Вычисление определителя. Находим определитель исходной матрицы

ЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА I

§ 28 Условие, при котором определитель 2-го порядка равен нулю

Во всех приложениях теории определителей важную роль играют условия, при которых определитель обращается в нуль. Эти условия мы и рассмотрим в данном параграфе.

Теорема 1. Если строки определителя

пропорциональны, то этот определитель равен нулю.

Доказательство. Пропорциональность строк (а, b ) и (с, d ) означает, что:

либо а = kc, b = kd,

либо с = k"a, d = k"b.

(При этом, конечно, не исключается возможность и того и другого.)

Если а = kc, b = kd , то

Аналогично обстоит дело и в случае, когда с = k"a, d = k"b :

Теорема доказана.

Верна и обратная теорема.

Теорема 2. Если определитель

равен нулю, то строки его пропорциональны.

Доказательство. По условию

ad - bс = 0,

ad = bс . (1)

Если ни один из элементов второй строки (с, d ) не равен нулю, то из (1) вытекает, что

a / c = b / d

Но это уже означает, что строки (а, b ) и (с, d ) пропорциональны.

Если оба числа с и d равны нулю, то строки определителей опять же будут пропорциональны (см. задачу 226 из предыдущего параграфа).

Остается рассмотреть лишь случай, когда одно из чисел с и d равно нулю, а другое отлично от нуля. Пусть, например, с = 0, a d =/= 0. Тогда из (1) вытекает, что а = 0. Но в таком случае в определителе

первый столбец будет состоять из одних нулей. Поэтому строки определителя будут пропорциональны (см. задачу 226).

Доказанные две теоремы приводят к следующему результату.

Определитель

равен нулю тогда и только тогда, когда его строки пропорциональны.

Упражнения

227. При каких значениях а строки данных определителей пропорциональны:

228. Столбцы определителя 2-го порядка называются пропорциональными, если хотя бы один из них получается в результате поэлементного умножения другого на некоторое число k .

Докажите, что если в определителе 2-го порядка пропорциональны строки, то пропорциональными будут и столбцы. Верно ли обратное утверждение?

227 . а) ± 2; б) 0; в) ни при каком значении о строки данного определителя не пропорциональны.

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение . Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

Согласно теореме Крамера имеем:

Итак, решение системы (2):

онлайн-калькулятором , решающим методом Крамера.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера , при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Итак, система m линейных уравнений с n переменными называется несовместной , если у неё нет ни одного решения, и совместной , если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой , а более одного – неопределённой .

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера

………….
,

где
-

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2.

.

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:



Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы - (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

К началу страницы

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных - буквы. За примерами далеко ходить не надо.

Следующий пример - на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

2.Если │А│=0, то матрица А вырожденная и обратной матрицы А -1 не существует.

Если определитель матрицы А не равен нулю, то обратная матрица существует.

3. Находим А T , транспонированную к А.

4. Находим алгебраические дополнения элементов транспонированной матрицы и составляем из них присоединенную матрицу. 5. Вычисляем обратную матрицу по формуле: 6. Проверяем правильность вычисления обратной матрицы, исходя из её определения А -1 ∙А = А ∙А -1 = Е.

· №28

· В матрице размера m x n вычеркиванием каких-либо строк и столбцов можно выделить квадратные подматрицы k-го порядка, где k≤min(m; n). Определители таких подматриц называются минорами k-го порядка матрицы А.

· Рангом матрицы А называется наивысший порядок отличных от нуля миноров этой матрицы.

· Ранг матрицы А обозначается rang A или r(A).

· Из определения следует:

· 1) ранг матрицы размера m x n не превосходит меньшего из её размеров, т.е. r(A) ≤ min (m; n).

· 2) r(A)=0 тогда и только тогда, когда все элементы матрицы равны нулю, т.е. А=0.

· 3) Для квадратной матрицы n-го порядка r(A) = n тогда и только тогда, когда матрица А – невырожденная.

