны внутренней митохондриальной мембраны составляет около 200-250 мВ.

Можно представить, насколько сложна клетка, если, например, печеночная клетка гепатоцит содержит около 2000 митохондрий. Но ведь в клетке множество и других органелл, сотни ферментов, гормонов и других сложных веществ. Каждая органелла имеет свой набор веществ, в ней осуществляются определенные физические, химические и биохимичес-кие процессы. В таком же динамическом состоянии находятся вещества в цитоплазматическом пространстве, они беспре-рывно обмениваются с органеллами и с внешним окружением клетки через ее мембрану.

Прошу прощения у Читателя - неспециалиста за технические детали, но эти представления о клетке полезно знать каждому человеку, желающему быть здоровым. Мы должны восхищаться этим чудом природы и одновременно учитывать слабые стороны клетки, когда занимаемся лечением. Мне доводилось наблюдать, когда обычный анальгин приводил к отекам тканей у молодого здорового человека. Поражает, как не задумываясь, с какой легкостью иные глотают таблетки!

Представления о сложности клеточного функционирования будут не полными, если мы не расскажем об энергетике клеток. Энергия в клетке тратится на выполнение различной работы: механическую - движение жидкости, движение органелл; химическую - синтез сложных органических веществ; электрическую - создание разности электрических потенциа-лов на плазматических мембранах; осмотическую - транспорт веществ внутрь клетки и обратно. Не ставя перед собой задачу перечислить все процессы, ограничимся известным утверждением: без достаточного обеспечения энергией не может быть достигнуто полноценное функционирование клетки.

Откуда клетка получает необходимую ей энергию? Согласно научным теориям химическая энергия питательных веществ (углеводов, жиров, белков) превращается в энергию макроэргических (содержащих много энергии) связей аденозинтрифос-фата (АТФ). Эти процессы осуществляются в митохондриях клеток преимущественно в цикле трикарбоновых кислот (цикл Кребса) и при окислительном фосфорилировании. Запасенная в АТФ энергия легко освобождается при разрыве макроэрги-ческих связей, в результате обеспечиваются энергозатраты в организме.

Однако эти представления не позволяют дать объективную оценку количественных и качественных характеристик энергообеспечения и энергообмена в тканях, а также состояния энергетики клеток и межклеточного взаимодействия. Следует обратить внимание на важнейший вопрос (Г. Н. Петракович), на который не может ответить традиционная теория: за счет каких факторов осуществляется межклеточное взаимодействие? Ведь АТФ образуется и расходуется, выделяя энергию, внутри митохондрии.

Между тем, имеется достаточно оснований сомневаться в благополучии энергообеспечения органов, тканей, клеток. Можно даже прямо утверждать, что человек в этом отношении весьма не совершенен. Об этом свидетельствует уста-лость, которую ежедневно многие испытывают, и которая начинает досаждать человеку с детского возраста.

Проведенные расчеты показывают, что если бы энергия в человеческом организме производилась за счет указанных процессов (цикл Кребса и окислительное фосфорилирование), то при малой нагрузке энергетический дефицит составлял бы 30-50%, а при большой нагрузке - более 90%. Это подтверждают исследования американских ученых, которые пришли к выводу о недостаточном функционировании митохондрий в плане обеспечения человека энергией.

Вопросы об энергетике клеток и тканей возможно еще долго оставались бы на обочине дороги, по которой медленно движется теоретическая и практическая медицина, если бы не произошли два события. Речь идет о Новой гипотезе дыхания и открытии Эндогенного Дыхания.

