Движение ионов в электрическом поле. Движение ионов в электролитах

Электропроводность растворов

Предмет электрохимии

Современная электрохимия развивается в нескольких направлениях. Прежде всего, это изучение процессов, связанных с превращением энергии, выделяемой при самопроизвольных химических процессах, в электрическую энергию. Такие превращения происходят в электрохимических системах, называемых гальваническими элементами . На основе этих исследований созданы разнообразные химические источники тока от миниатюрных батареек, регулирующих сердцебиение людей, страдающих сердечными болезнями до водородных топливных элементов, обеспечивающих электроэнергией космические корабли и мощных батарей для электроавтомобилей.

Другое направление электрохимии связано с процессами, по существу противоположными процессам, протекающим в гальванических элементах. Речь идет об электролизе - химических превращениях веществ под действием электрического тока. Электролиз лежит в основе выделения и очистки металлов, получения разнообразных химических веществ, нанесения металлов на поверхность металлических и неметаллических изделий, электрохимического полирования и фрезерования металлов и других важных процессов.

Третье направление связано с изучением коррозионных процессов и разработкой эффективных методов защиты металлов от коррозии.

Важными задачами электрохимии являются создание и совершенствование методов количественного анализа химических веществ, исследования и контроля химических процессов, разработки приборов для обнаружения и количественного определения вредных примесей в окружающей среде и т.д.

Проводники электрического тока бывают двух типов:

1.Проводники первого рода или проводники с электронной проводимостью. К ним относятся все металлы.

2.Проводники второго рода, обладающие ионной проводимостью, это растворы и расплавы электролитов.

Поскольку рассматриваемые в электрохимии процессы протекают, главным образом, в растворах электролитов, остановимся подробно на ионной проводимости.

При растворении в воде кислот, оснований или солей образуются ионы, которые находятся в непрерывном беспорядочном движении. Если в раствор электролита погрузить два твердых электрода, соединенных с источником постоянного тока, движение ионов становится направленным - каждый ион перемещается по направлению к электроду с противоположным знаком заряда.

На скорость движения ионов в электрическом поле влияют следующие факторы:

а)Размер иона: чем меньше ион, тем он более подвижен.Рассматривая этот фактор, необходимо помнить, что ионы в водном растворе гидратированы, а значит речь идет о размерах гидратированного иона . Например, свободный ион Li + меньше иона К + , однако первый ион обладает меньшей скоростью движения в растворе. Это связано с тем, что он в большей степени гидратирован.

б)Заряд иона: скорость движения иона тем больше, чем выше его заряд. Однако следует иметь в виду, что с увеличением заряда увели-чивается степень гидратации, значит уменьшается подвижность.

в)Природа растворителя: чем больше вязкость растворителя, тем большее сопротивление испытывает ион, тем меньше его скорость.

г)Напряженность электрического поля U, т.е. разность потен-циалов между электродами Е, деленная на расстояние между ними l :

U = E/l (3.1.)

Для того, чтобы исключить влияние последнего фактора принято сравнивать скорости движения ионов при U = 1 В×см -1 , называемые абсолютными скоростями . Единица измерения абсолютной скорости: см 2 ×В -1 ×с -1 . Влияние первых двух факторов можно проследить по табл.3.1.

Из таблицы видно, что ионы Н + и ОН - обладают значительно большей скоростью по сравнению с другими ионами. Это принято объяснять особым механизмом движения указанных ионов, называемым эстафетным. Сущность эстафетного механизма можно представить схематически так:

Н 3 О + + Н 2 О = Н 2 О + Н 3 О + и

Н 2 О + ОН - = ОН - + Н 2 О

Таблица 3.1.