· В общем случае определение ранга матрицы перебором всех миноров достаточно трудоемко. Для облегчения этой задачи используются элементарные преобразования, сохраняющие ранг матрицы:

· 1) Отбрасывание нулевой строки (столбца).

· 2) Умножение всех элементов строки (столбца) матрицы на число, не равное нулю.

· 3) Изменение порядка строк (столбцов) матрицы.

· 4) Прибавление к каждому элементу одной строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число.

· 5) Транспонирование матрицы.

· Теорема. Ранг матрицы не изменится при элементарных преобразованиях матрицы.

№31

— Пусть число уравнений системы (1) равно числу переменных, т.е. m=n. Тогда матрица системы является квадратной, а её определитель Δ=│А│называется определителем системы.

— Предположим, что │А│не равен нулю, тогда существует обратная матрица А -1 .

— Умножая слева обе части матричного равенства на обратную матрицу А -1 получим:

— А -1 (АХ)= А -1 В.

Решением системы уравнений методом обратной матрицы будет матрица-столбец:

Х= А -1 В.

(А -1 А)Х =ЕХ =Х

— Теорема Крамера. Пусть Δ – определитель матрицы системы А, а Δ j – определитель матрицы, полученный из матрицы заменой j-го столбца столбцом свободных членов. Тогда если Δ не равен нулю, то система имеет единственное решение, определённое по формулам Крамера:

где j=1..n.

№33

—
Метод Гаусса – метод последовательного исключения переменных – заключается в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого или треугольного вида.

— Рассмотрим матрицу:

— эта матрица называется расширенной матрицей системы (1), так как в нее кроме матрицы системы А, дополнительно включен столбец свободных членов.

№26

— N-мерным вектором называется упорядоченная совокупность n действительных чисел, записываемых в виде Х=(х 1 ,х 2 ,…х n) , где х i – i-я компонента вектора Х.

— Два n-мерных вектора равны тогда и только тогда, когда равны их соответствующие компоненты, т.е. Х=У, если x i =y i , i=1…n.

Множество векторов с действительными компонентами, в котором определены операции сложения векторов и умножения вектора на число, удовлетворяющие приведённым выше свойствам, называется векторным пространством.

— Векторное пространство R, называется n-мерным, если в нем существует n линейно независимых векторов, а любые n+1 векторов уже являются зависимыми. Число n называется размерностью векторного пространство R и обозначается dim(R).

№29

Линейные операторы

— Определение. Если задан закон (правило), по которому каждому вектору x пространства ставится в соответствие единственный вектор y пространства

то говорят: что задан оператор (преобразование, отображение) A(x), действующий из в и

записывают y=A(x).

— Оператор называется линейным, если для любого вектора x и y пространства

и любого числа λ выполняются следующие соотношения:

№37

— Пустъ А – множество, состоящее из конечного числа элементов a 1 , a 2, a 3 …a n . Из различных элементов множества А можно образовывать группы. Если в каждую группу входит одно и то же число элементов m (m из n), то говорят, что они образуют соединения из n элементов пo m в каждом. Различают три вида соединений: размещения, сочетания и перестановки.

— Соединения, в каждое из которых входят все n элементов множества А и которые, следовательно, отличаются друг от друга только порядком элементов называются перестановками из n элементов. Число таких перестановок обозначается символом Р n .

№35

Классическое определение вероятности основано на понятии равновозможности событий.

Равновозможность событий означает, что нет оснований предпочесть какое-либо одно из них другим.

Рассмотрим испытание, в результате которого может произойти событие A. Каждый исход, при котором осуществляется событие A, называется благоприятным событию A.

Вероятностью события A (обозначают P(A)) называется отношение числа исходов, благоприятных событию A (обозначают k), к числу всех исходов испытания – N т.е. P(A)= k/ N.

— Из классического определения вероятности вытекают следующие ее свойства:

— Вероятность любого события заключена между нулем и единицей.