Какова функция ДНК в синтезе белка: а) самоудвоение; б) транскрипция; в) синтез
тРНК и рРНК.
Чему
соответствует информация одного гена молекулы ДНК: а) белку; б) аминокислоте;
в) гену.
Сколько
аминокислот участвует в биосинтезе белков: а)100; б) 30; в) 20.
Что
образуется на рибосоме в процессе биосинтеза белка: а) белок третичной
структуры; б) белок вторичной структуры; в) полипептидная цепь.
Роль
матрицы в биосинтезе белка выполняет: а) иРНК; б) тРНК; в) ДНК; г) белок.
Структурной
функциональной единицей генетической информации является: а) нить ДНК; б)
участок молекулы ДНК; в) молекула ДНК; г) ген.
иРНК в
процессе биосинтеза белка: а) ускоряет реакции биосинтеза; б) хранит
генетическую информацию; в) передает генетическую информацию; г) является
местом синтеза белка.
Генетический
код - это последовательность: а) нуклеотидов в рРНК; б) нуклеотидов в
иРНК; в) аминокислот в белке; г) нуклеотидов в ДНК.
Аминокислота
присоединяется к тРНК: а) к любому кодону; б) к антикодону; в) к кодону в
основании молекулы.
Синтез
белка происходит в: а) ядре; б) цитоплазме; в) на рибосомах; г)
митохондриях.
Трансляция
- это процесс: а) транспорта иРНК к рибосомам; б) транспорта АТФ к
рибосомам; в) транспорта аминокислот к рибосомам; г) соединение
аминокислот в цепь.
К
реакциям пластического обмена в клетке относятся: а) репликация ДНК и
биосинтез белка; б) фотосинтез, хемосинтез, гликолиз; в) фотосинтез и
биосинтез; г) биосинтез, репликация ДНК, гликолиз.
В
функциональный центр рибосомы при трансляции всегда находится число
нуклеотидов равное: а) 2; б) 3; в) 6; г) 9.
Транскрипция
и трансляция в эукариотической клетке происходит: а) только в ядре; б) в
ядре и цитоплазме; в) в цитоплазме.
В реакциях
биосинтеза белка в клетке энергия АТФ: а) выделяется; б) расходуется; в)
не расходуется и не выделяется; г) на одних этапах расходуется, на других
выделяется.
Количество
сочетаний триплетов генетического кода, не кодирующих ни одной
аминокислоты, составляет: а) 1; б) 3; в) 4.
Последовательность
нуклеотидов в молекуле иРНК строго комплементарна: а) последовательности
триплетов гена; б) триплету, кодирующему аминокислоту; в) кодонам,
содержащим информацию о структуре гена; г) кодонам, содержащим информацию
о структуре белка.
Где
формируются сложные структуры молекул белка: а) на рибосоме; б) в
цитоплазме; в) в эндоплазматической сети.
Какие компоненты составляют тело рибосомы: а) мембраны; б)
белки; в) углеводы; г) РНК.

"энергетическими станциями " обеспечивающими клетку энергией,я вляются: 1вакуоль 2цитоплазма 3митохондрии. Органоиды расположены свободно или на

шероховатой эндоплазмотической сети,участвующие в биосинтезе белка это:1рибосомы 2лизосомы 3митохондрии 4центриоли

Из предложенных ответов выберите одно из положений клеточной теории:

А) организмы всех царств живой природы состоят из клеток
Б) оболочка грибной клетки состоит из хитина, как и наружный скелет членистоногих
В) клетки животных организмов не содержат пластиды
Г) спора бактерий представляет собой одну специализированную клетку
Вода в клетке выполняет функцию: А) транспортную, растворителя
Б) энергетическую В) каталитическую Г) информационную
РНК представляет собой:
А) полинуклеотидную цепь в форме двойной спирали, цепи которой соединены водородными связями Б) нуклеотид, содержащий две богатых энергией связи
В) полинуклеотидную нить в форме одноцепочечной спирали
Г) полинуклеотидную цепь, состоящую из различных аминокислот
Синтез молекул АТФ происходит в:
А) рибосомах Б) митохондриях В) аппарате Гольджи Г) ЭПС
Клетки прокариот отличаются от клеток эукариот:
А) более крупными размерами Б) отсутствием ядра
В) наличием оболочки Г) наличием нуклеиновых кислот
Митохондрии считают силовыми станциями клетки, так как:
А) в них расщепляются органические вещества с освобождением энергии
Б) в них откладываются в запас питательные вещества
В) в них образуются органические вещества Г) они преобразуют энергию света
Значение обмена веществ в клетке состоит в:
А) обеспечение клетки строительным материалом и энергией
Б) осуществлении передачи наследственной информации от материнского организма к дочернему
В) равномерном распределении хромосом между дочерними клетками
Г) обеспечении взаимосвязей клеток в организме
Роль и-РНК в синтезе белка состоит в:
А) обеспечении хранения наследственной информации Б) обеспечении клетки энергией
В) обеспечении передачи генетической информации из ядра в цитоплазму
Восстановление диплоидного набора хромосом в зиготе – первой клетке нового организма – происходит в результате:
А) мейоза Б) митоза В) оплодотворения Г) обмена веществ
«Гены, расположенные в одной хромосоме, наследуются совместно» - это формулировка:
А) правила доминирования Г. Менделя Б) закона сцепленного наследования Т. Моргана
В) закона расщепления Г. Менделя Г) закона независимого наследования признаков Г. Менделя
Генетический код представляет собой:
А) отрезок молекулы ДНК, содержащий информацию о первичной структуре одного белка
Б) последовательноcть аминокислотных остатков в молекуле белка
В) последовательность нуклеотидов в молекуле ДНК, определяющую первичную структуру всех молекул белка
Г) зашифрованную в т-РНК информацию о первичной структуре белка
Совокупность генов популяции, вида или иной систематической группы называют:
А) генотипом Б) фенотипом В) генетическим кодом Г) генофондом
Изменчивость, которая возникает под влиянием факторов внешней среды и не затрагивает хромосомы и гены, называют: А) наследственной Б) комбинативной
В) модификационной Г) мутационной
Образование новых видов в природе происходит в результате:
А) стремления особей к самоусовершенствованию
Б) преимущественного сохранения в результате борьбы за существование и естественного отбора особей с полезными наследственными изменениями:
В) отбора и сохранения человеком особей с полезными наследственными изменениями
Г) выживания особей с разнообразными наследственными изменениями
Процесс сохранения из поколения в поколение особей с полезными для человека наследственными изменениями называется: А) естественный отбор
Б) наследственная изменчивость В) борьба за существование Г) искусственный отбор
Определите среди названных эволюционных изменений ароморфоз:
А) формирование конечностей копательного типа у крота
Б) появление покровительственной окраски у гусеницы
В) появление легочного дыхания у земноводных Г) утрата конечностей у китов
Из перечисленных факторов эволюции человека к биологическим относится:
А) естественный отбор Б) речь В) общественный образ жизни Г) труд
Выпишите буквы в той последовательности, которая отражает этапы эволюции человека: А) кроманьонцы Б) питекантропы В) неандертальцы Г) австралопитеки
Все компоненты неживой природы (свет, температура, влажность, химический и физический состав среды), воздействующие на организмы, популяции, сообщества, называют факторами:
А) антропогенными Б) абиотическими В) ограничивающими Г) биотическими
Животных, грибы относят к группе гетеротрофов, так как:
А) сами создают органические вещества из неорганических Б) используют энергию солнечного света В) питаются готовыми органическими веществами Г) питаются минеральными веществами
Биогеоценоз – это:
А) искусственное сообщество, созданное в результате хозяйственной деятельности человека
Б) комплекс взаимосвязанных видов, обитающих на определенной территории с однородными природными условиями
В) совокупность всех живых организмов планеты
Г) геологическая оболочка, населенная живыми организмами
Форму существования вида, обеспечивающую его приспособленность к жизни в определенных условиях, представляет:
А) особь Б) стадо В) колония Г) популяция

