Показать процесс ионизации неспаренных электронов. Процессы образования возбужденных частиц при радиолизе

ПРОМЕЖУТОЧНЫЕ ПРОДУКТЫ РАДИОЛИЗА

При действии ионизирующего излучения на любую систему в результате ионизации и возбуждения образуются промежуточные продукты. К ним относятся электроны (термализованные и сольватированные, электроны недовозбуждения и др.), ионы (катион- и анион-радикалы, карбанионы, карбокатионы и др.), свободные радикалы и атомы, возбужденные частицы и т. п. Как правило, при обычных условиях эти продукты характеризуются высокой реакционной способностью и поэтому являются короткоживущими. Они быстро взаимодействуют с веществом и обусловливают образование конечных (стабильных) продуктов радиолиза.

Возбужденные частицы. Возбуждение является одним из главных процессов взаимодействия ионизирующего излучения с веществом. В результате этого процесса образуются возбужденные частицы (молекулы, атомы и ионы). В них электрон находится на одном из электронных уровней, лежащих выше основного состояния, оставаясь связанным с остальной частью (т. е. дыркой) молекулы, атома или иона. Очевидно, при возбуждении частица сохраняется как таковая. Возбужденные частицы возникают также в некоторых вторичных процессах: при нейтрализации ионов, при передаче энергии и др. Они играют значительную роль при радиолизе различных систем (алифатических и особенно ароматических углеводородов, газов и др.).

Виды возбужденных молекул . Возбужденные частицы содержат два неспаренных электрона на различных орбиталях. Спины этих электронов могут быть ориентированы одинаково (параллельны) или противоположно (антипараллельны). Такие возбужденные частицы являются соответственно триплетными и синглетными.

При действии ионизирующего излучения на вещество возбужденные состояния возникают в результате следующих главных процессов:

1) при непосредственном возбуждении молекул вещества излучением (первичное возбуждение),

2) при нейтрализации ионов,

3) при передаче энергии от возбужденных молекул матрицы (или растворителя) молекулам добавки (или растворенного вещества)

4) при взаимодействии молекул добавки или растворенного вещества с электронами недовозбуждения..

Ионы. В радиационной химии важную роль играют процессы ионизации. Как правило, на них расходуется более половины энергии ионизирующего излучения, поглощенной веществом.

К настоящему времени преимущественно с помощью методов фотоэлектронной спектроскопии и масс-спектрометрии накоплен обширный материал об особенностях процессов ионизации, об электронной структуре положительных ионов, их устойчивости, путях исчезновения и т. п.

В процессе ионизации образуются положительные ионы. Различают прямую ионизацию и автоионизацию. Прямая ионизация изображается следующим общим уравнением (М – молекула облучаемого вещества):


Ионы М + обычно называют материнскими положительными ионами. К их числу принадлежат, например, Н 2 0 + , NH 3 и СН 3 ОН + , возникающие при радиолизе соответственно воды, аммиака и метанола.

Электроны . Как уже упоминалось, в процессах ионизации вместе с положительными ионами образуются вторичные электроны. Эти электроны, израсходовав свою энергию в различных процессах (ионизация, возбуждение, дипольная релаксация, возбуждение молекулярных колебаний и др.), становятся термализованными. Последние принимают участие в разнообразных химических и физико-химических процессах, тип которых часто зависит от природы среды. Подчеркнем также, что в некоторых химических и физико-химических процессах (возбуждение молекул добавки, реакции захвата и др.) при определенных условиях участвуют электроны недовозбуждения.

Сольватированные электроны. В жидкостях, нереакционноспособных или малореакционноспособных относительно электронов (вода, спирты, аммиак, амины, эфиры, углеводороды и др.), электроны после замедления захватываются средой, становясь сольватированными (в воде – гидратированными). Не исключено, что захват начинается, когда электрон еще обладает некоторой избыточной энергией (менее 1 эВ). Процессы сольватации зависят от природы растворителя и заметно различаются, например, для полярных и неполярных жидкостей.

Свободные радикалы. При радиолизе почти любой системы в качестве промежуточных продуктов возникают свободные радикалы. К ним относятся атомы, молекулы и ионы, которые имеют один или более неспаренных электронов, способных образовывать химические связи.

Наличие неспаренного электрона обычно указывается точкой в химической формуле свободного радикала (чаще всего над атомом с таким электроном). Например, метильный свободный радикал – это СН 3 - Точки, как правило, не ставятся в случае простых свободных радикалов (Н, С1, ОН и т. п.). Нередко слово «свободный» опускают, и эти частицы называют просто радикалами. Радикалы, имеющие заряд, называются ион-радикалами. Если заряд отрицательный, то это анион-радикал; если же заряд положительный, то это катион-радикал. Очевидно, сольватированный электрон можно считать простейшим анион-радикалом.

При радиолизе предшественниками свободных радикалов являются ионы и возбужденные молекулы. При этом главные процессы, приводящие к их образованию, следующие:

1) ионно-молекулярные реакции с участием ион-радикалов и электронейтральных молекул

2) фрагментация положительного ион-радикала с образованием свободного радикала и иона с четным числом спаренных электронов

3) простое или диссоциативное присоединение электрона к электронейтральной молекуле или иону со спаренными электронами;

4) распад возбужденной молекулы на два свободных радикала (реакции типа);

5) реакции возбужденных частиц с другими молекулами (например, реакции с переносом заряда или атома водорода).


Лекции для студентов общетехнических направлений и специальностей лекция 3 Тема 4
Лекции для студентов общетехнических направлений и специальностей лекция 4 Тема 5

Лекции для студентов общетехнических направлений и специальностей модуль II. Закономерности протекания реакций
Лекции для студентов общетехнических направлений и специальностей лекция 7 Тема Основы химической кинетики
Лекции для студентов общетехнических направлений и специальностей лекция 8 Тема Химическое равновесие По этой теме необходимо знать и уметь следующее
Предисловие для преподавателей
Лекции для студентов общетехнических направлений и специальностей модуль III. Растворы и электрохимические процессы

7. Спаренные и неспаренные электроны

Электроны, заполняющие орбитали попарно, называются спаренными, а одиночные электроны называются неспаренными . Неспаренные электроны обеспечивают химическую связь атома с другими атомами. Наличие неспаренных электронов устанавливается экспериментально изучением магнитных свойств. Вещества с неспаренными электронами парамагнитны (втягиваются в магнитное поле благодаря взаимодействию спинов электронов, как элементарных магнитов, с внешним магнитным полем). Вещества, имеющие только спаренные электроны, диамагнитны (внешнее магнитное поле на них не действует). Неспаренные электроны находятся только на внешнем энергетическом уровне атома и их число можно определить по его электронно-графической схеме.

Пример 4. Определите число неспаренных электронов в атоме серы.

Решение. Атомный номер серы Z = 16, следовательно, полная электронная формула элемента: 1s 2 2s 2 2p 6 3s 2 3p 4 . Электронно-графическая схема внешних электронов такова (рис. 11).

Рис. 11. Электронно-графическая схема валентных электронов атома серы

Из электронно-графической схемы следует, что в атоме серы имеется два неспаренных электрона.

8. Проскок электрона

Все подуровни обладают повышенной устойчивостью, когда они заполнены электронами полностью (s 2 , p 6 , d 10 , f 14), а подуровни p, d и f, кроме того, когда они заполнены наполовину, т.е. p 3 , d 5 , f 7 . Состояния d 4 , f 6 и f 13 , наоборот, обладают пониженной устойчивостью. В связи с этим у некоторых элементов наблюдается так называемый проскок электрона, способствующий формированию подуровня с повышенной устойчивостью.

Пример 5. Объясните, почему в атомах хрома происходит заполнение электронами 3d-подуровня при незаполненом до конца 4s-подуровне? Сколько неспаренных электронов в атоме хрома?

Решение. Атомный номер хрома Z = 24, электронная формула: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5 . Наблюдается проскок электрона с 4s- на 3d-подуровень, что обеспечивает формирование более устойчивого состояния 3d 5 . Из электронно-графической схемы внешних электронов (рис. 12) следует, что в атоме хрома имеется шесть неспаренных электронов.

Рис. 12. Электронно-графическая схема валентных электронов атома хрома

9. Сокращенные электронные формулы

Электронные формулы химических элементов можно записывать в сокращенном виде. При этом часть электронной формулы, соответствующая устойчивой электронной оболочке атома предшествующего благородного газа, заменяется символом этого элемента в квадратных скобках (эта часть атома называется остовом атома), а остальная часть формулы записывается в обычном виде. В результате электронная формула становится краткой, но ее информативность от этого не уменьшается.

