Что сегодня биотехнология дает человеку. Области применения биотехнологии

Биотехнология - это сознательное производство необходимых человеку продуктов и материалов с помощью живых организмов и биологических процессов .

С незапамятных времен биотехнология применялась преимущественно в пищевой и легкой промышленности: в виноделии, хлебопечении, сбраживании молочных продуктов, при обработке льна и кож, основанных на применении микроорганизмов. В последние десятилетия возможности биотехнологии необычайно расширились. Это связано с тем, что ее методы выгоднее обычных по той простой причине, что в живых организмах биохимические реакции, катализируемые ферментами, идут при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду.

Объектами биотехнологии являются многочисленные представители групп живых организмов - микроорганизмы (вирусы, бактерии, простейшие, дрожжевые грибы), растения, животные, а также изолированные из них клетки и субклеточные компоненты (органеллы) и даже ферменты. Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.

Главным направлением биотехнологии является производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферменты, витамины, гормоны), лекарственных препаратов (антибиотики, вакцины, сыворотки, высокоспецифичные антитела и др.), а также ценных соединений (кормовые добавки, например, незаменимые аминокислоты, кормовые белки и т. д.).

Методы генетической инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин и соматотропин (гормон роста), которые необходимы для лечения генетических болезней человека.

Одним из важнейших направлений современной биотехнологии является также использование биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязненной почвы и т. п.).

Так, для извлечения металлов из сточных вод могут широко использоваться штаммы бактерий, способные накапливать уран, медь, кобальт. Другие бактерии родов Rhodococcus и Nocardia с успехом применяют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти. Ассимилируя углеводороды нефти, такие микроорганизмы преобразуют их в белки, витамины из группы В и каротины.

Некоторые из штаммов галобактерий с успехом применяют для удаления мазута с песчаных пляжей. Получены также генно-инженерные штаммы, способные расщеплять октан, камфару, нафталин, ксилол, эффективно утилизировать сырую нефть.

Большое значение имеет использование методов биотехнологии для защиты растений от вредителей и болезней.

Биотехнология проникает в тяжелую промышленность, где микроорганизмы используются для добычи, превращения и переработки природных ископаемых. Уже в древности первые металлурги получали железо из болотных руд, производимых железобактериями, которые способны концентрировать железо. Теперь разработаны способы бактериальной концентрации ряда других ценных металлов: марганца, цинка, меди, хрома и др. Эти методы используются для разработки отвалов старых рудников и бедных месторождений, где традиционные методы добычи экономически невыгодны.

Биотехнология решает не только конкретные задачи науки и производства. У нее есть более глобальная методологическая задача - она расширяет и ускоряет масштабы воздействия человека на живую природу и способствует адаптации живых систем к условиям существования человека, т. е. к ноосфере. Биотехнология, таким образом, выступает в роли мощного фактора антропогенной адаптивной эволюции.

У биотехнологии, генетической и клеточной инженерии многообещающие перспективы. При появлении все новых и новых векторов человек с их помощью будет внедрять нужные гены в клетки растений, животных и человека. Это позволит постепенно избавиться от многих наследственных болезней человека, заставить клетки синтезировать необходимые лекарства и биологически активные соединения, а затем - непосредственно белки и незаменимые аминокислоты, употребляемые в пищу. Используя методы, уже освоенные природой, биотехнологи надеются получать с помощью фотосинтеза водород - самое экологически чистое топливо будущего, электроэнергию, превращать в аммиак атмосферный азот при обычных условиях.

Имеете ли вы представление, что такое биотехнологии?

Безусловно, вы, что то о них слышали. Это инновационное направление в современной биологии, которое стоит в одном ряду с такими науками как математика или физика.

Биотехнология занимается созданием нужных человеку продуктов и материалов с помощью живых культур и микроорганизмов таких как, дрожи, споры грибов, культивируемые клетки растений и животных и др. Конструирование нужных генов методами генной и клеточной инженерии позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми полезными для человека свойствами, ранее не наблюдавшимися в природе. Биоинженеры, имеют дело с живыми системами природы, используют их возможности для решения медицинских задач, генной инженерии, сельского хозяйства, химической отрасли, косметической индустрии и пищевой промышленности. Биотехнология – это наука на стыке смежных отраслей.

Интересно, что проникновение биотехнологий в экономику мирового хозяйства отражается в том, что сформировались новые термины для обозначения глобальности данного процесса. В промышлености даже появились разноцветные биотехнологии:

  • "красная" биотехнология – биотехнология, связанная с обеспечением здоровья человека и потенциальной коррекцией его генома, а также с производством биофармацевтических препаратов (протеинов, ферментов, антител);
  • "зеленая" биотехнология - направлена на разработку и создание генетически модифицированных (ГМ) растений, устойчивых к биотическим и абиотическим стрессам, определяет современные методы ведения сельского и лесного хозяйства;
  • "белая" - промышленная биотехнология, объединяющая производство биотоплива, биотехнологии в пищевой, химической и нефтеперерабатывающей промышленности;
  • "серая" - связана с природоохранной деятельностью, биоремедиацией;
  • "синяя" биотехнология – связана с использованием морских организмов и сырьевых ресурсов.