Абсолютные скорости ионов в водных растворах (t=25 0 С)

Катион V + Катион V + Анион V - Анион V -
Н + К + NH 4 + Ag + Na + Li + 0.003620 0.000762 0.000760 0.000642 0.000520 0.000388 Ва 2+ Са 2+ S 2+ Mg 2+ 0,000659 0,000616 0,000616 0,000550 ОН - Br - I - Cl - NO 3 - 0,002050 0,000812 0,000796 0,000791 0,000740 СH 3 СОО - SO 4 2- ClO 4 - Fe(CN) 6 4- 0,000424 0,000827 0,000705 0,001140

Таким образом, между ионами гидроксония Н 3 О + и молекулами воды, а также между молекулами воды и гидроксид-ионами происходит обмен ионами Н + . Эти процессы происходят с огромной скоростью - средняя продолжительность существования иона Н 3 О + составляет примерно 10 -11 с. В отсутствие внешнего поля такой обмен протекает в любых направлениях. Под действием электрического поля передача ионов Н + происходит направленно.

Все ткани организма пропитаны и омываются биологическими жидкостями, в которых растворены сильные и слабые электролиты. Поэтому такие биологические жидкости как кровь, лимфа, спинномозговая жидкость, слезная жидкость, слюна и т.д. относятся к проводникам второго рода.

Абсолютная скорость движения ионов. В растворах электролитов сольватированные ионы находятся в беспорядочном движении. При наложении электрического поля возникает упорядоченное движение ионов к противоположно заряженным электродам.

Сравнение скоростей движения различных видов ионов производят при градиенте потенциала поля 1 В/м. Для этих условий скорость движения ионов называют абсолютной, обозначают буквой  и выражают в м 2 B –1 c –1 . Абсолютная скорость движения иона –– это расстояние в метрах, которое проходит ион за 1 с при градиенте потенциала 1В/м. Численные значения абсолютных скоростей движения ионов в данном растворителе зависят только от их природы и температуры.

Для оценки способности ионов к перемещению под действием внешнего поля пользуются также количественной характеристикой – подвижность ионов (U). Подвижность иона представляет собой произведение числа Фарадея (F = 96465 BсСммоль –1) на абсолютную скорость движения иона и выражается в См м 2 моль –1:

Значения абсолютных скоростей движения и подвижностей ионов при 25 0 С представлены в таблице 1:

Таблица 1


Катион

м 2 B –1 c –1


U

См м 2 моль –1


Анион

м 2 B –1 c –1


U

См м 2 моль –1


H +

36,310 –8

349,910 –4

OH –

20,610 –8

199,210 –4

Li +

4,010 –8

38,710 –4

F –

5,710 –8

55,410 –4

Na +

5,210 –8

50,310 –4

Cl –

7,910 –8

76,310 –4

K +

7,610 –8

73,510 –4

Br –

8,110 –8

78,410 –4

Rb

8,010 –8

77,510 –4

I –

8,010 –8

76,910 –4

Cs +

8,010 –8

77,510 –4

7,410 –8

71,510 –4




7,610 –8

73,510 –4

CH 3 COO –

4,210 –8

40,910 –4

Mg 2+

5,510 –8

106,110 –4




7,210 –8

138,610 –4

Al 3+

6,510 –8

183,210 –4




8,310 –8

159,610 –4

Из приведенных в табл.1 данных можно усмотреть некоторые закономерности. Во-первых, абсолютная скорость движения катионов растет в пределах одной группы периодической системы элементов с ростом порядкового номера, как это видно из данных для катионов щелочных металлов. Сравнение расположенных в одном периоде и имеющих приблизительно одинаковый размер ионов Na + , Mg 2+ , Al 3+ показывает незначительное увеличение абсолютной скорости движения с увеличением заряда иона. Оба эти факта объясняются явлением сольватации ионов в растворе. Молекулы растворителя группируются вокруг иона и увеличивают его эффективный радиус (который называется гидродинамическим радиусом).

В электрическом поле в растворах электролитов перемещается не свободный ион, а ион с плотно связанной с ним сольватной оболочкой. В силу меньшего размера ион Li + сильнее притягивает диполи воды и в итоге имеет большую сольватную оболочку, чем ион калия. Следовательно, небольшие ионы имеют больший гидродинамический радиус и характеризуются меньшей абсолютной скоростью движения. Этим же объясняется малое отличие в абсолютной скорости движения ионов Na + , Mg 2+ , Al 3+ . С увеличением заряда, естественно, резко возрастает сольватная оболочка и тем самым размер перемещающейся частицы. Это увеличение размера почти полностью компенсирует эффект увеличения заряда.