Пример 6. Напишите сокращенные электронные формулы калия и циркония.

Решение. Атомный номер калия Z = 19, полная электронная формула: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 , предшествующий благородный газ – аргон, сокращённая электронная формула: 4s 1 .

Атомный номер циркония Z = 40, полная электронная формула: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 2 , предшествующий благородный газ – криптон, сокращённая электронная формула: 5s 2 4d 2 .

10. Семейства химических элементов

В зависимости от того, какой энергетический подуровень в атоме заполняется электронами последним, элементы подразделяются на четыре семейства. В периодической системе символы элементов различных семейств выделены разным цветом.

1. s-Элементы: в атомах этих элементов последним заполняется электронами ns-подуровень;

2. p-Элементы: последним заполняется электронами np-подуровень;

3. d-Элементы: последним заполняется электронами (n – 1)d-подуровень;

4. f-Элементы: последним заполняется электронами (n – 2)f-подуровень.

Пример 7. По электронным формулам атомов определите, к каким семействам химических элементов относятся стронций (z = 38), цирконий (z = 40), свинец (z = 82) и самарий (z = 62).

Решение. Записываем сокращённые электронные формулы данных элементов

Sr: 5s 2 ; Zr: 5s 2 4d 2 ; Pb: 6s 2 4f 14 5d 10 6p 2 ; Sm: 6s 2 4f 6 ,

из которых видно, что элементы принадлежат семействам s (Sr), p (Pb), d (Zr) и f (Sm).

11. Валентные электроны

Химическую связь данного элемента с другими элементами в соединениях обеспечивают валентные электроны . Валентные электроны определяются по принадлежности элементов к определенному семейству. Так, у s-элементов валентными являются электроны внешнего s-подуровня, у p-элементов – внешних подуровней s и p, а у d-элементов валентные электроны находятся на внешнем s-подуровне и предвнешнем d-подуровне. Вопрос о валентных электронах f-элементов однозначно не решается.

Пример 8. Определите число валентных электронов в атомах алюминия и ванадия.

Решение. 1) Сокращенная электронная формула алюминия (z = 13): 3s 2 3p 1 . Алюминий принадлежит семейству p-элементов, следовательно, в его атоме три валентных электрона (3s 2 3p 1).

2) Электронная формула ванадия (z = 23): 4s 2 3d 3 . Ванадий принадлежит семейству d-элементов, следовательно, в его атоме пять валентных электронов (4s 2 3d 3).

12. Строение атомов и периодическая система

12.1. Открытие периодического закона

В основе современного учения о строении вещества, изучения всего многообразия химических веществ и синтеза новых элементов лежат периодический закон и периодическая система химических элементов.

Периодическая система элементов– естественная систематизация и классификация химических элементов, разработанная выдающимся русским химиком Д.И. Менделеевым на основе открытого им периодического закона. Периодическая система является графическим отображением периодического закона, его наглядным выражением.

Периодический закон был открыт Менделеевым (1869) в результате анализа и сопоставления химических и физических свойств 63-х известных в то время элементов. Его первоначальная формулировка:

свойства элементов и образованных ими простых и сложных веществ находятся в периодической зависимости от атомной массы элементов.

Разрабатывая периодическую систему, Менделеев уточнил или исправил валентность и атомные массы некоторых известных, но плохо изученных элементов, предсказал существование девяти еще не открытых элементов, а для трёх из них (Ga, Ge, Sc) описал ожидаемые свойства. С открытием этих элементов (1875–1886 г.г.) периодический закон получил всеобщее признание и лёг в основу всего последующего развития химии.

На протяжении почти 50 лет после открытия периодического закона и создания периодической системы сама причина периодичности свойств элементов была неизвестна. Было неясно, почему элементы одной группы имеют одинаковую валентность и образуют соединения с кислородом и водородом одинакового состава, почему число элементов в периодах не одинаковое, почему в некоторых местах периодической системы расположение элементов не соответствует возрастанию атомной массы (Аr – К, Co – Ni, Te – I). Ответы на все эти вопросы были получены при изучении строения атомов.

12.2. Объяснение периодического закона

В 1914 г. были определены заряды атомных ядер (Г. Мозли) и было установлено, что свойства элементов находятся в периодической зависимости не от атомной массы элементов, а от положительного заряда ядер их атомов. Но после изменения формулировки периодического закона форма периодической системы принципиально не изменилась, так как атомные массы элементов увеличиваются в той же последовательности, что и заряды их атомов, кроме указанных выше последовательностей аргон – калий, кобальт – никель и теллур – иод.

Причина увеличения заряда ядра при возрастании номера элемента понятна: в ядрах атомов при переходе от элемента к элементу монотонно увеличивается число протонов. Но структура электронной оболочки атомов при последовательном возрастании значений главного квантового числа периодически повторяется возобновлением сходных электронных слоёв. При этом новые электронные слои не только повторяются, но и усложняются за счет появления новых орбиталей, поэтому число электронов на внешних оболочках атомов и число элементов в периодах увеличивается.

Первый период: идет заполнение электронами первого энергетического уровня, имеющего лишь одну орбиталь (орбиталь 1s), поэтому в периоде только два элемента: водород (1s 1) и гелий (1s 2).

Второй период: идет заполнение второго электронного слоя (2s2p), в котором повторяется первый слой (2s) и идет его усложнение (2p) – в этом периоде 8 элементов: от лития до неона.

Третий период: идет заполнение третьего электронного слоя (3s3p), в котором повторяется второй слой, и усложнения не происходит, так как 3d-подуровень этому слою не принадлежит; в этом периоде тоже 8 элементов: от натрия до аргона.

Четвертый период: идет заполнение электронами четвертого слоя (4s3d4p), усложненного по сравнению с третьим появлением пяти d-орбиталей 3d-подуровня, поэтому в этом периоде 18 элементов: от калия до криптона.

Пятый период: заполняется электронами пятый слой (5s4d5p), усложнения которого по сравнению с четвертым не происходит, поэтому в пятом периоде тоже 18 элементов: от рубидия до ксенона.

Шестой период: идет заполнение шестого слоя (6s4f5d6p), усложненного по сравнению с пятым за счет появления семи орбиталей 4f-подуровня, поэтому в шестом периоде 32 элемента: от цезия до радона.

Седьмой период: заполняется электронами седьмой слой (7s5f6d7p), аналогичный шестому, поэтому в данном периоде также 32 элемента: от франция до элемента с атомным номером 118, который получен, но пока ещё не имеет названия.

Таким образом, закономерности формирования электронных оболочек атомов объясняют число элементов в периодах периодической системы. Знание этих закономерностей позволяет сформулировать физический смысл атомного номера химического элемента в периодической системе, периода и группы.

Атомный номер элемента z – это положительный заряд ядра атома, равный числу протонов в ядре, и число электронов в электронной оболочке атома.

Период – это горизонтальная последовательность химических элементов, атомы которых имеют равное число энергетических уровней, частично или полностью заполненных электронами .

Номер периода равен числу энергетических уровней в атомах, номеру высшего энергетического уровня и значению главного квантового числа для высшего энергетического уровня.

Группа – это вертикальная последовательность элементов, обладающих однотипной электронной структурой атомов, равным числом внешних электронов, одинаковой максимальной валентностью и сходными химическими свойствами.

Номер группы равен числу внешних электронов в атомах, максимальному значению стехиометрической валентности и максимальному значению положительной степени окисления элемента в соединениях. По номеру группы можно определить и максимальное значение отрицательной степени окисления элемента: оно равно разности числа 8 и номера группы, в которой расположен данный элемент.

12.3. Основные формы периодической системы

Существует около 400 форм периодической системы, но наиболее распространены две: длинная (18-клеточная) и короткая (8-клеточная).

В длинной (18-клеточной) системе (она представлена в этой аудитории и в справочнике) имеется три коротких периода и четыре длинных. В коротких периодах (первом, втором и третьем) имеются только s- и p-элементы, поэтому в них имеется 2 (первый период) или 8 элементов. В четвёртом и пятом периодах, кроме s- и р-элементов, появляются по 10 d-элементов, поэтому эти периоды содержат по 18 элементов. В шестом и седьмом периодах появляются f-элементы, поэтому периоды имеют по 32 элемента. Но f-элементы вынесены из таблицы и приведены внизу (в виде приложения) в двух строках, а их место в системе обозначено звездочками. В первой строке расположено 14 f-элементов, которые следуют за лантаном, поэтому они имеют общее название «лантаноиды», а во второй строке расположено 14 f-элементов, следующих за актинием, поэтому они имеют общее название «актиноиды». Эта форма периодической системы рекомендуется ИЮПАК для использования во всех странах.