Появились и новые профессии: биофармаколог, бионик, архитектор живых систем, урбанист-эколог и другие. Ну а экономика, объединяющая все эти инновационные области, стала назваться «биоэкономика».

Сегодня наша страна по уровню производства на основе высоких биотехнологий отстаёт от стран, являющихся технологическими лидерами в этой области. Политика нашего государства по импортозамещению направлена как раз на то, чтобы не только создавать новые биотехнологии, но осуществлять к нам в страну трансфер зарубежных решений, уже получившие признание в мире.

Трансфер технологий сопровождается поиском самых новых и прогрессивных решений. Но есть один важный момент, помимо факта прогрессивности технологии сегодня, нужно уметь предсказывать ее перспективы для прогресса будущего.

Иногда для таких стратегических предсказаний трудятся целые научно- исследовательские институты, группы ученых и практиков. А иногда, перспективность и прорывной характер технологии способен предсказать всего один человек. Такой как Стив Джобс или Бил Гейц.

В сфере биотехнологий тоже имеются свои проницательные лидеры из сферы бизнеса. Один из них Яковлев Максим Николаевич , генеральный директор представительства биотехнологической корпорации Unhwa, Южная Корея, расположенного в городе Санкт – Петербурге.

Биотехнология, которой Максим Яковлев определил прорывное будущее в разных сегментах экономики находится в сфере культивирования растительных клеток, обладающих функциями «естественных природных биофабрик» по производству ценных ингредиентов из любых растений, в том числе и уникальных.

Эта перспективная биотехнология, по мнению бизнесмена, способна из одной выделенной клетки растения создавать натуральное питание прямо на борту космических кораблей, выращивать плоды овощей и фруктов с нужными характеристиками и размерами, создавать экосистем других планет и питание для человека в промышленных масштабах из любого растения без выращивания этого растений на живой земле.

Возможно такие перспективы биотехнологии еще трудно осознать и принять как возможное. Но все мы знаем, что есть люди способны видеть дальше масс, потому что, они сами уже живут в будущем и зовут нас за собой.

Знаете ли вы, что такое биотехнология? Наверняка вы кое-что о ней слышали. Это важный раздел современной биологии. Она стала, как и физика, одним из основных приоритетов в мировой экономике и науке в конце 20 века. Еще полвека назад никто не знал, что такое биотехнология. Однако основы ее заложил ученый, живший еще в 19 веке. Биотехнология получила мощный толчок к развитию благодаря работам исследователя из Франции Луи Пастера (годы жизни - 1822-1895). Он является основоположником современной иммунологии и микробиологии.

В 20 веке бурно развивалась генетика и молекулярная биология с использованием достижений физики и химии. В это время важнейшим направлением была разработка методов, с помощью которых можно было бы культивировать клетки животных и растений.

Всплеск исследований

В 1980 годах произошел всплеск исследований в области биотехнологии. К этому времени были созданы новые методические и методологические подходы, которые обеспечили переход к применению биотехнологий в науке и практике. Появилась возможность извлечь из этого большой Согласно прогнозам, биотехнологические товары должны были составить уже в начале нового века четверть мировой продукции.

Работа, осуществленная в нашей стране

Активное развитие биотехнологии происходило в это время и в нашей стране. В России также было достигнуто значительно расширение работ в этой области и внедрение в производство их результатов в 1980 годы. В нашей стране в этот период была разработана и осуществлялась первая программа по биотехнологии общенационального масштаба. Были созданы специальные межведомственные центры, подготовлены специалисты-биотехнологи, основаны кафедры и сформированы лаборатории в вузах и научно-исследовательских учреждениях.

Биотехнология сегодня

Сегодня мы настолько привыкли к этому слову, что мало кто задает себе вопрос: "Что такое биотехнология?" А между тем познакомиться с ней подробнее было бы совсем не лишним. Современные процессы в этой области основаны на методах использования рекомбинантных ДНК и клеточных органелл или клеток. Современная биотехнология является наукой о клеточных и генноинженерных технологиях и методах создания и применения трансформированных генетически биологических объектов с целью интенсификации производства либо создания новых видов продуктов. Выделяются три основные направления, о которых мы сейчас расскажем.

Промышленная биотехнология

В этом направлении можно выделить как разновидность красную Она считается самой важной сферой применения биотехнологий. Все большую роль они играют при разработке медикаментов (в частности, для лечения рака). Большое значение биотехнологии имеют также в диагностике. Они применяются, например, при создании биосенсоров, чипов ДНК. В Австрии красная биотехнология сегодня пользуется заслуженным признанием. Она даже считается двигателем развития остальных отраслей.