— Вероятность достоверного события равна единице.

— Вероятность невозможного события равна нулю

№39, 40

— Теорема сложения. Если А и В несовместны, то Р(А + В) = Р(А) +Р(В)

Постановка задачи

Задание подразумевает знакомство пользователя с основными понятиями численных методов, такими как определитель и обратная матрица , и различными способами их вычислений. В данном теоретическом отчете простым и доступным языком сначала вводятся основные понятия и определения, на основании которых проводится дальнейшее исследование. Пользователь может не иметь специальных знаний в области численных методов и линейной алгебры , но с легкостью сможет воспользоваться результатами данной работы. Для наглядности приведена программа вычисления определителя матрицы несколькими методами, написанная на языке программирования C++. Программа используется как лабораторный стенд для создания иллюстраций к отчету. А также проводится исследование методов для решения систем линейных алгебраических уравнений . Доказывается бесполезность вычисления обратной матрицы, поэтому в работе приводится более оптимальные способы решения уравнений не вычисляя ее. Рассказывается почему существует такое количество различных методов вычисления определителей и обратных матриц и разбираются их недостатки. Также рассматриваются погрешности при вычислении определителя и оценивается достигнутая точность. Помимо русских терминов в работе используются и их английские эквиваленты для понимания, под какими названиями искать численные процедуры в библиотеках и что означают их параметры.

Основные определения и простейшие свойства

Определитель

Введем определение определителя квадратной матрицы любого порядка. Это определение будет рекуррентным , то есть чтобы установить, что такое определитель матрицы порядка , нужно уже знать, что такое определитель матрицы порядка . Отметим также, что определитель существует только у квадратных матриц.

Определитель квадратной матрицы будем обозначать или det .

Определение 1. Определителем квадратной матрицы второго порядка называется число .

Определителем квадратной матрицы порядка , называется число

где - определитель матрицы порядка , полученной из матрицы вычеркиванием первой строки и столбца с номером .

Для наглядности запишем, как можно вычислить определитель матрицы четвертого порядка:

Замечание. Реальное вычисление определителей для матриц выше третьего порядка на основе определения используется в исключительных случаях. Как правило, вычисление ведется по другим алгоритмам, которые будут рассмотрены позже и которые требуют меньше вычислительной работы.

Замечание. В определении 1 было бы точнее сказать, что определитель есть функция, определенная на множестве квадратных матриц порядка и принимающая значения в множестве чисел.

Замечание. В литературе вместо термина "определитель" используется также термин "детерминант", имеющий тот же самый смысл. От слова "детерминант" и появилось обозначение det .

Рассмотрим некоторые свойства определителей, которые сформулируем в виде утверждений.

Утверждение 1. При транспонировании матрицы определитель не меняется, то есть .

Утверждение 2. Определитель произведения квадратных матриц равен произведению определителей сомножителей, то есть .

Утверждение 3. Если в матрице поменять местами две строки, то ее определитель сменит знак.

Утверждение 4. Если матрица имеет две одинаковые строки, то ее определитель равен нулю.

В дальнейшем нам потребуется складывать строки и умножать строку на число. Эти действия над строками (столбцами) мы будем выполнять так же, как действия над матрицами-строками (матрицами-столбцами), то есть поэлементно. Результатом будет служить строка (столбец), как правило, не совпадающая со строками исходной матрицы. При наличии операций сложения строк (столбцов) и умножения их на число мы можем говорить и о линейных комбинациях строк (столбцов), то есть суммах с числовыми коэффициентами.

Утверждение 5. Если строку матрицы умножить на число , то ее определитель умножится на это число.

Утверждение 6. Если матрица содержит нулевую строку, то ее определитель равен нулю.

Утверждение 7. Если одна из строк матрицы равна другой, умноженной на число (строки пропорциональны), то определитель матрицы равен нулю.