1. Какое из приведенных утверждений считается правильным?

а) происхождение от специализированных предков;
б) ненаправленность эволюции;
в) ограниченность эволюции;
г) прогрессирующая специализация.
2. Борьба за существование является следствием:
а) врожденного стремления к совершенству;
б) необходимостью бороться со стихийными бедствиями;
в) генетического разнообразия;
г) того, что число потомков превышает потенциальные возможности среды.
3.Правильная таксономия в ботанике:
а) вид – род – семейство – класс – порядок;
б) род – семейство – отряд – класс – отдел;
в) вид – род – семейство – порядок – класс;
г) вид – род – семейство – порядок – тип.
4. Медиатором в преганглионарных нейронах симпатической нервной системы является:
а) адреналин;
б) ацетилхолин;
в) серотонин;
г) глицин.
5.Инсулин в организме человека не участвует в:
а) активации распада белков в клетках;
б) синтезе белка из аминокислот;
в) запасании энергии;
г) депонировании углеводов в виде гликогена.
6. Одним из главных веществ вызывающих сон, является вырабатываемый нейронами центральной части среднего мозга:
а) норадреналин;
б) ацетилхолин;
в) серотонин;
г) дофамин.
7.Среди водорастворимых витаминов коферментами являются:
а) пантотеновая кислота;
б) витамин А;
в) биотин;
г) витамин К.
8.Способностью к фагоцитозу обладают:
а) В-лимфоциты;
б) Т-киллеры;
в) нейтрофилы;
г) плазматические клетки.
9.В возникновении ощущения щекотки и зуда участвуют:
а) свободные нервные окончания;
б) тельца Руффини;
в) нервные сплетения вокруг волосяных луковиц;
г) тельца Пачини.
10.Какие особенности характерны для всех суставов?
а) наличие суставной жидкости;
б) наличие суставной сумки;
в) давление в суставной полости ниже атмосферного;
г) имеются внутрисуставные связки.
11.Какие процессы протекающие в скелетных мышцах требуют затраты энергии АТФ?
а) транспорт ионов К+ из клетки;
б) транспорт ионов Na+ в клетку;
в) перемещение ионов Ca2+ из цистерн ЭПС в цитоплазму;
г) разрыв поперечных мостиков между актином и миозином.