Переходим к следующей разновидности промышленной биотехнологии. Это биотехнология зеленая. Она используется, когда осуществляется селекция. Биотехнология эта предоставляет сегодня особые методы, с помощью которых разрабатываются средства противодействия против гербицидов, вирусов, грибков, насекомых. Все это также очень важно, согласитесь.

Для области зеленой биотехнологии особое значение имеет генная инженерия. С помощью нее создаются предпосылки для переноса генов одного вида растений на другие, и таким образом ученые могут влиять на развитие устойчивых характеристик и свойств.

Серая биотехнология используется для охраны окружающей среды. Ее методы применяются для очистки канализационных стоков, санации почв, очистки газов и отработанного воздуха, для переработки отходов.

Но и это еще не все. Существует и белая биотехнология, которая охватывает сферу использования в химической промышленности. Биотехнологические методы в данном случае применяются для безопасного с экологической точки зрения и эффективного производства ферментов, антибиотиков, аминокислот, витаминов, а также алкоголя.

И наконец, последняя разновидность. Синяя биотехнология основана на техническом применении различных организмов, а также процессов морской биологии. В этом случае в центре исследований - биологические организмы, населяющие Мировой океан.

Переходим к следующему направлению - клеточной инженерии.

Клеточная инженерия

Она занимается получением гибридов, клонированием, изучением клеточных механизмов, "гибридными" клетками, составлением генетических карт. Начало ее относят к 1960 годам, когда появился метод гибридизации Уже были усовершенствованы к этому времени способы культивирования, возникли и способы выращивания тканей. Соматическую гибридизацию, при которой гибриды создаются без участия полового процесса, сегодня проводят, культивируя различные клетки линий одного вида или используя клетки разных видов.

Гибридомы и их значение

Гибридомы, то есть гибриды между лимфоцитами (обычными клетками иммунной системы) и опухолевыми, обладают свойствами клеточных линий родителей. Они способны, подобно раковым, делиться неограниченно долго на питательных искусственных средах (то есть являются "бессмертными"), а также могут, подобно лимфоцитам, вырабатывать однородные обладающие определенной специфичностью. Эти антитела используются в диагностических и лечебных целях, как чувствительные реагенты на органические вещества и др.

Еще одним направлением клеточной инженерии являются манипуляции с клетками, не имеющими ядер, со свободными ядрами, а также с иными фрагментами. Эти манипуляции сводятся к комбинированию частей клетки. Подобные эксперименты вместе с микроинъекциями красителей или хромосом в клетку проводят, чтобы выяснить, как цитоплазма и ядро влияют друг на друга, какие факторы регулируют активность тех или иных генов и проч.

С помощью соединения на ранних стадиях развития клеток различных зародышей выращивают так называемых мозаичных животных. Иначе их именуют химерами. Они состоят из 2-х видов клеток, различающихся генотипами. Путем данных экспериментов выясняют, как в ходе развития организма происходит дифференцировка тканей и клеток.

Клонирование

Современные биотехнологии немыслимы без клонирования. Опыты, связанные с пересадкой ядер различных соматических клеток в энуклеированные (то есть лишенные ядра) яйцеклетки животных с дальнейшим выращиванием во взрослый организм получившегося зародыша ведутся уже не одно десятилетие. Однако они получили очень широкую известность с конца 20 века. Сегодня мы называем такие опыты клонированием животных.

Мало кому не знакома сегодня овечка Долли. В 1996 году около Эдинбурга (Шотландия) в Рослинском институте было осуществлено первое клонирование млекопитающего, которое осуществилось из клетки взрослого организма. Именно овечка Долли стала первым таким клоном.

Генная инженерия

Появившись в начале 1970 годов, сегодня добилась значительных успехов. Ее методы преобразуют клетки млекопитающих, дрожжей, бактерий в настоящие "фабрики" для производства любого белка. Такое достижение науки предоставляет возможность детально изучить функции и структуру белков для того, чтобы использовать их как лекарственные средства.

Основы биотехнологии сегодня широко применяются. Кишечная палочка, например, стала в наше время поставщиком важных гормонов соматотропина и инсулина. Прикладная генная инженерия ставит перед собой цель конструирования рекомбинантных молекул ДНК. При внедрении в определенный генетический аппарат они могут придавать организму полезные для человека свойства. К примеру, можно получать "биологические реакторы", то есть животные, растения и микроорганизмы, которые продуцировали бы вещества, фармакологически важные для человека. Достижения биотехнологии привели к возможности выведения пород животных и сортов растений с признаками, ценными для людей. С помощью методов генной инженерии можно осуществлять генетическую паспортизацию, создавать ДНК-вакцины, диагностировать различные генетические заболевания и др.

Заключение

Итак, мы ответили на вопрос: "Что такое биотехнология?" Конечно, в статье приведены лишь основные сведения о ней, кратко перечислены направления. Эта ознакомительная информация дает общее представление о том, какие существуют современные биотехнологии и как они используются.