Обращает также на себя внимание аномально высокая абсолютная скорость движения ионов гидроксония H 3 O + (H +) и гидроксила OH – . Можно предположить, что ион Н + должен быть сильно сольватирован, тем не менее он способен быстро передвигаться в растворе. В этом случае нельзя применить гидродинамический довод, поскольку действует так называемый «эстафетный механизм» перемещения ионов гидроксония и гироксила. В цепочке, построенной из молекул воды, заряд может перейти от одного конца цепочки к другому в результате сравнительно небольшого перемещения протонов, образующих водородные связи между молекулами воды, например:

Из приведенной схемы видно, что перемещение электрического заряда происходит без перемещения атомов водорода. Иными словами, вместо одного иона Н + , двигающегося в растворе, существует эффективное движение иона Н + , включающее образование и разрыв связей вдоль длинной цепочки молекул воды. Аналогичную схему легко изобразить и для перемещения гидроксид-иона.


Повышение температуры влияет на абсолютную скорость движения ионов путем дегидратации и уменьшения вязкости среды, что способствует увеличению скорости перемещения ионов.

Удельная электрическая проводимость
Электрическая проводимость (L) –– это способность веществ проводить электрический ток под действием электрического поля. Она представляет собой величину обратную электрическому сопротивлению R:

L = (2)

Единицей электрической проводимости в CИ является сименс (См), и 1 См = 1 Ом –1 .

Известно, что R = , поэтому L = =
, так как = æ, то:

L == æ , (3)

г


де æ (каппа) – удельная электрическая проводимость (См/м), S – площадь плоских электродов (м 2), между которыми заключен раствор,ℓ – расстояние между электродами (м).

Удельной электрической проводимостью называется электрическая проводимость 1м 3 раствора, находящегося в однородном электрическом поле при напряженности 1 В/м. Единицей удельной проводимости в CИ служит сименс/метр (См/м). Удельная электрическая проводимость зависит от многих факторов и, прежде всего, от природы электролита, его концентрации и температуры. Изотермы удельной электрической проводимости (рис.1) дают представление о характере зависимости удельной электрической проводимости от природы электролита и его концентрации для 25 0 С (298К). Анализ изотермы позволяет сделать следующие выводы:

1. Удельная электрическая проводимость максимальна для растворов сильных кислот и несколько меньше – сильных оснований, что объясняется полной диссоциацией этих электролитов и высокой подвижностью ионов Н 3 О + и ОН – .

2. Наименьшие значения во всем диапазоне концентраций имеет удельная электрическая проводимость растворов слабых электролитов (СН 3 СООН) в связи с низкой концентрацией ионов (3. Удельная электрическая проводимость растет с увеличением концентрацией до некоторых максимальных значений, что отвечает увеличению количества ионов в единице объема раствора. Достигнув максимума, удельная электрическая проводимость начинает уменьшаться, несмотря на рост концентрации электролита. Подобный характер зависимости æ от С связан у сильных электролитов с уменьшением подвижности ионов из-за возрастающего по мере увеличения концентрации раствора межионного взаимодействия, а у слабых электролитов – с уменьшением степени электролитической диссоциации электролита, а значит, и уменьшением количества ионов в единице объема раствора.

С увеличением температуры удельная электрическая проводимость растет. Это обусловлено, в основном, дегидратацией ионов и уменьшением вязкости среды, т.е. уменьшением сопротивления движению ионов.

Удельная электрическая проводимость растворов зависит от разведения. Разведение величина обратная концентрации. (Разведение обозначается символом V или 1/С и характеризует объем раствора, содержащий 1 моль электролита). Когда разведение мало – раствор концентрирован и степень диссоциации слабого электролита мала. С ростом разведения сначала увеличивается, а, следовательно, и увеличивается удельная электрическая проводимость. При дальнейшем увеличении разведения степень диссоциации приближается к единице и перестает расти, в то время как общее количество электролита в единице объема уменьшается, что вызовет падение электрической проводимости.