В короткой (8-клеточной) системе (она также имеется в этой аудитории и в справочнике) f-элементы также вынесены в приложение, а большие периоды (4-й, 5-й, 6-й и 7-й), содержащие по 18 элементов (без f-элементов), разделены в соотношении 10:8, и вторая часть размещена под первой. Таким образом, большие периоды состоят из двух рядов (строк) каждый. В этом варианте в периодической системе имеется восемь групп, и каждая из них состоит из главной и побочной подгруппы. В главных подгруппах первой и второй группы находятся s-элементы, а в остальных p-элементы. В побочных подгруппах всех групп находятся d-элементы. Главные подгруппы содержат по 7–8 элементов, а побочные – по 4 элемента, кроме восьмой группы, в которой побочная подгруппа (VIII-Б) состоит из девяти элементов – трех «триад».

В этой системе элементы подгрупп являются полными электронными аналогами . Элементы одной группы, но разных подгрупп тоже являются аналогами (у них одинаковое число внешних электронов), но эта аналогия неполная, т.к. внешние электроны находятся на разных подуровнях. Короткая форма компактна и потому более удобна для пользования, но в ней нет того однозначного соответствия между формой и электронным строением атомов, которое присуще длинной системе.

Пример 9. Объясните, почему хлор и марганец находятся в одной группе, но в разных подгруппах 8-клеточной периодической системы.

Решение. Электронная формула хлора (атомный номер 17) – 3s 2 3p 5 , а марганца (атомный номер 25) – 4s 2 3d 5 . В атомах обоих элементов имеется по семь внешних (валентных) электронов, поэтому они находятся в одной и той же группе (седьмой), но в разных подгруппах, поскольку хлор –
р-элемент, а марганец – d-элемент.

12.4. Периодические свойства элементов

Периодичность выражена в структуре электронной оболочки атомов, поэтому с периодическим законом хорошо согласуются свойства, зависящие от состояния электронов: атомные и ионные радиусы, энергия ионизации, сродство к электрону, электроотрицательность и валентность элементов. Но от электронной структуры атомов зависят состав и свойства простых веществ и соединений, поэтому периодичность наблюдается во многих свойствах простых веществ и соединений: температура и теплота плавления и кипения, длина и энергия химической связи, электродные потенциалы, стандартные энтальпии образования и энтропии веществ и т.д. Периодический закон охватывает более 20 свойств атомов, элементов, простых веществ и соединений.

1) Атомные и ионные радиусы

Согласно квантовой механике, электрон может находиться в любой точке вокруг ядра атома как вблизи него, так и на значительном удалении. Поэтому границы атомов расплывчаты, неопределенны. В то же время в квантовой механике вычисляется вероятность распределения электронов вокруг ядра и положение максимума электронной плотности для каждой орбитали.

Орбитальный радиус атома (иона) – это расстояние от ядра до максимума электронной плотности наиболее удаленной внешней орбитали этого атома (иона) .

Орбитальные радиусы (их значения приведены в справочнике) в периодах уменьшаются, т.к. увеличение числа электронов в атомах (ионах) не сопровождается появлением новых электронных слоев. Электронная оболочка атома или иона каждого последующего элемента в периоде по сравнению с предшествующим уплотняется из-за увеличения заряда ядра и увеличения притяжения электронов к ядру.

Орбитальные радиусы в группах увеличиваются, т.к. атом (ион) каждого элемента отличается от вышестоящего появлением нового электронного слоя.

Изменение орбитальных атомных радиусов для пяти периодов показано на рис. 13, из которого видно, что зависимость имеет характерный для периодического закона «пилообразный» вид.


Рис. 13. Зависимость орбитального радиуса

Но в периодах уменьшение размеров атомов и ионов происходит не монотонно: у отдельных элементов наблюдаются небольшие «всплески» и «провалы». В «провалах» находятся, как правило, элементы, у которых электронная конфигурация соответствует состоянию повышенной стабильности: например, в третьем периоде это магний (3s 2), в четвертом – марганец (4s 2 3d 5) и цинк (4s 2 3d 10) и т.д.

Примечание. Расчеты орбитальных радиусов проводятся с середины семидесятых годов прошлого столетия благодаря развитию электронно-вычислительной техники. Ранее пользовались эффективными радиусами атомов и ионов, которые определяются из экспериментальных данных по межъядерным расстояниям в молекулах и кристаллах. При этом предполагается, что атомы представляют собой несжимаемые шары, которые соприкасаются своими поверхностями в соединениях. Эффективные радиусы, определяемые в ковалентных молекулах, называются ковалентными радиусами, в металлических кристаллах – металлическими радиусами, в соединениях с ионной связью – ионными радиусами. Эффективные радиусы отличаются от орбитальных, но их изменение в зависимости от атомного номера также является периодическим.

2) Энергия и потенциал ионизации атомов

Энергией ионизации (Е ион) называется энергия, затрачиваемая на отрыв электрона от атома и превращение атома в положительно заряженный ион .

Экспериментально ионизацию атомов проводят в электрическом поле, измеряя разность потенциалов, при которой происходит ионизация. Эта разность потенциалов называется ионизационным потенциалом (J). Единицей измерения ионизационного потенциала является эВ/атом, а энергии ионизации – кДж/моль; переход от одной величины к другой осуществляется по соотношению:

Е ион = 96,5·J

Отрыв от атома первого электрона характеризуется первым ионизационным потенциалом (J 1), второго – вторым (J 2) и т.д. Последовательные потенциалы ионизации возрастают (табл. 1), так как каждый следующий электрон необходимо отрывать от иона с возрастающим на единицу положительным зарядом. Из табл. 1 видно, что у лития резкое увеличение ионизационного потенциала наблюдается для J 2 , у бериллия – для J 3 , у бора – для J 4 и т.д. Резкое увеличение J происходит тогда, когда заканчивается отрыв внешних электронов и следующий электрон находится на предвнешнем энергетическом уровне.

Т а б л и ц а 1

Потенциалы ионизации атомов (эВ/атом) элементов второго периода


Элемент

J 1

J 2

J 3

J 4

J 5

J 6

J 7

J 8

Литий

5,39

75,6

122,4











Бериллий

9,32

18,2

158,3

217,7









Бор

8,30

25,1

37,9

259,3

340,1







Углерод

11,26

24,4

47,9

64,5

392,0

489,8





Азот

14,53

29,6

47,5

77,4

97,9

551,9

666,8



Кислород

13,60

35,1

54,9

77,4

113,9

138,1

739,1

871,1

Фтор

17,40

35,0

62,7

87,2

114,2

157,1

185,1

953,6

Неон

21,60

41,1

63,0

97,0

126,3

157,9

Ионизационный потенциал является показателем «металличности» элемента: чем он меньше, тем легче отрывается электрон от атома и тем сильнее должны быть выражены металлические свойства элемента. Для элементов, с которых начинаются периоды (литий, натрий, калий и др.), первый ионизационный потенциал равен 4–5 эВ/атом, и эти элементы являются типичными металлами. У других металлов значения J 1 больше, но не более 10 эВ/атом, а у неметаллов обычно больше 10 эВ/атом: у азота 14,53 эВ/атом, кислорода 13,60 эВ/атом и т.д.

Первые ионизационные потенциалы в периодах увеличиваются, а в группах уменьшаются (рис. 14), что свидетельствует об увеличении неметаллических свойств в периодах и металлических в группах. Поэтому неметаллы находятся в правой верхней части, а металлы – в левой нижней части периодической системы. Граница между металлами и неметаллами «размыта», т.к. большинство элементов обладают амфотерными (двойственными) свойствами. Тем не менее, такую условную границу можно провести, она показана в длинной (18-клеточной) форме периодической системы, которая имеется здесь в аудитории и в справочнике.


Рис. 14. Зависимость ионизационного потенциала

от атомного номера элементов первого – пятого периодов.

ОСНОВЫ ТЕОРЕТИЧЕСКОЙ ХИМИИ

5. Химическая связь

Согласно теории химической связи, наибольшей устойчивостью обладают внешние оболочки из двух или восьми электронов (электронные группировки благородных газов). Атомы, имеющие на внешней оболочке менее восьми (или иногда двух) электронов, стремятся приобрести структуру благородных газов. Такая закономерность позволила В. Косселю и Г. Льюису сформулировать положение, которое является основным при рассмотрении условий образования молекулы: “При образовании молекулы в ходе химической реакции атомы стремятся приобрести устойчивую восьмиэлектронную (октет) или двухэлектронную (дублет) оболочки”.