Слово БИОТЕХНОЛОГ происходит от сочетания греческих слов «bios» — жизнь, «techne» — мастерство, искусство и «logos» — учение. Это в полной мере отражает деятельность биотехнолога. Профессия подходит тем, кого интересует физика, математика, химия и биология (см. выбор профессии по интересу к школьным предметам).

Специалисты по биотехнологии искусно используют живые биологические организмы, их системы и процессы, применяя научные методы генной инженерии, с целью создания новых сортов продуктов, растений, витаминов, лекарственных средств, а также улучшения свойств существующих видов в растительной и животной среде, устойчивых к неблагоприятным климатическим условиям, вредителям и болезням. В медицине биотехнологи играют неоценимую роль в создании новых лекарственных препаратов для ранней диагностики и успешного лечения самых сложных болезней.

Как любая наука биотехнология постоянно развивается, достигая небывалых высот. Так, в последние десятилетия она закономерно вышла на уровень клонирования и достигла определенных успехов в этой сфере. Клонирование жизненно важных человеческих органов (печень, почки) даёт шанс на лечение, полное выздоровление и повышение качества жизни людей во всём мире.

Биотехнология как наука находится на стыке клеточной и молекулярной биологии, молекулярной генетики, биохимии и биоорганической химии.

Отличительной особенностью развития биотехнологии в 21 веке в дополнение к её бурному росту в качестве прикладной науки является то, что она проникает во все сферы жизни человека, способствуя эффективному развитию всех отраслей экономики. В конечном итоге всё это содействует экономическому и социальному росту страны. Рациональное планирование и управление достижениями биотехнологии может решить такие важные для России проблемы, как освоение пустующих территорий и занятости населения. Это станет возможным, если применять достижения науки как инструмент индустриализации для создания маленьких производств в сельских районах.

Общий прогресс человечества во многом обязан развитию биотехнологии. Но с другой стороны, справедливо считается, что если допустить неконтролируемое распространение генно-модифицированных продуктов - это может способствовать нарушению биологического баланса в природе и в конечном итоге создать угрозу здоровью человека.

Особенности профессии

Функциональные обязанности биотехнолога зависят от того, в какой отрасли промышленности он работает.

Работа в фармацевтической отрасли предполагает:

  • участие в разработке состава и технологии производства лекарств или пищевых добавок;
  • участие во внедрении нового технологического оборудования;
  • испытание новых технологий на производстве;
  • работа по совершенствованию разработанных технологий;
  • участие в выборе оборудования, материалов и сырья для новой технологии;
  • контроль за правильностью выполнения вспомогательных технологических операций;
  • участие в разработке технико-экономических показателей (ТЭП) по лекарственным средствам;
  • пересмотр их по причине замены отдельных составляющих или изменения технологии;
  • своевременное ведение необходимой документации и отчетности.

Работа в научно-исследовательской сфере заключается в исследованиях, методических разработках и открытиях в области генной и клеточной инженерии.

Работа биотехнолога в такой важной сфере как охрана окружающей среды предполагает такие обязанности:

  • биологическая очистка сточных вод и загрязнённых территорий;
  • утилизация бытовых и промышленных отходов.

Работа в образовательных учреждениях предполагает преподавание биологических и сопутствующих дисциплин.

В любой области работа биотехнолога является творческой, научно-исследовательской и, безусловно, интересной и необходимой обществу.

Плюсы и минусы профессии

Плюсы

Специалисты по биотехнологии чрезвычайно востребованы в настоящее время, а в дальнейшем будут востребованы ещё больше, так как биотехнология — профессия будущего и ей предстоит бурное развитие. В перспективе профессия биотехнолога будет востребована и в других отраслях человеческой деятельности, которые даже ещё не существуют или только находятся в стадии становления.

К плюсам можно отнести престиж профессии и её многозначность, то есть возможность трудоустройства на смежные профессии в самые различные организации (см. места работы) на позиции генетического биоинженера, инженера биопроцессов, биотехнолога липидов, биотехнолога белка, биотехнолога фармацевтики, биоинженера клетки и ткани.

Биотехнологи тесно сотрудничают с зарубежными научно-исследовательскими институтами. Российские ученые пользуются высоким спросом, поэтому можно сделать хорошую карьеру за рубежом.

Минусы

Не всегда оправданное отрицательное отношение общественности и части научного мира к продуктам генной инженерии.

Место работы

  • фармацевтические компании;
  • парфюмерные производства;
  • фирмы и компании по производству продуктов питания;
  • предприятия аграрно-промышленного комплекса;
  • научно-исследовательские институты и лаборатории;
  • биотехнологические предприятия;
  • компании в сфере космонавтики и робототехники.

Важные качества

  • аналитический ум;
  • широкая эрудиция;
  • любознательность;
  • нестандартное мышление;
  • наблюдательность;
  • терпение;
  • ответственность;
  • чувство долга;
  • целеустремленность.