Удельная электрическая проводимость может быть вычислена теоретически:
æ=FC( А +  K) – для слабых электролитов (4)

æ=FCfa( А +  K) –для сильных электролитов (5)

где F – число Фарадея, С – концентрация электролита (моль/м 3),  – степень диссоциации слабого электролита, f a – коэффициент активности сильного электролита,  А и  K – абсолютная скорость движения аниона и катиона в м/сек при градиенте потенциала 1 В/м.

Молярная электрическая проводимость.

Молярная электрическая проводимость – электрическая проводимость 1 моль электролита, находящегося в растворе между параллельными электродами с расстоянием между ними 1 м и градиенте потенциала 1В/м. Между удельной электрической проводимостью и молярной электрической проводимостью (λ m) существует зависимость:

λ m = æ/C, (6)

где λ m (лямда) – молярная электрическая проводимость, Смм 2 моль –1 , æ – удельная электрическая проводимость, Смм –1 ; С – концентрация электролита в растворе, моль/м 3 .

Обычно молярная концентрация характеризуется количеством вещества в 1 дм 3 (1л), а не в 1м 3 . В этом случае соотношение имеет вид:

λ m = æ/1000C (7)

Молярную электрическую проводимость, как и удельную, можно рассчитать теоретически:

λ m =
= F( А +  K) – для слабых электролитов (8)

λ m =
= Ffa( А +  K) –для сильных электролитов (9)

Значение молярной электрической проводимости при разбавлении раствора (при С  0) увеличивается, стремясь к постоянной и специфической для каждого электролита величине, называемой предельной молярной электрической проводимостью и обозначаемой λ(рис.2).

Предельной молярной электрической проводимостью электролита называется значение молярной электрической проводимости при бесконечном разбавлении.

Увеличение значений λ m связано у слабых электролитов с ростом степени диссоциации при разбавлении раствора (1 при С  0), т.е. связано с увеличением количества ионов, образуемых 1 моль электролита при данной температуре.

У сильных электролитов при бесконечном разбавлении уменьшается межионное взаимодействие, абсолютная скорость движения ионов достигает предельных значений, поэтому молярная электрическая проводимость перестает зависеть от концентрации и становится постоянной величиной.


Рис.2. Зависимость молярной элекрической проводимости от

концентрации раствора для некоторых электролитов
Молярная электрическая проводимость при данном разбавлении λ m всегда меньше значения предельной молярной электрической проводимости λ. Отношение этих величин, т.е. λ m /λ характеризует:

а) для слабого электролита – степень его диссоциации при данной концентрации раствора, т.е. =  (соотношение Аррениуса)

б) для сильного электролита – коэффициент активности (f a) при данной концентрации, т.е. = f a

Полагая, что при бесконечном разбавлении растворов слабых электролитов

  1, а растворов сильных электролитов f a  1, уравнения (8), (9) примут следующий вид:

λ= F ( А +  K) (10)

Следовательно, при бесконечном разбавлении растворов электролитов их молярная электрическая проводимость зависит только от абсолютных скоростей движения ионов к электродам. Так как U = F  , то:

λ = U K + U A (11)

Из последнего уравнения следует, что сумма подвижностей катиона и аниона равна молярной электрической проводимости при бесконечном разведении.

Часто подвижность катиона U K обозначают λ и называют предельной проводимостью катиона, а подвижность аниона U A обозначают λ и называют предельной подвижностью аниона. Тогда уравнение λ = U K + U A будет иметь следующий вид:

λ = λ + λ (12)

Отсюда следует, что сумма предельных проводимостей катиона и аниона равна молярной электрической проводимости электролита при бесконечном разведении.

Уравнения (10), (11) и (12) выражают закон независимости движения ионов в бесконечно разбавленных растворах электролитов (закон Кольрауша).