Образование устойчивой электронной конфигурации может происходить несколькими способами и приводить к молекулам (и веществам) различного строения, поэтому различают несколько типов химической связи. Таковы ионная, ковалентная и донорно-акцепторная (координационная) связи. Кроме этих видов связей существуют другие, не относящиеся непосредственно к электронным оболочкам. Таковы водородная и металлическая связи.

Валентность элементов в соединениях.

Современные представления о природе химической связи основаны на электронной (спиновой) теории валентности (наибольший вклад в развитие этой теории внесли Г. Льюис и В. Коссель), в соответствии с которой атомы, образуя связи, стремятся к достижению наиболее устойчивой (т. е. имеющей наименьшую энергию) электронной конфигурации. При этом электроны, принимающие участие в образовании химических связей, называются валентными.

Согласно спиновой теории, валентность атома определяется числом его неспаренных электронов, способных участвовать в образовании химических связей с другими атомами, поэтому валентность всегда выражается небольшими целыми числами.

Рассмотрим электронную конфигурацию атома углерода. В свободном состоянии он имеет два неспаренных электрона и два спаренных электрона в состоянии 2s. В определенных условиях (при затрате некоторого количества энергии извне) эту пару электронов 2s 2 можно разъединить (“распарить”) путем перевода одного электрона из состояния 2s в состояние и сделать эти электроны также валентными:

В таком состоянии атом углерода может образовывать соединения, где он будет четырехвалентен.

Процесс распаривания электронов требует определенной затраты энергии (D E), и, казалось бы, он не выгоден. Но для учета энергетических соотношений нужно рассмотреть весь баланс образования связей. Дело в том, что при переходе одного из электронов 2s в состояние получается состояние атома, в котором он может образовать уже не две, а четыре связи. При образовании химической связи обычно выделяется энергия, поэтому появление двух новых валентностей приводит к выделению дополнительной энергии, которая превосходит энергию D E затраченную на распаривание 2s-электронов.

Опыты доказали, что энергия, затраченная на распаривание электронов в пределах одного энергетического уровня, как правило, полностью компенсируется энергией, выделенной при образовании дополнительных связей.

Чтобы таким же образом получить, например, четырехвалентный кислород, трехвалентный литий, двухвалентный неон, необходима очень большая затрата энергии

D E связанная с переходом 2р ® 3s (кислород). 1s ® (литий), 2р ® 3s (неон). В этом случае затрата энергии настолько велика, что не может быть компенсирована энергией, выделяющейся при образовании химических связей. Поэтому и не существует соединений с переменной валентностью кислорода, лития или неона.

Подтверждением этого положения могут служить достижения в химии благородных (инертных) газов. Долго считалось, что инертные газы не образуют химических соединений (отсюда и

их название). Однако в 1962 г. химикам удалось получить несколько соединений “инертных” газов, например, XeF 2 , XeF 4 , ХеО 3 . Проявление инертными газами определенной валентности можно объяснить, только допустив, что спаренные электроны полностью заполненных подуровней могут распариваться в пределах уровня.

Энергия связи. Существенной характеристикой химической связи является ее прочность. Для оценки прочности связей обычно пользуются понятием энергии связей.

Энергия связи - это работа, необходимая для разрыва химической связи во всех молекулах, составляющих один моль вещества.

Чаще всего энергию связи измеряют в кДж/моль. Наиболее прочными являются ионные и ковалентные связи, энергии этих связей составляют величины от десятков до сотен кДж/моль. Металлическая связь, как правило, несколько слабее ионных и ковалентных связей, но величины энергий связи в металлах близки к значениям энергии ионных и ковалентных связей. Об этом свидетельствуют, в частности, высокие температуры кипения металлов, например 357 °С (Hg), 880 °С (Na), 3000 ° С (Fe) и т. д. Энергии водородных связей очень небольшие по сравнению с энергией межатомных связей. Так, энергия водородной связи составляет обычно величину 20-40 кДж/моль, тогда как энергия ковалентных связей может достигать несколько сотен кДж/моль.

Ионная связь.

Ионная связь - это электростатическое взаимодействие между ионами с зарядами противоположного знака.

Коссель предположил, что ионная связь образуется в результате полного переноса одного или нескольких электронов от одного атома к другому. Такой тип связи возможен только между атомами, которые резко отличаются по свойствам. Например, элементы I и II групп периодической системы (типичные металлы) непосредственно соединяются с элементами VI и VII групп (типичными неметаллами). В качестве примеров веществ с ионной связью можно назвать MgS, NaCl, А 2 O 3 . Такие вещества при обычных условиях являются твердыми, имеют высокие температуры плавления и кипения, их расплавы и растворы проводят электрический ток.

Валентность элементов в соединениях с ионными связями очень часто характеризуют степенью окисления, которая, в свою очередь, соответствует величине заряда иона элемента в данном соединении.

Использование понятия степени окисления для атомов элементов, образующих другие виды химической связи, не всегда корректно и требует большой осторожности.

Ковалентная связь. Известно, что неметаллы взаимодействуют друг с другом. Рассмотрим образование простейшей молекулы Н 2 .

Представим себе, что мы имеем два отдельных изолированных атома водорода Н" и Н". При сближении этих атомов между собой силы электростатического взаимодействия - силы притяжения электрона атома Н" к ядру атома Н" и электрона атома Н" к ядру атома Н" - будут возрастать: атомы начнут притягиваться друг к другу. Однако одновременно будут возрастать и силы отталкивания между одноименно заряженными ядрами атомов и между

электронами этих атомов. Это приведет к тому, что атомы смогут сблизиться между собой настолько, что силы притяжения будут полностью уравновешены силами отталкивания. Расчет этого расстояния (длины ковалентной связи ) показывает, что атомы сблизятся настолько, что электронные оболочки, участвующие в образовании связи, начнут перекрываться между собой. Это, в свою очередь, приведет к тому, что электрон, двигавшийся ранее в поле притяжения только одного ядра, получит возможность перемещаться и в поле притяжения другого ядра. Таким образом, в какой-то момент времени то вокруг одного, то вокруг другого атома будет возникать заполненная оболочка благородного газа (такой процесс может происходить только с электронами, обладающими противоположно направленными проекциями спина). При этом возникает общая пара электронов, одновременно принадлежащая обоим атомам.

Область перекрытия между электронными оболочками имеет повышенную электронную плотность, которая уменьшает отталкивание между ядрами и способствует образованию ковалентной связи.

Таким образом, связь, осуществляемая за счет образования электронных пар, в одинаковой мере принадлежащих обоим атомам, называется ковалентной.

Полярность связи. Ковалентная связь может возникать не только между одинаковыми, но и между разными атомами. Так, образование молекулы НСl из атомов водорода и хлора происходит также за счет общей пары электронов, однако эта пара в большей мере принадлежит атому хлора, нежели атому водорода, поскольку неметаллические свойства у хлора выражены гораздо сильнее, чем у водорода.

Разновидность ковалентной связи, образованной одинаковыми атомами, называют неполярной, а образованной разными атомами - полярной.

Полярность связи количественно оценивается дипольным моментом

m , который является произведением длины диполя l - расстояния между двумя равными по величине и противоположными по знаку зарядами +q и -q - на абсолютную величину заряда: = lЧ q.

Дипольный момент является величиной векторной и направлен по оси диполя от отрицательного заряда к положительному. Следует различать дипольные моменты (полярность) связи и молекулы в целом. Так, для простейших двухатомных молекул дипольный момент связи равен дипольному моменту молекулы.

Напротив, в молекуле оксида углерода (IV) каждая из связей полярна, а молекула в целом неполярна (

m =0), так как молекула О==С==О линейна, и дипольные моменты связей С==О компенсируют друг друга (см. рис.). Наличие дипольного момента в молекуле воды означает, что она нелинейна, т. е. связи О-Н расположены под углом, не равным 180° (см. рис.).

Электроотрицательность. Наряду с дипольными моментами для оценки степени ионности (полярности) связи используют и другую распространенную характеристику, называемую электроотрицательностью.

Электроотрицательность - это способность атома притягивать к себе валентные электроны других атомов. Электроотрицательность (ЭО) не может быть измерена и выражена в единицах каких-либо физических величин, поэтому для количественного определения ЭО предложены несколько шкал, наибольшее признание и распространение из которых получила шкала относительных ЭО, разработанная Л. Полингом.

По шкале Полинга ЭО фтора (наиболее электроотрицательного из всех элементов) условно принята равной

4,0;на втором месте находится кислород, на третьем - азот и хлор. Водород и типичные неметаллы находятся в центре шкалы; значения их ЭО близки к 2. Большинство металлов имеют значения ЭО, приблизительно равные 1,7 или меньше. ЭО является безразмерной величиной.