Обучение на Биотехнолога

На этом курсе можно получить профессию микробиолога за 3 месяца и 15 000 руб.:
— Одна из самых доступных цен в России;
— Диплом о профессиональной переподготовке установленного образца;
— Обучение в полностью дистанционном формате;
— Крупнейшее образовательное учреждение дополнительного проф. образования в России.

Оплата труда

Зарплата на 04.03.2019

Россия 21000—60000 ₽

Москва 35000—150000 ₽

Ступеньки карьеры и перспективы

Биотехнологи могут работать на позициях биохимика, биолога, вирусолога, микробиолога. Начинающие специалисты, как правило, устраиваются лаборантами химического анализа в фармацевтических компаниях или на предприятиях пищевой промышленности. На заводах по производству лекарств и пищевых добавок можно работать контролером производства. Карьеру можно сделать по вертикали, повышая профессиональный уровень и, соответственно, разрядность должности, вплоть до руководителя производства. Работая в НИИ, при стремлении к научным открытиям, можно сделать карьеру в научном мире.

Знаменитые биотехнологи

Ю.А.Овчинников - один из самых известных ученых в биотехнологии, ведущий ученый в сфере мембранной биологии. Автор множества научных работ (более 500), в том числе «Биоорганическая химия», «Мембрано-активные комплексоны». Его именем названо Общества биотехнологов России им. Ю.А.Овчинникова.

Новости трансгенной инженерии. Учёные скрестили попугая и сахарный тростник. Теперь сахар сам говорит, сколько его класть в чай.

История возникновения биотехнологии как науки:

В самые давние времена люди, сами того не осознавая, применяли биотехнологии в выпечке хлеба, в производстве вина и кисломолочных продуктов.

Научную основу под все подобные процессы подвел Л.Пастер в XIX веке, доказав, что процесс брожения обусловлен микроорганизмами. Но в современном виде биотехнология как наука возникла не сразу, а пройдя несколько этапов:

  1. В 40-50-е годы ХХ века в результате биосинтеза пенициллина была создана микробиологическая промышленность.
  2. В 60-70-е годы произошло развитие клеточной инженерии.
  3. В 1972 году создание первой гибридной молекулы ДНК «in vitro» в США повлекло за собой возникновение генетической инженерии. После этого стало возможным преднамеренное изменение генетической структуры живых организмов. В 70-е годы возник и сам термин «биотехнология».

Поэтапность появления биотехнологии обусловило её неразрывную связь с клеточной и молекулярной биологией, биохимией, молекулярной генетикой и биоорганической химией.



Добавить свою цену в базу

Комментарий

Впервые термин «биотехнология» применил венгерский инженер Карл Эреки в 1917 году. Отдельные элементы биотехнологии появились достаточно давно. По сути, это были попытки использовать в промышленном производстве отдельные клетки (микроорганизмы) и некоторые ферменты, способствующие протеканию ряда химических процессов.

Так, в 1814 году петербургский академик К. С. Кирхгоф открыл явление биологического катализа и пытался биокаталитическим путём получить сахар из доступного отечественного сырья (до середины XIX века сахар получали только из сахарного тростника). В 1891 году в США японский биохимик Дз. Такамине получил первый патент на использование ферментных препаратов в промышленных целях: учёный предложил применить диастазу для осахаривания растительных отходов.

В начале XX века активно развивалась бродильная и микробиологическая промышленность. В эти же годы были предприняты первые попытки использовать ферменты в текстильной промышленности.

В 1916–1917 годах русский биохимик А. М. Коленев пытался разработать способ, который позволил бы управлять действием ферментов в природном сырье при производстве табака.

Огромный вклад в дело практического использования достижений биохимии внёс академик А. Н. Бах, создавший важное прикладное направление биохимии – техническую биохимию. А. Н. Бах и его ученики разработали множество рекомендаций по улучшению технологий обработки самого различного биохимического сырья, совершенствованию технологий хлебопечения, пивоварения, виноделия, производства чая и табака и т. п., а также рекомендации по повышению урожая культурных растений путём управления протекающими в них биохимическими процессами.

Все эти исследования, а также прогресс химической и микробиологической промышленности и создание новых промышленных биохимических производств (чая, табака и т. п.) были важнейшими предпосылками возникновения современной биотехнологии.

В производственном отношении основой биотехнологии в процессе её формирования стала микробиологическая промышленность. За послевоенные годы микробиологическая промышленность приобрела принципиально новые черты: микроорганизмы стали использовать не только как средство повышения интенсивности биохимических процессов, но и как миниатюрные синтетические фабрики, способные синтезировать внутри своих клеток ценнейшие и сложнейшие химические соединения. Перелом был связан с открытием и началом производства антибиотиков.

Первый антибиотик – пенициллин – был выделен в 1940 году. Вслед за пенициллином были открыты и другие антибиотики (эта работа продолжается и поныне). С открытием антибиотиков сразу же появились новые задачи: налаживание производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня доступности новых лекарств, получением их в очень больших количествах, необходимых медицине.