12. При длительном пребывании человека в невесомости не происходит:
а) уменьшение объема циркулирующей крови;
б) увеличение количества эритроцитов;
в) снижение мышечной силы;
г) снижение максимального сердечного выброса.
24. Какие биологические особенности капусты надо учитывать при ее выращивании?
а) небольшую потребность в воде, питательных веществах, освещенности;
б) большую потребность в воде, питательных веществах, освещенности, умеренной температуре;
в) теплолюбивость, теневыносливость, небольшую потребность в питательных веществах;
г) быстрый рост, короткий вегетационный период.
13. Назовите группу организмов, число представителей которой преобладает над представителями других групп, входящих в состав пищевых цепей выедания (пастбищных).
а) продуценты;
б) потребители первого порядка;
в) потребители второго порядка;
г) потребители третьего порядка.
14. Укажите наиболее сложный наземный биогеоценоз.
а) березовая роща;
б) сосновый бор;
в) дубрава;
г) пойма реки.
15. Назовите экологический фактор, который для ручьевой форели является ограничивающим.
а) скорость течения;
б) температура;
в) концентрация кислорода;
г) освещенность.
16. В середине лета рост многолетних растений замедляется или полностью прекращается, уменьшается количество цветущих растений. Какой фактор и какое изменение его служит причиной таких явлений?
а) снижение температуры;
б) уменьшение;
в) уменьшение длины дня;
г) уменьшение интенсивности солнечного излучения.
17. К архебактериям не относятся:
а) галобактерии;
б) метаногены;
в) спирохеты;
г) термоплазмы.

18. Основными признаками гоминизациине являются:
а) прямохождение;
б) приспособление к трудовой деятельности руки;
в) социальное поведение;
г) строение зубной системы.
19 Бациллы - это:
а) грамположительные спорообразующие палочки;
б) грамотрицательные спорообразующие палочки;
в) грамотрицательные неспорообразующие палочки;
г) грамположительные неспорообразующие палочки.
20. При возникновении теплокровности решающим стал морфологический признак:
а) волосяной и перьевой покров;
б) четырехкамерное сердце;
в) альвеолярное строение легких, увеличивающее интенстивность газообмена;
г) повышенное содержание миоглобина в мышцах.

Жизненный цикл клетки отчетливо демонстрирует, что жизнь клетки распадается на период интеркинеза и митоза. В период интеркинеза активно осуществляются все жизненные процессы, кроме деления. На них прежде всего и остановимся. Основным жизненным процессом клетки является обмен веществ.

На основе его происходит образование специфических веществ, рост, дифференцировка клетки, а также раздражимость, движения и самовоспроизведение клеток. В многоклеточном организме клетка является частью целого. Поэтому морфологические особенности и характер всех жизненных процессов клетки складываются под влиянием организма и окружающей внешней среды. Свое влияние на клетки организм осуществляет главным образом через нервную систему, а также путем воздействия гормонов желез внутренней секреции.

Обмен веществ - это определенный порядок превращения веществ, приводящий к сохранению и самообновлению клетки. В процессе обмена веществ, с одной стороны, в клетку поступают вещества, которые перерабатываются и входят в состав тела клетки, а с другой стороны, из клетки выводятся вещества, являющиеся продуктами распада, то есть клетка и среда обмениваются веществами. Химически обмен веществ выражается в следующих друг за другом в определенном порядке химических реакциях. Строгий порядок в ходе превращения веществ обеспечивается белковыми веществами - ферментами, которые играют роль катализаторов. Ферменты специфичны, то есть они действуют определенным образом лишь на определенные вещества. Под влиянием ферментов данное вещество из всех возможных превращений во много раз быстрее изменяется лишь в одном направлении. Образовавшиеся в результате этого процесса новые вещества изменяются дальше под влиянием уже других, столь же специфичных ферментов и т. д.

Движущее начало обмена веществ -закон единства и борьбы противоположностей. Действительно, обмен веществ определяется двумя противоречивыми и в то же время едиными процессами - ассимиляцией и диссимиляцией. Поступившие из внешней среды вещества перерабатываются клеткой и превращаются в вещества, свойственные данной клетке (ассимиляция). Таким образом, обновляется состав ее цитоплазмы, органелл ядра, образуются трофические включения, вырабатываются секреты, инкреты. Процессы ассимиляции -синтетические, они идут при поглощении энергии. Источником этой энергии являются процессы диссимиляции. В результате их ранее возникшие органические вещества разрушаются, причем освобождается энергия и образуются продукты, одни из которых синтезируются в новые вещества клетки, а другие выводятся из клетки (экскреты). Энергия, освободившаяся в результате диссимиляции, используется при ассимиля-ции. Таким образом, ассимиляция и диссимиляция являются двумя хотя и различными, но тесно связанными друг с другом сторонами обмена веществ.

Характер обмена различен не только у разных животных, но даже и в пределах одного организма в различных органах и тканях. Эта специфичность проявляется в том, что клетки каждого органа способны усваивать лишь определенные вещества, строить из них специфические вещества своего тела и выделять во внешнюю среду тоже вполне определенные вещества. Вместе с обменом веществ совершается и обмен энергии, то есть клетка поглощает из внешней среды энергию в виде тепла, света и, в свою очередь, выделяет лучистую и другие виды энергии.

Обмен веществ слагается из ряда частных процессов. Основные из них:

1) проникновение веществ в клетку;

2) их «переработка» при помощи процессов питания и дыхания (аэробного и анаэробного);

3) использование продуктов «переработки» для различных синтетических процессов, примером которых может быть синтез белков и образование секрета;

4) выведение продуктов жизнедеятельности из клетки.