Шкала ЭО Полинга в общих чертах напоминает периодическую систему элементов. Эта шкала позволяет дать оценку степени ионностй (полярности) связи. Для этого используют зависимость между разностью ЭО и степенью ионности связи.

Чем больше разность ЭО, тем больше степень ионности. Разность ЭО, равная 1,7, соответствует 50%-ному ионному характеру связей, поэтому связи с разностью ЭО больше 1,7 могут считаться ионными, связи с меньшей разностью относят к ковалентным полярным.

Энергия ионизации. Энергия ионизации - это энергия, необходимая для отрыва наиболее слабо связанного электрона от атома. Она обычно выражается в электрон-вольтах. При отрыве электрона от атома образуется соответствующий катион.

Энергия ионизации для элементов одного периода возрастает слева направо с возрастанием заряда ядра. В подгруппе она уменьшается сверху вниз вследствие увеличения расстояния электрона от ядра.

Энергия ионизации связана с химическими свойствами элементов. Так, щелочные металлы, имеющие небольшие энергии ионизации, обладают ярко выраженными металлическими свойствами. Химическая инертность благородных газов связана с их высокими значениями энергии ионизации.

Сродство к электрону. Атомы могут не только отдавать, но и присоединять электроны. При этом образуется соответствующий анион. Энергия, которая выделяется при присоединении к атому одного электрона, называется сродством к электрону. Обычно сродство к электрону, как и энергия ионизации, выражается в электрон-вольтах. Значения сродства к электрону известны не для всех элементов; измерять их весьма трудно. Наиболее велики они у галогенов, имеющих на внешнем уровне по 7 электронов. Это говорит об усилении неметаллических свойств элементов по мере приближения к концу периода.

Степень окисления в ковалентных соединениях. Для полярных соединений также часто используют понятие степени окисления, условно считая, что такие соединения состоят только из ионов. Так, в галогеноводородах и воде водород имеет формально положительную валентность, равную 1+, галогены - формально отрицательную валентность 1-, кислород - отрицательную валентность 2-: H

+ F - , H + Cl - , H 2 + O 2 - .

Понятие степени окисления было введено в предположении о полном смещении пар электронов к тому или другому атому (показывая при этом заряд ионов, образующих ионное соединение).

Поэтому в полярных соединениях степень окисления означает число электронов, лишь смещенных от данного атома к атому, связанному с ним.

Совсем формальным понятие “степень окисления” становится, когда оно используется при рассмотрении ковалентного соединения, поскольку степень окисления - это условный заряд атома в молекуле, вычисленный исходя из предположения, что молекула состоит только из ионов. Ясно, что в действительности никаких ионов в ковалентных соединениях нет.

Различие между понятием степени окисления и валентности в ковалентных соединениях особенно наглядно можно проиллюстрировать на хлорпроизводных соединениях метана: валентность углерода везде равна четырем, а степень окисления его (считая степени окисления водорода 1+и хлора 1- во всех соединениях) в каждом соединении разная: 4 - СH 4, 2 - CH 3 Cl, 0 CH 2 Cl 2 , 2+ CHCl 3 , 4+ CCl 4 .

Таким образом, нужно помнить, что степень окисления - условное, формальное понятие и, чаще всего не характеризует реальное валентное состояние атома в молекуле.

Донорно-акцепторная связь. Помимо механизма образования ковалентной связи, согласно которому общая электронная пара возникает при взаимодействии двух электронов, существует также особый до-норно-акцепторный механизм. Он заключается в том, что ковалентная связь образуется в результате перехода уже существующей электронной пары донора (поставщика электронов) в общее пользование донора и акцептора. Донорно-акцепторный механизм хорошо иллюстрируется схемой образования иона аммония (звездочками обозначены электроны внешнего уровня атома азота):

В ионе аммония каждый атом водорода связан с атомом азота общей электронной парой, одна из которых реализована по донорно-акцепторному механизму. Важно отметить, что связи Н-N, образованные по различным механизмам, никаких различий в свойствах не имеют, т. е. все связи равноценны, независимо от механизма их образования. Указанное явление обусловлено тем, что в момент образования связи орбитали 2s- и 2р-электронов атома азота изменяют свою форму. В итоге возникают четыре совершенно одинаковые по форме орбитали (здесь осуществляется sp 3 -гибридизация ).

В качестве доноров обычно выступают атомы с большим количеством электронов, но имеющие небольшое число неспаренных электронов. Для элементов II периода такая возможность кроме атома азота имеется у кислорода (две неподеленные пары) и у фтора (три неподеленные пары). Например, ион водорода Н

+ в водных растворах никогда не бывает в свободном состоянии, так как из молекул воды Н 2 О и иона Н + всегда образуется ион гидро-ксония Н 3 О + Ион гидроксония присутствует во всех водных растворах, хотя для простоты в написании сохраняется символ H + .

Донорно-акцепторный механизм образования связи помогает понять причину амфотерности гидроксида алюминия: в молекулах Аl(ОН) 3 вокруг атома алюминия имеется 6 электронов - незаполненная электронная оболочка. Для завершения этой оболочки не хватает двух электронов. И когда к гидроксиду алюминия прибавляют раствор щелочи, содержащей большое количество гидроксильных ионов, каждый из которых имеет отрицательный заряд и три неподеленные пары электронов (ОН) - , то ионы гидроксида атакуют атом алюминия и образуют ион [Аl(ОН) 4 ] - , который имеет отрицательный заряд (переданный ему гидроксид-ионом) и полностью завершенную восьмиэлектронную оболочку вокруг атома алюминия.

Аналогично происходит образование связей и во многих других молекулах, даже в таких “простых”, как молекула НNО 3:

Атом азота при этом отдает свою электронную пару атому кислорода, который ее принимает: в результате как вокруг атома кислорода, так и вокруг азота достигается полностью завершенная восьмиэлектронная оболочка, но поскольку атом азота отдал свою пару и поэтому владеет ею совместно с другим атомом, он приобрел заряд “+”, а атом кислорода - заряд “-”. Cтепень окисления азота в HNO 3 равна 5+, тогда как валентность равна 4.

Пространственное строение молекул. Представления о природе ковалентных связей с учетом типа орбиталей, участвующих в образовании химической связи, позволяют делать некоторые суждения о форме молекул.

Если химическая связь образуется с помощью электронов s-орбиталей, как, например, в молекуле Н 2 , то в силу сферической формы s-орбиталей не существует никакого преимущественного направления в пространстве для наиболее выгодного образования связей. Электронная плотность в случае р-орбиталей распределена в пространстве неравномерно, поэтому появляется некоторое выделенное направление, вдоль которого наиболее вероятно образование ковалентной связи.

Рассмотрим примеры, которые позволяют понять общие закономерности в направленности химических связей. Обсудим образование связей в молекуле воды H 2 O. Молекула H 2 O образуется из атома кислорода и двух атомов водорода. Атом кислорода имеет два неспаренных электрона, которые занимают две орбитали, расположенные под углом 90° друг к другу. Атомы водорода имеют неспаренные 1s-электроны. Ясно, что углы между двумя связями О-Н, образованными р-электронами атома кислорода с s-электронами атомов водорода, должны быть прямыми или близкими к нему (см. рис.).

Аналогично, прямыми должны быть углы между связями в молекулах Н

2 О, H 2 S, F 2 О. Cl 2 O, РН 3 , РСl 3 и т. д. Действительные значения углов между связями заметно отличаются от теоретических.

Увеличение валентных углов (> 90°) вполне объяснимо взаимным отталкиванием не связанных друг с другом атомов, которое мы не учитывали при предсказании углов между связями. Так, взаимное отталкивание атомов водорода в молекуле H

2 S слабее, чем в молекуле Н 2 О (так как радиус атома серы больше радиуса атома кислорода), поэтому и валентные углы Н-S-Н ближе к 90°, чем углы Н-О-Н.

Таким образом, двухвалентный атом неметалла с двумя валентными р-орбиталями образует изогнутую (угловую, с углом, близким к 90°) молекулу, а трехвалентный атом с тремя валентными р-орбиталями образует молекулу, имеющую форму пирамиды.

Гибридизация орбиталей. Рассмотрим образование молекулы метана СН

4 . Атом углерода в возбужденном состоянии обладает четырьмя неспаренными электронами: одним s-электроном и тремя р-электронами - ls 2 2s l 2p 3 .