Синтезировать антибиотики химически было очень дорого или вообще невероятно трудно, почти невозможно (недаром химический синтез тетрациклина советским учёным академиком М. М. Шемякиным считается одним из крупнейших достижений органического синтеза). И тогда решили для промышленного производства лекарственных препаратов использовать микроорганизмы, синтезирующие пенициллин и другие антибиотики. Так возникло важнейшее направление биотехнологии, основанное на использовании процессов микробиологического синтеза.

Виды биотехнологии

Биоинженерия

Биоинженерия или биомедицинская инженерия – это дисциплина, направленная на углубление знаний в области инженерии, биологии и медицины и укрепление здоровья человечества за счёт междисциплинарных разработок, которые объединяют в себе инженерные подходы с достижениями биомедицинской науки и клинической практики. Биоинженерия/биомедицинская инженерия – это применение технических подходов для решения медицинских проблем в целях улучшения охраны здоровья. Эта инженерная дисциплина направлена на использование знаний и опыта для нахождения и решения проблем биологии и медицины.

Биоинженеры работают на благо человечества, имеют дело с живыми системами и применяют передовые технологии для решения медицинских проблем. Специалисты по биомедицинской инженерии могут участвовать в создании приборов и оборудования, в разработке новых процедур на основе междисциплинарных знаний, в исследованиях, направленных на получение новой информации для решения новых задач.

Среди важных достижений биоинженерии можно упомянуть разработку искусственных суставов, магниторезонансной томографии, кардиостимуляторов, артроскопии, ангиопластики, биоинженерных протезов кожи, почечного диализа, аппаратов искусственного кровообращения. Также одним из основных направлений биоинженерных исследований является применение методов компьютерного моделирования для создания белков с новыми свойствами, а также моделирования взаимодействия различных соединений с клеточными рецепторами в целях разработки новых фармацевтических препаратов («drug design»).

Биомедицина

Раздел медицины, изучающий с теоретических позиций организм человека, его строение и функцию в норме и патологии, патологические состояния, методы их диагностики, коррекции и лечения. Биомедицина включает накопленные сведения и исследования, в большей или меньшей степени общие медицине, ветеринарии, стоматологии и фундаментальным биологическим наукам, таким, как химия, биологическая химия, биология, гистология, генетика, эмбриология, анатомия, физиология, патология, биомедицинский инжиниринг, зоология, ботаника и микробиология.

Слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне, используя наноустройства и наноструктуры. В мире уже созданы ряд технологий для наномедицинской отрасли. К ним относятся адресная доставка лекарств к больным клеткам, лаборатории на чипе, новые бактерицидные средства.

Биофармакология

Раздел фармакологии, который изучает физиологические эффекты, производимые веществами биологического и биотехнологического происхождения. Фактически, биофармакология – это плод конвергенции двух традиционных наук – биотехнологии, а именно, той её ветви, которую именуют «красной», медицинской биотехнологией, и фармакологии, ранее интересовавшейся лишь низкомолекулярными химическими веществами, в результате взаимного интереса.

Объекты биофармакологических исследований – изучение биофармацевтических препаратов, планирование их получения, организация производства. Биофармакологические лечебные средства и средства для профилактики заболеваний получают с использованием живых биологических систем, тканей организмов и их производных, с использованием средств биотехнологии, то есть лекарственные вещества биологического и биотехнологического происхождения.

Биоинформатика

Совокупность методов и подходов, включающих в себя:

  1. математические методы компьютерного анализа в сравнительной геномике (геномная биоинформатика);
  2. разработка алгоритмов и программ для предсказания пространственной структуры белков (структурная биоинформатика);
  3. исследование стратегий, соответствующих вычислительных методологий, а также общее управление информационной сложности биологических систем.

В биоинформатике используются методы прикладной математики, статистики и информатики. Биоинформатика используется в биохимии, биофизике, экологии и в других областях.

Бионика

Прикладная наука о применении в технических устройствах и системах принципов организации, свойств, функций и структур живой природы, то есть формы живого в природе и их промышленные аналоги. Проще говоря, бионика – это соединение биологии и техники. Бионика рассматривает биологию и технику совсем с новой стороны, объясняя, какие общие черты и какие различия существуют в природе и в технике.

Различают :

  • биологическую бионику, изучающую процессы, происходящие в биологических системах;
  • теоретическую бионику, которая строит математические модели этих процессов;
  • техническую бионику, применяющую модели теоретической бионики для решения инженерных задач.

Бионика тесно связана с биологией, физикой, химией, кибернетикой и инженерными науками: электроникой, навигацией, связью, морским делом и другими.

Биоремедиация

Комплекс методов очистки вод, грунтов и атмосферы с использованием метаболического потенциала биологических объектов – растений, грибов, насекомых, червей и других организмов.