Утверждение 8. Пусть в матрице i-ая строка имеет вид . Тогда , где матрица получается из матрицы заменой i-ой строки на строку , а матрица - заменой i-ой строки на строку .

Утверждение 9. Если к одной из строк матрицы добавить другую, умноженную на число, то определитель матрицы не изменится.

Утверждение 10. Если одна из строк матрицы является линейной комбинацией других ее строк, то определитель матрицы равен нулю.

Определение 2. Алгебраическим дополнением к элементу матрицы называется число, равное , где - определитель матрицы, полученной из матрицы вычеркиванием i-ой строки и j-ого столбца. Алгебраическое дополнение к элементу матрицы обозначается .

Пример. Пусть . Тогда

Замечание. Используя алгебраические дополнения, определение 1 определителя можно записать так:

Утверждение 11. Разложение определителя по произвольной строке.

Для определителя матрицы справедлива формула

Пример. Вычислите .

Решение. Воспользуемся разложением по третьей строке, так выгоднее, поскольку в третьей строке два числа из трех - нули. Получим

Утверждение 12. Для квадратной матрицы порядка при выполнено соотношение .

Утверждение 13. Все свойства определителя, сформулированные для строк (утверждения 1 - 11), справедливы и для столбцов, в частности, справедливо разложение определителя по j-ому столбцу и равенство при .

Утверждение 14. Определитель треугольной матрицы равен произведению элементов ее главной диагонали.

Следствие. Определитель единичной матрицы равен единице, .

Вывод. Перечисленные выше свойства позволяют находить определители матриц достаточно высоких порядков при сравнительно небольшом объеме вычислений. Алгоритм вычислений следующий.

Алгоритм создания нулей в столбце. Пусть требуется вычислить определитель порядка . Если , то поменяем местами первую строку и любую другую, в которой первый элемент не нуль. В результате определитель , будет равен определителю новой матрицы с противоположным знаком. Если же первый элемент каждой строки равен нулю, то матрица имеет нулевой столбец и по утверждениям 1, 13 ее определитель равен нулю.

Итак, считаем, что уже в исходной матрице . Первую строку оставляем без изменений. Прибавим ко второй строке первую строку, умноженную на число . Тогда первый элемент второй строки будет равен .

Остальные элементы новой второй строки обозначим , . Определитель новой матрицы по утверждению 9 равен . Первую строку умножим на число и прибавим к третьей. Первый элемент новой третьей строки будет равен

Остальные элементы новой третьей строки обозначим , . Определитель новой матрицы по утверждению 9 равен .

Процесс получения нулей вместо первых элементов строк продолжим дальше. Наконец, первую строку умножим на число и прибавим к последней строке. В результате получается матрица, обозначим ее , которая имеет вид

причем . Для вычисления определителя матрицы используем разложение по первому столбцу

Так как , то

В правой части стоит определитель матрицы порядка . К нему применим тот же алгоритм, и вычисление определителя матрицы сведется к вычислению определителя матрицы порядка . Процесс повторяем до тех пор, пока не дойдем до определителя второго порядка, который вычисляется по определению.

Если матрица не обладает какими-то специфическими свойствами, то заметно уменьшить объем вычислений по сравнению с предложенным алгоритмом не удается. Еще одна хорошая сторона этого алгоритма - по нему легко составить программу для компьютера для вычисления определителей матриц больших порядков. В стандартных программах вычисления определителей используется этот алгоритм с не принципиальными изменениями, связанными с минимизацией влияния ошибок округления и погрешностей входных данных при вычислениях компьютера.

Пример. Вычислите определитель матрицы .

Решение. Первую строку оставляем без изменения. Ко второй строке прибавляем первую, умноженную на число :

Определитель не меняется. К третьей строке прибавляем первую, умноженную на число :

Определитель не меняется. К четвертой строке прибавляем первую, умноженную на число :

Определитель не меняется. В результате получаем

По тому же алгоритму считаем определитель матрицы порядка 3, стоящий справа. Первую строку оставляем без изменений, ко второй строке прибавляем первую, умноженную на число :

К третьей строке прибавляем первую, умноженную на число :

В результате получаем

Ответ. .