Рассуждая как в случае H

2 O, можно было бы предполагать, что атом углерода будет образовывать три связи С-Н, направленные под прямым углом друг к другу (р-электроны), и одну связь, образованную s-электроном, направление которой было бы произвольным, поскольку s-орбиталь имеет сферическую симметрию.

Следовательно, можно было ожидать, что три связи С-Н в СН

4 являются направленными p-связями и совершенно одинаковы, а четвертая связь есть ненаправленная s-s-связь и отличается от первых трех.

Однако экспериментальные данные показали, что все четыре связи С-Н в молекуле метана СН

4 одинаковы и направлены к вершинам тетраэдра (угол между ними составляет 109,5°).

Ввиду относительной близости значений энергии 2s- и 2p-электронов эти электроны могут взаимодействовать между собой в ходе образования химической связи с электронами другого атома, давая четыре новых равноценных гибридных электронных облака.

3 -гибридные орбитали атома углерода расположены под углом 109,5° друг к другу, они направлены к вершинам тетраэдра, в центре которого находится атом углерода. Гибридная орбиталь сильно вытянута в одну сторону от ядра (см. рис.).

Это обусловливает более сильное перекрывание таких орбиталей с орбиталями электронов других атомов по сравнению с перекрыванием s- и р-орбиталей и приводит к образованию более прочных связей.

Таким образом, при образовании молекулы метана различные орбитали валентных электронов атома углерода - одна s-орбиталь и три р-орбитали - превращаются в четыре одинаковые “гибридные” sр

3 -орбитали (sp 3 -гибридизация). Этим и объясняется равноценность четырех связей атома углерода в молекуле.

Гибридизация оказывается характерной не только для соединений атома углерода. Гибридизация орбиталей может происходить в том случае, когда в образовании связей одновременно участвуют электроны, которые принадлежат к различным типам орбиталей.

Рассмотрим примеры различных видов гибридизации s

- и р-орбиталей. Гибридизация одной s- и одной р-орбиталей (sp-гибридизация) происходит при образовании галогенидов бериллия, например BeF 2 , цинка, ртути, молекулы ацетилена и др. Атомы этих элементов в основном состоянии имеют на внешнем слое два спаренных s-электрона. В результате возбуждения один из электронов s-орбитали переходит на близкую по энергии р-орбиталь, т. е. появляются два неспаренных электрона, один из которых s-электрон, а другой р-электрон. При возникновении химической связи эти две различные орбитали превращаются в две одинаковые гибридные орбитали (тип гибридизации - sp), направленные под углом 180° друг к другу, т. е. эти две связи имеют противоположное направление (см. рис.).

Экспериментальное определение структуры молекул BeX

2 , ZnX 2 , HgX 2 , C 2 H 2 и т. д. (X - галоген) показало, что эти молекулы действительно являются линейными.

Остановимся подробнее на структуре молекулы ацетилена С

2 Н 2 . В молекуле ацетилена каждый атом углерода образует две гибридизированные связи, направленные под углом 180° друг к другу (см. рис.).

Как при образовании связей

С-С , так и при образовании связей С-Н возникает общее двухэлектронное облако, образуя s -связи. В общем случае s -связью можно назвать связь, возникающую при обобществлении электронных облаков двух атомов, если облака перекрываются по линии, соединяющей атомы.

Но в молекуле ацетилена атомы углерода находятся в sp-гибридных состояниях, т. е. в каждом из атомов углерода содержится еще по два р-электрона, которые не принимали участие в образовании

s -связей. Молекула ацетилена имеет плоский линейный скелет, поэтому оба р-электронных облака в каждом из атомов углерода выступают из плоскости молекулы в перпендикулярном к ней направлении. В этом случае происходит также некоторое взаимодействие электронных облаков, но менее сильное, чем при образовании s -связей. Таким образом, в молекуле ацетилена образуются еще две ковалентные углерод-углеродные связи, называемые p -связями (см. рис.).

Случай образования кратных связей

между атомами углерода для молекулы ацетилена - случай образования тройной связи, которая состоит из одной s - и двух p -связей . s -Связи являются более прочными, чем p -связи.

Еще один вид гибридизации s- и p-орбиталей осуществляется, например, в соединениях бора, алюминия или углерода (этилен бензол). Возбужденный атом бора имеет один s- и два p-электрона. В этом случае при образовании соединений бора происходит гибридизация одной s- и двух p-орбиталей (ps 2 -гибридизация), при этом образуется три одинаковые sp 2 –гибридные орбитали, расположенные в одной плоскости под углом 12 0 ° друг к другу (см. рис.).

Эксперименты показали, что такие соединения как BF

3 , AlCl 3, а также этилен и бензол имеют плоское строение и все три связи B ѕ F(в молекуле BF 3 ) расположены под углом 120 ° друг к другу.

Посредством образования sp

2 -гибридных орбиталей объясняются и структуры непредельных углеводородов.

Водородная связь. Само название этого типа связи подчеркивает, что в ее образовании принимает участие атом водорода. Водородные связи могут образовываться в тех случаях, когда атом водорода связан с электроотрицательным атомом, который смещает на себя электронное облако, создавая тем самым положительный заряд

d + на водороде.

Водородная связь, как и другие рассмотренные нами типы связей, обусловлена электростатическим взаимодействием, но это взаимодействие осуществляется уже не между атомами, а между молекулами. Таким образом, водородная связь - пример межмолекулярной связи.

В качестве примера рассмотрим образование водородной связи между двумя молекулами воды. Связи О-Н в Н 2 О имеют заметный полярный характер с избытком отрицательного заряда d - на атоме кислорода. Атом водорода, наоборот, приобретает небольшой положительный заряд d + и может взаимодействовать с неподеленными парами электронов атома кислорода соседней молекулы воды.

Водородная связь обычно схематично изображается точками.

Взаимодействие между молекулами воды оказывается достаточно сильным, таким, что даже в парах воды присутствуют димеры и тримеры состава (H 2 O) 2 , (Н 2 O) 3 и т. д. В растворах же могут возникать длинные цепи ассоциатов такого вида:

поскольку атом кислорода имеет две неподеленные пары электронов.

Таким образом, водородные связи могут образовываться, если есть полярная Х-Н связь и свободная пара электронов. Например, молекулы органических соединений, содержащие группы -ОН, -СООН, -CONH 2 , -NH 2 и др., часто ассоциированы вследствие! образования водородных связей.

Типичные случаи ассоциации наблюдаются для спиртов и органических кислот. Например, для уксусной кислоты возникновение водородной связи может привести к объединению молекул в пары с образованием циклической димерной структуры, и молекулярная масса уксусycной кислоты, измеренная по плотности пара, оказывается удвоенной (120 вместо 60).

Водородные связи могут возникать как между различными молекулами, так и внутри молекулы, если в этой молекуле имеются группы с донорной и акцепторной способностями. Например, именно внутримолекулярные водородные связи играют основную роль в образовании пептидных цепей, которые определяют строение белков. По-видимому, наиболее важным и, несомненно, одним из наиболее известных примеров влияниявнутримолекулярной водородной связи на структуру является дезоксирибонуклеиновая кислота (ДНК). Молекула ДНК свернута в виде двойной спирали. Две нити этой двойной спирали связаны друг с другом водородными связями.

Металлическая связь. Большинство металлов обладает рядом свойств, имеющих общий характер и отличающихся от свойств других простых или сложных веществ. Такими свойствами являются сравнительно высокие температуры плавления, способность к отражению света, высокая тепло- и электропроводность. Эти особенности обязаны существованию в металлах особого вида связи - металлической связи.

В соответствии с положением в периодической системе атомы металлов имеют небольшое число валентных электронов. Эти электроны достаточно слабо связаны со своими ядрами и могут легко отрываться от них. В результате этого в кристаллической решетке металла появляются положительно заряженные ионы и свободные электроны. Поэтому в кристаллической решетке металлов существует большая свобода перемещения электронов: одни из атомов будут терять свои электроны, а образующиеся ионы могут принимать эти электроны из “электронного газа”. Как следствие этого, металл представляет собой ряд положительных ионов, локализованных в определенных положениях кристаллической решетки, и большое количество электронов, сравнительно свободно перемещающихся в поле положительных центров. В этом состоит важное отличие металлических связей от ковалентных, которые имеют строгую направленность в пространстве. В случае металлов невозможно говорить о направленности связей, так как валентные электроны распределены по кристаллу почти равномерно. Именно этим и объясняется, например, пластичность металлов, т. е. возможность смещения ионов и атомов в любом направлении без нарушения связи.

Электрический ток в газах.

Несамостоятельный электрический разряд. Опыт показывает, что две разноименно заряженные пластины, разделенные слоем воздуха, не разряжаются.