В проникновении веществ, равно как и в выведении веществ из клетки, важную роль играет плазмалемма. Оба эти процесса можно рассматривать с физико-химической и морфологической точки зрения. Проницаемость осуществляется благодаря пассивному и активному переносу. Первый происходит благодаря явлениям диффузии и осмоса. Однако в клетку могут поступать вещества вопреки этим законам, что говорит об активности самой клетки и об ее избирательности. Известно, например, что ионы натрия выкачиваются из клетки, если даже их концентрация во внешней среде выше, чем в клетке, а ионы калия, наоборот, нагнетаются в клетку. Это явление описывается под названием «натриево-калиевый насос» и сопровождается затратой энергии. Способность проникать в клетку уменьшается по мере увеличения в молекуле числа гидроксильных групп (ОН) при введении в молекулу аминогруппы (NH2). Органические кислоты проникают легче, чем неорганические. Из щелочей особенно быстро проникает аммиак. Для проницаемости имеет значение и размер молекулы. Проницаемость клетки изменяется в зависимости от реакции, температуры, освещения, от возраста и физиологического состояния самой клетки, причем эти причины могут усилить проницаемость одних веществ и одновременно ослабить проницаемость других.

Морфологическая картина проницаемости веществ из окружающей среды хорошо прослежена и осуществляется путем фагоцитоза phagein - пожирать) и пиноцитоза (pynein -пить). Механизмы того и другого, по-видимому, сходны и различаются лишь количественно. При помощи фагоцитоза захватываются более крупные частицы, а при помощи пиноцитоза - более мелкие и менее плотные. Вначале вещества адсорбируются покрытой мукополисахаридами поверхностью плазмалеммы, затем вместе с нею они погружаются вглубь, причем образуется пузырек, который затем обособляется от плазмалеммы (рис. 19). Переработка проникших веществ осуществляется в ходе процессов, напоминающих пищеварение и завершающихся образованием сравнительно простых веществ. Внутриклеточное пищеварение начинается с того, что фагоцитозные или пиноцитозные пузырьки сливаются с первичными лизосомами, в которых заключены пищеварительные ферменты, причем образуется вторичная лизосома, или пищеварительная вакуоль. В них при помощи ферментов и происходит разложение веществ на более простые. В этом процессе принимают участие не только лизосомы, но и другие компоненты клетки. Так, митохондрии обеспечивают энергетическую сторону процесса; каналы цитоплазматической сети могут использоваться для транспорта переработанных веществ.

Завершается внутриклеточное пищеварение образованием, с одной стороны, сравнительно простых продуктов, из которых синтезируются вновь сложные вещества (белки, жиры, углеводы), использующиеся для обновления клеточных структур или образования секретов, а с другой стороны, - продуктов, подлежащих выведению из клетки в качестве экскретов. Примерами использования продуктов переработки может служить синтез белков и образование секретов.

Рис. 19. Схема пиноцитоза:

Л - образование пиноцитозного канала (1) и пиноцитозных пузырьков (2). Стрелками показано направление впячивания плазмалеммы. Б- Ж - последовательные стадии пиноцитоза; 3 - адсорбируемые частички; 4 - частички, захваченные выростами клетки; 5 - плазмалем-ма клетки; Г, Д, Б - последовательные этапы формирования пиноци-тозной вакуоли; Ж - пищевые частицы освобождены от оболочки вакуоли.

Синтез белка осуществляется на рибосомах и условно происходит он в четыре стадии.

Первая стадия включает активирование аминокислот. Активация их происходит в матриксе цитоплазмы с участием ферментов (аминоацил - РНК -синтетаз). Известно около 20 ферментов, из которых каждый специфичен только для одной аминокислоты. Активация аминокислоты осуществляется при соединении ее с ферментом и АТФ.

В результате взаимодействия от АТФ отщепляется пирофосфат, и энергия, находящаяся в связи между первой и второй фосфатными группами, целиком переходит на аминокислоту. Активированная таким образом аминокислота (аминоациладенилат) становится реакционноспособной и приобретает способность соединяться с другими аминокислотами.