Клонирование

Появление естественным путём или получение нескольких генетически идентичных организмов путём бесполого (в том числе вегетативного) размножения. Термин «клонирование» в том же смысле нередко применяют и по отношению к клеткам многоклеточных организмов. Клонированием называют также получение нескольких идентичных копий наследственных молекул (молекулярное клонирование). Наконец, клонированием также часто называют биотехнологические методы, используемые для искусственного получения клонов организмов, клеток или молекул. Группа генетически идентичных организмов или клеток – клон.

Генетическая инженерия

Суть генетической инженерии заключается в искусственном создании генов с нужными свойствами и введение их в соответствующую клетку. Перенос гена осуществляет вектор (рекомбинантная ДНК) – специальная молекула ДНК, сконструированная на основе ДНК вирусов или плазмид, которая содержит нужный ген, транспортирует его в клетку и обеспечивает его встраивание в генетический аппарат клетки.

Для маркировки определенных клеток организмов в молекулярно-генетических исследованиях используют ген GFP, выделенный из медузы. Он обеспечивает синтез флуоресцентного белка, который светится в темноте.

Генетическая инженерия широко используется как в научных исследованиях, так и в новейших методах селекции.

Биотехнология – это совокупность промышленных методов, которые применяют для производства различных веществ с использованием живых организмов, биологических процессов или явлений. Традиционная биотехнология основана на явлении ферментации – использовании в производственных процессах ферментов микроорганизмов. Клеточная инженерия – это отрасль биотехнологии, которая разрабатывает и использует технологии культивирования клеток и тканей вне организма в искусственных условиях. Генетическая инженерия – это отрасль биотехнологии, которая разрабатывает и использует технологии выделения генов из организмов и отдельных клеток, их видоизменение и введение в другие клетки или организмы.

Некоторые этические и правовые аспекты применения биотехнологических методов

Этика – учение о нравственности, согласно которому главной добродетелью считается умение найти середину между двух крайностей. Данная наука основана Аристотелем.

Биоэтика – часть этики, изучающая нравственную сторону деятельности человека в медицине, биологии. Термин предложен В.Р. Поттером в 1969 г.

В узком смысле биоэтика обозначает круг этических проблем в сфере медицины. В широком смысле биоэтика относится к исследованию социальных, экологических, медицинских и социально-правовых проблем, касающихся не только человека, но и любых живых организмов, включенных в экосистемы. То есть она имеет философскую направленность, оценивает результаты развития новых технологий и идей в медицине, биотехнологии и биологии в целом.

Современные биотехнологические методы обладают настолько мощным и не до конца изученным потенциалом, что их широкое применение возможно только при строгом соблюдении этических норм. Существующие в обществе моральные принципы обязывают искать компромисс между интересами общества и индивида. Более того, интересы личности ставятся в настоящее время выше интересов общества. Поэтому соблюдение и дальнейшее развитие этических норм в этой сфере должно быть направлено, прежде всего, на всемерную защиту интересов человека.

Массовое внедрение в медицинскую практику и коммерциализация принципиально новых технологий в области генной инженерии и клонирования, привело также к необходимости создания соответствующей правовой базы, регулирующей все юридические аспекты деятельности в этих направлениях.

Остановимся на тех направлениях в биотехнологических исследованиях, которые напрямую связаны с высоким риском нарушения прав личности и вызывают наиболее острую дискуссию по поводу их широкого применения: пересадка органов и клеток в терапевтических целях и клонирование.

В последние годы резко возрос интерес к изучению и применению в биомедицине эмбриональных стволовых клеток человека и техники клонирования с целью их получения. Как известно, эмбриональные стволовые клетки способны трансформироваться в разные типы клеток и тканей (кроветворные, половые, мышечные, нервные и др.). Они оказались перспективными для применения в генной терапии, трансплантологии, гематологии, ветеринарии, фармакотоксикологии, при тестировании лекарств и пр.

Выделение этих клеток производят из эмбрионов и плодов человека 5-8 недель развития, полученных при медицинском прерывании беременности (в результате аборта), что порождает многочисленные вопросы относительно этической и юридической правомерности проведения исследований на эмбрионах человека, в том числе такие:

  • насколько необходимы и оправданы научные исследования на эмбриональных стволовых клетках человека?
  • допустимо ли ради прогресса медицины разрушать человеческую жизнь и насколько это морально?
  • достаточно ли проработана правовая база для применения этих технологий?

В ряде стран запрещены любые исследования на эмбрионах (например, в Австрии, Германии). Во Франции права эмбриона защищаются с момента его зачатия. В Великобритании, Канаде и Австралии, хотя создание эмбрионов для исследовательских целей не запрещено, но разработана система законодательных актов, регулирующая и контролирующая подобные исследования.