Обычно вещество в газообразном состоянии является изолятором, так как атомы или молекулы, из которых оно состоит, содержат одинаковое число отрицательныхи положительных электрических зарядов и в целом нейтральны.

Внесем в пространство между пластинами пламя спички или спиртовки (рис. 164).

При этом электрометр начнет быстро разряжаться. Следовательно, воздух под действием пламени стал проводником. При вынесении пламени из пространства между пластинами разряд электрометра прекращается. Такой же результат можно получить, облучая пластины светом электрической дуги. Эти опыты доказывают, что газ может стать проводником электрического тока.

Явление прохождения электрического тока через газ, наблюдаемое только при условии какого-либо внешнего воздействия, называется несамостоятельным электрическим разрядом.

Термическая ионизация. Нагревание газа делает его проводником электрического тока, потому что часть атомов или молекул газа превращается в заряженные ионы.

Для отрыва электрона от атома необходимо совершить работу против сил кулоновского притяжения между положительно заряженным ядром и отрицательным электроном. Процесс отрыва электрона от атома называется ионизацией атома. Минимальная энергия, которую необходимо затратить для отрыва электрона от атома или молекулы, называется энергией связи.

Электрон может быть оторван от атома при соударении двух атомов, если их кинетическая энергия превышает энергию связи электрона. Кинетическая энергия теплового движения атомов или молекул прямо пропорциональна абсолютной температуре, поэтому с повышением температуры газа увеличивается число соударений атомов или молекул, сопровождающихся ионизацией.

Процесс возникновения свободных электронов и положительных ионов в результате столкновений атомов и молекул газа при высокой температуре называется термической ионизацией.

Плазма. Газ, в котором значительная часть атомов или молекул ионизована, называется плазмой. Степень термической ионизации плазмы зависит от температуры. Например, при температуре 10 000 К ионизовано меньше 10 % общего числа атомов водорода, при температуре выше 20 000 К водород практически полностью ионизован.

Электроны и ионы плазмы могут перемещаться под действием электрического поля. Таким образом, при низких температурах газ является изолятором, при высоких температурах превращается в плазму и становится проводником электрического тока.



Фотоионизация. Энергия, необходимая для отрыва электрона от атома или молекулы, может быть передана светом. Ионизация атомов или молекул под действием света называется фотоионизацией.

Самостоятельный электрический разряд . При увеличении напряженности электрического поля до некоторого определенного значения, зависящего от природы газа и его давления, в газе возникает электрический ток и без воздействия внешних ионизаторов. Явление прохождения через газ электрического тока, не зависящего от действия внешних ионизаторов, называется самостоятельным электрическим разрядом.

В воздухе при атмосферном давлении самостоятельный электрический разряд возникает при напряженности электрического поля, равной примерно

Основной механизм ионизации газа при самостоятельном электрическом разряде - ионизация атомов и молекул вследствие ударов электрона.

Ионизация электронным ударом. Ионизация электронным ударом становится возможной тогда, когда электрон при свободном пробеге приобретет кинетическую энергию, превышающую энергию связи W электрона с атомом.

Кинетическая энергия Wк электрона, приобретаемая под действием электрического поля напряженностью, равна работе сил электрического поля:

где l - длина свободного пробега.

Отсюда приближенное условие начала ионизации электронным ударом имеет вид

Энергия связи электронов в атомах и молекулах обычно выражается в электронволътах (эВ). 1 эВ равен работе, которую совершает электрическое поле при перемещении электрона (или другой частицы, обладающей элементарным зарядом) между точками поля, напряжение между которыми равно 1 В:

Энергия ионизации атома водорода, например, равна 13,6 эВ.

Механизм самостоятельного разряда. Развитие самостоятельного электрического разряда в газе протекает следующим образом. Свободный электрон под действием электрического поля приобретает ускорение. Если напряженность электрического поля достаточно велика, электрон при свободном пробеге настолько увеличивает кинетическую энергию, что при соударении с молекулой ионизует ее.

Первый электрон, вызвавший ионизацию молекулы, и второй электрон, освобожденный в результате ионизации, под действием электрического поля приобретают ускорение в направлении от катода к аноду. Каждый из них при следующих соударениях освобождает еще по одному электрону и общее число свободных электронов становится равным четырем. Затем таким же образом оно увеличивается до 8, 16, 32, 64 и т. д. Число свободных электронов, движущихся от катода к аноду, нарастает лавинообразно до тех пор, пока они не достигнут анода (рис. 165).

Положительные ионы, возникшие в газе, движутся под действием электрического поля от анода к катоду. При ударах положительных ионов о катод и под действием света, излучаемого в процессе разряда, с катода могут освобождаться новые электроны. Эти электроны в свою очередь разгоняются электрическим полем и создают новые электронно-ионные лавины, поэтому процесс может продолжаться непрерывно.

Концентрация ионов в плазме по мере развития самостоятельного разряда увеличивается, а электрическое сопротивление разрядного промежутка уменьшается. Сила тока в цепи самостоятельного разряда обычно определяется лишь внутренним сопротивлением источника тока и электрическим сопротивлением других элементов цепи.

Искровой разряд. Молния. Если источник тока не способен поддерживать самостоятельный электрический разряд в течение длительного времени, то происходящий самостоятельный разряд называется искровым разрядом. Искровой разряд прекращается через короткий промежуток времени после начала разряда в результате значительного уменьшения напряжения. Примеры искрового разряда - искры, возникающие при расчесывании волос, разделении листов бумаги, разряде конденсатора.

Самостоятельный электрический разряд представляют собой и молнии, наблюдаемые во время грозы. Сила тока в канале молнии достигает 10 000-20 000 А, длительность импульса тока составляет несколько десятков микросекунд. Самостоятельный электрический разряд между грозовым облаком и Землей после нескольких ударов молнии сам собою прекращается, так как большая часть избыточных электрических зарядов в грозовом облаке нейтрализуется электрическим током, протекающим по плазменному каналу молнии (рис. 166).

При увеличении силы тока в канале молнии происходит нагревание плазмы до температуры свыше 10 000 К. Изменения давления в плазменном канале молнии при увеличении силы тока и прекращении разряда вызывают звуковые явления, называемые громом.

Тлеющий разряд . При понижении давления газа в разрядном промежутке разрядный канал становится более широким, а затем светящейся плазмой оказывается равномерно заполнена вся разрядная трубка. Этот вид самостоятельного электрического разряда в газах называется тлеющим разрядом (рис. 167).

Электрическая дуга. Если сила тока в самостоятельном газовом разряде очень велика, то удары положительных ионов и электронов могут вызвать разогревание катода и анода. С поверхности катода при высокой температуре происходит эмиссия электронов, обеспечивающая поддержание самостоятельного разряда в газе. Длительный самостоятельный электрический разряд в газах, поддерживающийся за счет термоэлектронной эмиссии с катода, называется дуговым разрядом (рис. 168).

Коронный разряд. В сильно неоднородных электрических полях, образующихся, например, между острием и плоскостью или между проводом и плоскостью (линия электропередачи), возникает самостоятельный разряд особого вида, называемый коронным разрядом. При коронном разряде ионизация электронным ударом происходит лишь вблизи одного из электродов, в области с высокой напряженностью электрического поля.

Применение электрических разрядов. Удары электронов, разгоняемых электрическим полем, приводят не только к ионизации атомов и молекул газа, но и к возбуждению атомов и молекул, сопровождающемуся излучением света. Световое излучение плазмы самостоятельного электрического разряда широко используется в народном хозяйстве и в быту. Это лампы дневного света и газоразрядные лампы уличного, освещения, электрическая дуга в кинопроекционном аппарате и ртутно-кварцевые лампы, применяемые в больницах и поликлиниках.

Высокая температура плазмы дугового разряда позволяет применять его для резки и сварки металлических конструкций, для плавки металлов. С помощью искрового разряда ведется обработка деталей из самых твердых материалов.

Электрический разряд в газах бывает и нежелательным явлением, с которым в технике необходимо бороться. Так, например, коронный электрический разряд с проводов высоковольтных линий электропередач приводит к бесполезным потерям электроэнергии. Возрастание этих потерь с увеличением напряжения ставит предел на пути дальнейшего увеличения напряжения в линии электропередач, тогда как для уменьшения потерь энергии на нагревание проводов такое повышение весьма желательно.

Рекомбнация.