Вторая стадия - связывание активированной аминокислоты с транспортной РНК (т-РНК). При этом одна молекула т-РНК присоединяет только одну молекулу активированной аминокислоты. В этих реакциях участвует тот же фермент, что и в первой стадии, и реакция заканчивается образованием комплекса т-РНК и активированной аминокислоты. Молекула т-РНК состоит из двойной, замкнутой с одного конца короткой спирали. Замкнутый (головной) конец этой спирали представлен тремя нуклеотида-ми (антикодон), которые и обусловливают присоединенные данной т-РНК к определенному участку (кодону) длинной молекулы информационной РНК (и-РНК). К другому концу т-РНК присоединяется активированная аминокислота (рис. 20). Например, если молекула т-РНК на головном конце имеет триплет УАА, то к противоположному ее концу может присоединиться только аминокислота лизин. Таким образом, каждой аминокислоте соответствует своя особая т-РНК. Если три концевых нуклеотида в разных т-РНК одинаковы, то ее специфичность определяется последовательностью нукле-отидов в другом участке т-РНК. Энергия активированной аминокислоты, соединенной с т-РНК, используется для образования пептидных связей в молекуле полипептида. Активированная аминокислота транспортируется т-РНК по гиалоплазме к рибосомам.

Третья стадия - синтез полипептидных цепей. Информационная РНК, выйдя из ядра, протягивается через малые субъединицы нескольких рибосом определенной полирибосомы, и в каждой из них повторяются одни и те же процессы синтеза. Во время протяжки происходит укладка той моле-

Рис. 20. Схема синтеза полипептида на рибосомах посредством и-РНК и т-РНК: /, 2--рибосома; 3 - т-РНК, несущая на одном конце антикодоны: АЦЦ, AUA. Ayv АГЦ, а на другом конце соответственно аминокислоты: триптофан, валик, лизин, серин (5); 4- н-РНК, в которой расположены коды: УГГ (триптофана)» УРУ (валина). УАА (лизина), УЦГ (серина); 5 - синтезируемый полипептид.

Кулы т-РНК, триплет которой соответствует кодовому слову и-РНК. Затем кодовое слово смещается влево, а вместе с ним и прикрепившаяся к нему т-РНК. Принесенная ею аминокислота соединяется пептидной связью с ранее принесенной аминокислотой синтезирующего полипептида; т-РНК отделяется от и-РНК, происходит трансляция (списывание) информации и-РНК, то есть синтез белка. Очевидно, к рибосомам одновременно бывают присоединены две молекулы т-РНК: одна на участке, несущем синтезирующуюся полипептидную цепь, а другая на участке, к которому прикрепляется очередная аминокислота перед тем, как встанет на свое.место в цепи.

Четвертая стадия - снятие полипептидной цепи с рибосомы и образование пространственной конфигурации, характерной для синтезируемого белка. Наконец, закончившая формирование белковая молекула становится самостоятельной. т-РНК может использоваться для повторных синтезов, а и-РНК разрушается. Длительность формирования белковой молекулы зависит от чиода аминокислот в ней. Считают, что присоединение одной аминокислоты продолжается 0,5 секунды.

Процесс синтеза требует затраты энергии, источником которой является АТФ, образующаяся главным образом в митохондриях и в незначительном количестве в ядре, а при повышенной активности клетки также и в гиало-плазме. В ядре в гиалоплазме АТФ образуется не на основе окислительного процесса, как в митохондриях, а на основе гликолиза, то есть анаэробного процесса. Таким образом, синтез осуществляется благодаря координированной работе ядра, гиалоплазмы, рибосом, митохондрий и зернистой цито-плазматической сети клетки.

Секреторная деятельность клетки также является примером слаженной работы ряда клеточных структур. Секреция - выработка клеткой специальных продуктов, которые в многоклеточном организме чаще всего используются в интересах всего организма. Так, слюна, желчь, желудочный сок и другие секреты служат для переработки пищи в

Рис. 21. Схема одного из возможных путей синтеза секрета в клетке и его выведение:

1 - просекрет в ядре; 2 - выход про-секрета из ядра; 3 - скопление просек-рета в цистерне цитоплазматической сети; 4 - отрыв цистерны с секретом от цитоплазматической сети; 5 - пластинчатый комплекс; 6 - капля секрета в районе пластинчатого комплекса; 7- зрелая гранула секрета; 8-9 - последовательные стадии выделения секрета; 10 - секрет вне клетки; 11 - плазмалемма клетки.

Органах пищеварения. Секреты могут быть образованы либо только белками (ряд гормонов, ферменты), либо состоят из гликопротеидов (слизь), лигю-протеидов, гликолипопротеидов, реже они представлены липидами (жир молока и сальных желез) t или неорганическими веществами (соляная кислота фундальных желез).

В секреторных клетках обычно можно различить два конца: базальный (обращен к перикапиллярному пространству) и апикальный (обращен к пространству, куда выделяется секрет). В расположении компонентов секреторной клетки наблюдается зональность, причем от базального к апикальному концам (полюсам) они образуют следующий ряд: зернистая цитоплазматическая сеть, ядро, пластинчатый комплекс, гранулы секрета (рис. 21). Плазмалемма базального и апикального полюсов часто несет микроворсинки, в результате которых увеличивается поверхность для поступления веществ из крови и лимфы через базальный полюс и вывода готового секрета через апикальный полюс.