Замечание. Хотя при вычислениях использовались дроби, результат оказался целым числом. Действительно, используя свойства определителей и то, что исходные числа - целые, операций с дробями можно было бы избежать. Но в инженерной практике числа крайне редко бывают целыми. Поэтому, как правило, элементы определителя будут десятичными дробями и применять какие-то ухищрения для упрощения вычислений нецелесообразно.

Обратная матрица

Определение 3. Матрица называется обратной матрицей для квадратной матрицы , если .

Из определения следует, что обратная матрица будет квадратной матрицей того же порядка, что и матрица (иначе одно из произведений или было бы не определено).

Обратная матрица для матрицы обозначается . Таким образом, если существует, то .

Из определения обратной матрицы следует, что матрица является обратной для матрицы , то есть . Про матрицы и можно говорить, что они обратны друг другу или взаимно обратны.

Если определитель матрицы равен нулю, то обратная к ней не существует.

Так как для нахождения обратной матрицы важно, равен ли определитель марицы нулю или нет, то введем следующие определения.

Определение 4. Квадратную матрицу назовем вырожденной или особенной матрицей , если , и невырожденной или неособенной матрицей , если .

Утверждение. Если обратная матрица существует, то она единственна.

Утверждение. Если квадратная матрица является невырожденной, то обратная для нее существует и (1) где - алгебраические дополнения к элементам .

Теорема. Обратная матрица для квадратной матрицы существует тогда и только тогда, когда матрица - невырожденная, обратная матрица единственна, и справедлива формула (1).

Замечание. Следует обратить особое внимание на места, занимаемые алгебраическими дополнениями в формуле обратной матрицы: первый индекс показывает номер столбца , а второй - номер строки , в которые нужно записать вычисленное алгебраическое дополнение.

Пример. .

Решение. Находим определитель

Так как , то матрица - невырожденная, и обратная для нее существует. Находим алгебраические дополнения:

Составляем обратную матрицу, размещая найденные алгебраические дополнения так, чтобы первый индекс соответствовал столбцу, а второй - строке: (2)

Полученная матрица (2) и служит ответом к задаче.

Замечание. В предыдущем примере было бы точнее ответ записать так:
(3)

Однако запись (2) более компактна и с ней удобнее проводить дальнейшие вычисления, если таковые потребуются. Поэтому запись ответа в виде (2) предпочтительнее, если элементы матриц - целые числа. И наоборот, если элементы матрицы - десятичные дроби, то обратную матрицу лучше записать без множителя впереди.

Замечание. При нахождении обратной матрицы приходится выполнять довольно много вычислений и необычно правило расстановки алгебраических дополнений в итоговой матрице. Поэтому велика вероятность ошибки. Чтобы избежать ошибок следует делать проверку: вычислить произведение исходной матрицы на итоговую в том или ином порядке. Если в результате получится единичная матрица, то обратная матрица найдена правильно. В противном случае нужно искать ошибку.

Пример. Найдите обратную матрицу для матрицы .

Решение. - существует.

Ответ: .

Вывод. Нахождение обратной матрицы по формуле (1) требует слишком много вычислений. Для матриц четвертого порядка и выше это неприемлемо. Реальный алгоритм нахождения обратной матрицы будет приведен позже.

Вычисление определителя и обратной матрицы с помощью метода Гаусса

Метод Гаусса можно использовать для нахождения определителя и обратной матрицы .

Именно, определитель матрицы равен det .

Обратная матрица находится решением систем линейных уравнений методом исключения Гаусса:

Где есть j-тый столбец единичной матрицы , - искомый вектор.

Полученные векторы решений - образуют, очевидно, столбцов матрицы , поскольку .

Формулы для определителя

1. Если матрица невырожденная, то и (произведение ведущих элементов).