Рекомбинация - процесс, обратный ионизации. Состоит в захвате ионом свободного электрона. Рекомбинация приводит к уменьшению заряда иона или к превращению иона в нейтральный атом или молекулу. Возможна также рекомбинация электрона и нейтрального атома (молекулы), приводящая к образованию отрицательного иона, и в более редких случаях - рекомбинация отрицательного иона с образованием двух- или трехкратно заряженного отрицательного иона. Вместо электрона в некоторых случаях могут выступать другие элементарные частицы, например мезоны, создавая мезоатомы или мезомолекулы. На ранних этапах развития вселенной происходила реакция рекомбинации водорода.

Рекомбинация - это процесс, обратный разрыву химической связи. Рекомбинация связана с образованием ординарной ковалентной связи за счёт обобществления неспаренных электронов, принадлежащих разным частицам (атомам, свободным радикалам)

Примеры рекомбинации:

H + H → H2 + Q ;

Cl + Cl → Cl2 + Q ;

CH3 + CH3 → C2H6 + Q и др.

Спаренные электроны

Если на орбитали находится один электрон, то он называется неспаренным, а если два – то это спаренные электроны .

Четыре квантовых числа n, l, m, m s полностью характеризуют энергетическое состояние электрона в атоме.

Рассматривая строение электронной оболочки многоэлектронных атомов различных элементов, необходимо учитывать три основных положения:

· принцип Паули,

· принцип наименьшей энергии,

· правило Гунда .

Согласно принципу Паули в атоме не может быть двух электронов с одинаковыми значениями всех четырех квантовых чисел.

Принцип Паули определяет максимальное число электронов на одной орбитали, уровне и подуровне. Так как АО характеризуется тремя квантовыми числами n , l , m , то электроны данной орбитали могут различаться только спиновым квантовым числом m s . Но спиновое квантовое число m s может иметь только два значения + 1 / 2 и – 1 / 2 . Следовательно, на одной орбитали может находиться не более двух электронов с различными значениями спиновых квантовых чисел.

Рис. 4.6. Максимальная емкость одной орбитали – 2 электрона.

Максимальное число электронов на энергетическом уровне определяется как 2n 2 , а на подуровне – как 2(2l + 1). Максимальное число электронов, размещающихся на различных уровнях и подуровнях, приведено в табл. 4.1.

Таблица 4.1.

Максимальное число электронов на квантовых уровнях и подуровнях

Энергети-ческий уровень Энергети-ческий подуровень Возможные значения магнитного квантового числа m Число орбиталей на Максимальное число электронов на
подуровне уровне подуровне уровне
K (n =1) s (l =0)
L (n =2) s (l =0) p (l =1) –1, 0, 1
M (n =3) s (l =0) p (l =1) d (l =2) –1, 0, 1 –2, –1, 0, 1, 2
N (n =4) s (l =0) p (l =1) d (l =2) f (l =3) –1, 0, 1 –2, –1, 0, 1, 2 –3, –2, –1, 0, 1, 2, 3

Последовательность заполнения электронами орбиталей осуществляется в соответствии с принципом наименьшей энергии .

Согласно прнципу наименьшей энергии электроны заполняют орбитали в порядке повышения их энергии.

Очередность заполнения орбиталей определяется правилом Клечковского: увеличение энергии и, соответственно, заполнение орбиталей происходит в порядке возрастания суммы главного и орбитального квантовых чисел (n + l), а при равной сумме (n + l) – в порядке возрастания главного квантового числа n.



Например, энергия электрона на подуровне 4s меньше, чем на подуровне 3d , так как в первом случае сумма n + l = 4 + 0 = 4 (напомним, что для s -подуровня значение орбитального квантового числа l = = 0), а во втором n + l = 3 + 2= 5 (d - подуровень, l = 2). Поэтому, сначала заполняется подуровень 4s , а затем 3d (см. рис. 4.8).

На подуровнях 3d (n = 3, l = 2) , 4р (n = 4, l = 1) и 5s (n = 5, l = 0) сумма значений п и l одинаковы и равны 5. В случае равенства значений сумм n и l сначала заполняется подуровень с минимальным значением n , т.е. подуровень 3d .

В соответствии с правилом Клечковского энергии атомных орбиталей возрастает в ряду:

1s < 2s < 2р < 3s < 3р < 4s < 3d < 4р < 5s < 4d < 5p < 6s < 5d »

»4f < 6p < 7s ….

В зависимости от того, какой подуровень в атоме заполняется в последнюю очередь, все химические элементы делятся на 4 электронных семейства: s-, p-, d-, f-элементы.

4f

4 4d

3 4s

3p

3s

1 2s

Уровни Подуровни

Рис. 4.8. Энергия атомных орбиталей.

Элементы, у атомов которых в последнюю очередь заполняется s-подуровень внешнего уровня, называются s-элементами . У s -эле-ментов валентными являются s-электроны внешнего энергетического уровня.

У р-элементов последним заполняется р-подуровень внешнего уровня. У них валентные электроны расположены на p - и s -под-уровнях внешнего уровня. У d -элементов в последнюю очередь заполняется d -подуровень предвнешнего уровня и валентными являются s -электроны внешнего и d -электроны предвнешнего энергетического уровней.

У f-элементов последним заполняется f -подуровень третьего снаружи энергетического уровня.

Порядок размещения электронов в пределах одного подуровня определяется правилом Гунда:

в пределах подуровня электроны размещаются таким образом, чтобы сумма их спиновых квантовых чисел имела бы максимальное значение по абсолютной величине.

Иными словами, орбитали данного подуровня заполняются сначала по одному электрону с одинаковым значением спинового квантового числа, а затем по второму электрону с противоположным значением.

Например, если в трех квантовых ячейках необходимо распределить 3 электрона, то каждый из них будет располагаться в отдельной ячейке, т.е. занимать отдельную орбиталь:


m s = ½ – ½ + ½ = ½.

Порядок распределения электронов по энергетическим уровням и подуровням в оболочке атома называется его электронной конфигурацией, или электронной формулой. Составляя электронную конфигурацию номер энергетического уровня (главное квантовое число) обозначают цифрами 1, 2, 3, 4…, подуровень (орбитальное квантовое число) – буквами s , p , d , f . Число электронов на подуровне обозначается цифрой, которая записывается вверху у символа подуровня.

Электронная конфигурация атома может быть изображена в виде так называемой электронно-графической формулы . Эта схема размещения электронов в квантовых ячейках, которые являются графическим изображением атомной орбитали. В каждой квантовой ячейке может быть не более двух электронов с различными значениями спиновых квантовых чисел.

Чтобы составить электронную или электронно-графическую формулу любого элемента следует знать:

1. Порядковый номер элемента, т.е. заряд его ядра и соответствующее ему число электронов в атоме.

2. Номер периода, определяющий число энергетических уровней атома.

3. Квантовые числа и связь между ними.

Так, например, атом водорода с порядковым номером 1 имеет 1 электрон. Водород - элемент первого периода, поэтому единственный электрон занимает находящуюся на первом энергетическом уровне s -орбиталь, имеющую наименьшую энергию. Электронная формула атома водорода будет иметь вид:

1 Н 1s 1 .

Электронно-графическая формула водорода будет иметь вид:

Электронная и электронно-графическая формулы атома гелия:

2 Не 1s 2

2 Не 1s

отражают завершенность электронной оболочки, что обусловливает ее устойчивость. Гелий – благородный газ, характеризующийся высокой химической устойчивостью (инертностью).

Атом лития 3 Li имеет 3 электрона, это элемент II периода, значит, электроны расположены на 2-х энергетических уровнях. Два электрона заполняют s - подуровень первого энергетического уровня и 3-й электрон расположен на s - подуровне второго энергетического уровня:

3 Li 1s 2 2s 1

Валентность I

У атома лития электрон, находящийся на 2 s -подуровне, менее прочно связан с ядром, чем электроны первого энергетического уровня, поэтому в химических реакциях атом лития может легко отдавать этот электрон, превращаясь в ион Li + (ион - электрически заряженная частица ). В этом случае ион лития приобретает устойчивую завершенную оболочку благородного газа гелия:

3 Li + 1s 2 .

Следует заметить, что, число неспаренных (одиночных) электронов определяет валентность элемента, т.е. его способность образовывать химические связи с другими элементами.

Так, атом лития имеет один неспаренный электрон, что обусловливает его валентность, равную единице.

Электронная формула атома бериллия:

4 Bе 1s 2 2s 2 .

Электронно-графическая формула атома бериллия:

2 Валентность в основном

Состоянии равна 0

Легче других у бериллия отрываются электроны подуровня 2s 2 , образуя ион Be +2:

Можно заметить, что атом гелия и ионы лития 3 Li + и бериллия 4 Bе +2 имеют одинаковое электронное строение, т.е. характеризуются изоэлектронным строением.