При образовании секрета белковой природы (поджелудочная железа) процесс начинается с синтеза специфичных для секрета белков. Поэтому ядро секреторных клеток богато хроматином, имеет хорошо выраженное ядрышко, благодаря которым образуются все три вида РНК, поступающие в цитоплазму и участвующие в синтезе белков. Иногда, по-видимому, синтез секрета начинается в ядре и завершается в цитоплазме, но чаще всего в гиалоплазме и продолжается в зернистой цитоплазматической сети. В накоплении первичных продуктов и их транспорте важную роль играют канальцы цитоплазматической сети. В связи с этим в секреторных клетках много рибосом и хорошо развита цитоплазматическая сеть. Участки цитоплазматической сети с первичным секретом отрываются и направляются к пластинчатому комплексу, переходя в его вакуоли. Здесь происходит формирование секреторных гранул.

При этом вокруг секрета образуется липопротеиновая мембрана, а сам секрет созревает (теряет воду), становясь более концентрированным. Готовый секрет в виде гранул или вакуолей выходит из пластинчатого комплекса и через апикальный полюс клеток выделяется наружу. Митохондрии обеспечивают весь этот процесс энергией. Секреты небелковой природы, видимо, синтезируются в цитоплазматической сети и в отдельных случаях даже в митохондриях (липидные секреты). Процесс секреции регулируется нервной системой. Кроме конструктивных белков и секретов, в результате обмена веществ в клетке могут образовываться вещества трофического характера (гликоген, жир, пигменты и др.), вырабатывается энергия (лучистая, тепловая и электрическая -биотоки).

Завершается обмен веществ в ы д е л е н и е м во внешнюю среду ряда веществ, которые, как правило, не используются клеткой и часто являются

Для нее даже вредными. Вывод веществ из клетки осуществляется, как и поступление, на основе пассивных физико-химических процессов (диффузия, осмос), так и путем активного переноса. Морфологическая картина выведения нередко имеет характер, обратный фагоцшшу. Выводимые вещества окружаются мембраной.

Образовавшийся пузырек приближается к оболочке клетки, вступает в контакте нею, затем прорывается, и содержимое пузырька оказывается вне клетки.

Обмен веществ, как мы уже сказали, определяет и другие жизненные проявления клетки, такие, как рост и дифференцировка клеток, раздражимость, способность клеток к самовоспроизведению.

Рост клетки - внешнее проявление обмена веществ, выражающееся в увеличении размера клетки. Рост возможен лишь в том случае, если в процессе обмена веществ ассимиляция преобладает над диссимиляцией, причем каждая клетка растет лишь до определенного предела.

Дифференцировка клетки- это ряд качественных изменений, которые в разных клетках протекают различно и определяются средой и деятельностью участков ДНК, называемых генами. В результате возникают разнокачественные клетки разнообразных тканей, в дальнейшем клетки претерпевают возрастные изменения, которые мало изучены. Однако известно, что происходит обеднение клеток водой, частички белка укрупняются, что влечет за собой уменьшение общей поверхности дисперсной фазы коллоида и как следствие этого понижение интенсивности обмена веществ. Поэтому снижается жизненный потенциал клетки, замедляются окислительные, восстановительные и другие реакции, изменяется направленность некоторых процессов, из-за чего в клетке накапливаются различные вещества.

Раздражимость клетки - ее реакция на изменения во внешней среде, благодаря чему устраняются временные противоречия, возникающие между клеткой и средой, и живая структура оказывается приспособленной к уже измененной внешней среде.

В явлении раздражимости можно выделить следующие моменты:

1) воздействие агента внешней среды (например, механическое, химическое, лучевое и пр.)

2) переход клетки к деятельному, то есть возбудимому, состоянию, что проявляется в изменении биохимических и биофизических процессов внутри клетки, причем могут повышаться проницаемость клетки и поглощение кислорода, изменяться коллоидное состояние ее цитоплазмы, появляться электрические токи действия и т. д.;