В России ситуация в этой области более чем неопределенная: деятельность по изучению и использованию стволовых клеток недостаточно отрегулирована, остаются существенные пробелы в законодательстве, мешающие развитию этого направления. В отношении же клонирования в 2002 г. федеральным законом был введен временный (на 5 лет) запрет на клонирование человека, но срок его действия истек в 2007 г., и вопрос остается открытым.

Рынок биотехнологий

Параллелей с современным биотехом у ИТ гораздо больше, чем может показаться на первый взгляд. Информационные технологии не появились сами по себе, их расцвету предшествовали фундаментальные открытия в физике, физике материалов, вычислительной математике и кибернетике. В результате сегодня ИТ – это область «легких стартапов», от возникновения идеи до принесения прибыли в которых проходит совсем немного времени, и мало кто задумывается о той работе, которая была проделана до сегодняшнего дня.

Ситуация с биотехнологиями аналогична, просто мы сейчас находимся на более раннем этапе, когда ещё идет разработка инструментов, программ. Биотехнологии ждут появления своего «персонального компьютера»”, только в нашем случае он не будет понятным массовым устройством – речь идёт скорее о наборе эффективных и недорогих инструментов.

Можно сказать, что сейчас ситуация подобна той, что была в 1990-е в ИТ. Технологии все еще развиваются и стоят достаточно дорого. Например, полное секвенирование человека стоит $1000. Это намного дешевле, чем цена в $3,3 млрд. у Human Genome Project, но она все еще невероятно высока для обывателя, а её применение для клинической диагностики на широком уровне пока еще невозможно. Для этого нужно, чтобы технология подешевела ещё раз в 10 и улучшила технические свойства настолько, чтобы ошибки секвенирования были нивелированы. В биотехе пока нет таких мощных проектов, как Facebook, но Illumina, Oxford Nanopore, Roche – всё это крайне успешные компании, чья деятельность часто напоминает Google, скупающий интересные стартапы. А Nanopore, например, стали миллиардерами, еще не выйдя на рынок, благодаря сочетанию хорошей исходной идеи, менеджмента и успехов в привлечении финансирования.

Сегодня биотехнологии – это ещё и рынок больших данных, и это продолжает параллели с ИТ, который в данном случае служит уже своего рода инструментом для более крупного и сложного биотеха. Такие компании как Editas Medicine (одни из создателей нашумевшей технологии редактирования генома CRISPR/Cas9) сделали свой IP на результатах секвенирования геномных данных бактерий из открытых источников. Они далеко не первыми стали пожинать плоды от накопленной информации, они даже не были первыми, кто открыл принцип действия кластера CRISPR, однако именно Editas Medicine создали биотехнологический продукт. Сегодня это компания стоимостью более $1 млрд.

И это не единственный бизнес, который возникнет благодаря анализу уже существующих данных. Более того, нельзя сказать, что за такими данными стоит очередь – их уже гораздо больше, чем можно проанализировать, а будет ещё больше, ведь учёные не перестают секвенировать. К сожалению, методы анализа еще несовершенны, поэтому не всем удается превратить данные в многомиллиардный продукт. Но если мы прикинем скорость развития инструментов анализа (подсказка: она очень высокая), несложно понять, что в будущем компаний, заметивших в больших данных генома что-то интересное, станет гораздо больше.

Может ли Россия стать биотехнологической страной?

Основная проблема биотехнологий в России – это не запрет ГМО, как многим кажется, а большое количество всевозможных бюрократических барьеров. Этот факт отмечают и в правительстве. Но даже к барьерам можно приспособиться. Последние 26 лет мы развиваемся под прессом реформ, постоянной смены правил игры, а бизнесу нужна стабильность и уверенность в том, что не будет происходить никаких потрясений.

Если российским биотехнологиям не мешать, они начнут развиваться. Также хочется отметить, что необдуманное желание помогать, те самые непродуманные госинвестиции, на самом деле, приводят к противоположному результату – субсидирование приучает компании к тому, что они будут поддерживаться государством постоянно. Как показывает практика, компании на госинвестициях становятся не эффективными. Везде нужна здоровая конкуренция, поэтому первоначальные вклады должны идти даже не от государства, а от бизнеса, который должен чувствовать уверенность в завтрашнем дня, с чем у нас пока проблемы.

Самое правильное для государства – это инвестировать в создания оптимальной среды для биотеха. У нас есть и умы, и люди с энергией и желанием созидать – важно не дать этому желанию пропасть.

Сегодня биотехнологии находятся в фазе интенсивного роста, но уже можно представить вектор их развития. Ведь сам смысл технологий не изменится, как он не изменился после появления компьютера: его идея в 1951 году не особо отличалась от той, что стоит за современными компьютерами. Существенно отличается только функционал и производительность. То же самое произойдёт и с биотехнологиями, а драйвер их развития даже понятнее – это вечное желание людей быть здоровыми и жить долго, не соблюдая при этом всех сложных правил здорового образа жизни. Поэтому в самом ближайшем будущем нас ждёт расцвет биотехнологий, и в конечном счёте это прекрасные новости для всего человечества.