3) ответ клетки на воздействие среды, причем в различных клетках ответная реакция проявляется по-разному. Так, в соединительной ткани происходит местное изменение обмена веществ, в мышечной - сокращение, в железистых тканях выделяется секрет (слюна, желчь и пр.), в нервных клетках возникает нервный импульс, В железистом эпителии, мыщечной и нервной тканях возбуждение, возникшее в одном участке, распространяется по всей ткани. В нервной клетке возбуждение способно распространяться не только на другие элементы той же ткани (в результате чего образуются сложные возбудимые системы -рефлекторные дуги), но и переходить на другие ткани. Благодаря этому и осуществляется регулирующая роль нервной системы. Степень сложности этих реакций зависит от высоты организации животного, В зависимости от силы и характера раздражающего агента различают следующие три типа раздражимости: нормальный, состояние паранекроза и некротический. Если сила раздражителя не выходит за пределы обычного, присущего среде, в которой живет клетка или организм в целом, то возникающие в клетке процессы в конце концов ликвидируют противоречие с внешней средой, и клетка приходит в нормальное состояние. При этом никакого видимого под микроскопом нарушения структуры клетки не происходит. Если же сила раздражителя велика или она длительно воздействует на клетку, то изменение внутриклеточных процессов приводит к значительному нарушению функции, структуры и химизма клетки. В ней появляются включения, образуются структуры в виде нитей, глыбок, сеточек и т. п. Реакция цитоплазмы сдвигается в сторону кислотности, изменение структуры и физико-химических свойств клетки нарушает нормальную жизнедеятельность клетки, ставит ее на грань жизни и смерти. Это состояние Насонов и Александров назвали паранекротическим* Оно обратимо и может закончиться восстановлением клетки, но может привести и к ее гибели. Наконец, если агент действует с очень большой силой, процессы внутри клетки так сильно нарушаются,что восстановление оказывается невозможным, и клетка гибнет. После этого наступает ряд структурных изменений, то есть клетка переходит в состояние некроза или омертвения.

Движение. Характер движения, присущего клетке, очень разнообразен. Прежде всего в клетке осуществляется непрерывное движение цитоплазмы, которое, очевидно, связано с осуществлением обменных процессов. Далее, у клетки могут очень активно двигаться различные цитоплазматиче-ские образования, например реснички у мерцательного эпителия, митохондрии; совершает движение и ядро. В других случаях движение выражается в изменении длины или объема клетки с последующим возвращением ее в исходное положение. Такое движение наблюдается в мышечных клетках, в мышечных волокнах и в пигментных клетках. Широко распространено и движение в пространстве. Оно может осуществляться при помощи ложноножек, как у амебы. Так передвигаются лейкоциты и некоторые клетки соединительной и других тканей. Особой формой движения в пространстве обладают спермин. Их поступательное движение происходит благодаря сочетанию змеевидных изгибов хвоста и вращения спермия вокруг продольной оси. У сравнительно просто организованных существ и у некоторых клеток высокоорганизованных многоклеточных животных движение в пространстве вызывается и направляется различными агентами внешней среды и называется таксисами.

Различают: хемотаксисы, тигмотаксисы и реотаксисы. Хемотаксисы - движение по направлению к химическим веществам или от них. Такой таксис обнаруживают лейкоциты крови, которые амебовидно передвигаются по направлению к проникшим в организм бактериям, выделяющим определенные вещества, Тигмотаксис - движение по направлению к прикоснувшемуся твердому телу или от него. Например, легкое прикосновение пищевых частичек к амебе приводит к тому, что она обволакивает их, а затем заглатывает. Сильное механическое раздражение может вызвать движение в сторону, противоположную раздражающему началу. Реотаксис -движение против тока жидкости. Способностью к реотаксису обладают спермин, движущиеся в матке против тока слизи по направлению к яйцевой клетке.

Способность к самовоспроизведению является важнейшим свойством живой материи, без чего жизнь невозможна. Всякая живая система характеризуется цепью необратимых изменений, которые завершаются смертью. Если бы эти системы не давали начала новым системам, способным начать цикл сначала, жизнь прекратилась бы.

Функция самовоспроизведения клетки осуществляется путем деления, которое является следствием развития клетки. В процессе ее жизнедеятельности, в силу преобладания ассимиляции над диссимиляцией, увеличивается масса клеток, но объем клетки увеличивается быстрее, чем ее поверхность. В этих условиях интенсивность обмена понижается, наступают глубокие физико-химические и морфологические перестройки клетки, постепенно затормаживаются процессы ассимиляции, что убедительно доказано с помощью меченых атомов. В результате вначале прекращается рост клетки, а затем становится невозможным дальнейшее ее существование, и происходит деление.

Переход к делению - это качественный скачок, или следствие количественных изменений ассимиляции и диссимиляции, механизм разрешения противоречий между этими процессами. После деления клетки как бы омолаживаются, жизненный потенциал их увеличивается, так как уже в силу уменьшения размера увеличивается доля активной поверхности, интенсифицируется обмен веществ в целом и ассимиляционная фаза его в особенности.

Таким образом, индивидуальная жизнь клетки слагается из периода интерфазы, характеризующейся повышенным обменом веществ, и периода деления.

Интерфазу с некоторой долей условности разделяют:

1) на пресинтетический период (Gj), когда интенсивность ассимиляционных процессов постепенно нарастает, но редупликация ДНК еще не началась;

2) синтетический (S), характеризующийся разгаром синтеза, в течение которого происходит удвоение ДНК, и

3) постсинтетический (G2), когда процессы синтеза ДНК прекращаются.

Различают следующие основные типы деления:

1) непрямое деление (митоз, или кариокинез);

2) мейоз, или редукционное деление, и

3) амитоз, или прямое деление.