Отсюда, например, предельная молярная электрическая проводимость уксусной кислоты будет равна:

λ(CH 3 COOH)= λ(H +)+ λ(CH 3 COO –).
Электрическая проводимость биологических объектов и ее использование в медико-биологических исследованиях
Внутренняя среда организма обладает ионной проводимостью. В проведении тока участвуют неорганические ионы калия, натрия, хлора, карбоната, фосфатов, ионы органических кислот, белки и другие органические соединения.

В соответствии с законами электрической проводимости лучше проводят ток ткани небольшой плотности, содержащие много воды и высокоподвижных ионов. Это кровь, лимфа, мышцы, подкожная клетчатка. Низкая электрическая проводимость наблюдается у нервной ткани, жира, кости и кожи (табл.2).

Величина электрической проводимости тканей изменяется при патологических изменениях органов и тканей. Это широко используется в диагностике некоторых заболеваний. Так, в норме удельная электрическая проводимость мочи человека колеблется в пределах 1,7 – 2,3 Смм –1 . При заболеваниях почек (нефрит, нефросклероз, гломерулонефрит) величина электрической проводимости может уменьшаться до 0,9 – 1,4 Смм –1 . Уменьшение электрической проводимости коррелирует с уменьшением концентрации NaCl и увеличением содержания белка.
Таблица 2.

Удельная электрическая проводимость биологических жидкостей тканей при 37 0 С

При диабете электрическая проводимость мочи также понижена до 0,9–1,4 Смм –1 из-за повышенного содержания сахара, являющегося неэлектролитом.

Исследования, проведенные на желудочном соке, показали, что его электрическая проводимость и общая кислотность при наличии свободной соляной кислоты величины связанные. Удельная электрическая проводимость менее 0,8 Смм –1 указывает на гипокислотность, значения в пределах 0,8 – 1,0 Смм –1 – на нормальную кислотность и свыше 1,3 Смм –1 – гиперкислотность.

В практической медицине широко используется метод реографии. Реография ­– метод исследования кровоснабжения органов, в основе которого лежит принцип регистрации изменений электрического сопротивления тканей в связи с меняющимся кровенаполнением. Чем больше приток крови к тканям, тем меньше их сопротивление.

Кондуктометрия широко используется для определения степени и константы диссоциации биологически активных веществ, изоэлектрических точек аминокислот, пептидов и белков, концентрации и растворимости лекарственных препаратов.

В санитарно-гигиенических лабораториях метод кондуктометрии используется для контроля процесса очистки и качества воды, содержания вредных примесей в воздухе, воде, пищевых продуктах.

Измерение электрической проводимости

Электрическую проводимость растворов на практике определяют по значению их сопротивления электрическому току, протекающему между двумя электродами, погруженными в раствор.

Измерение сопротивления растворов производят компенсационным методом с помощью моста сопротивления Уитстона, модернизированного Кольраушем для измерения сопротивления растворов электролитов (рис.3). Отличие установки Кольрауша заключается, во-первых, в использовании переменного тока низкой частоты вместо постоянного, чтобы избежать процесса электролиза и поляризации электродов.

Нуль-инструментом может служить гальванометр, осциллограф или телефон.


АС – реохорд; Т – телефонная трубка;  – генератор переменного тока; Д – скользящий контакт.

Установка Кольрауша содержит 4 сопротивления: R m – подбираемое экспериментально сопротивление на магазине сопротивлений, R 1 и R 2 – сопротивления участков реохорда, которые меняются передвижением скользящего контакта Д для уравновешивания сопротивления плеча ВС, содержащего известное сопротивление R m и плеча АВ, содержащего измеряемое сопротивление R х. При компенсации моста наблюдается условие:
или R х = R m

В этом случае ток через диагональ моста ВД не протекает, что фиксируется по исчезновению звука в телефонной трубке.

Конструкции измерительных ячеек весьма разнообразны (рис.4). В прямой кондуктометрии обычно применяют ячейки с жестко закрепленными в них электродами. В методах кондуктометрического титрования наряду с ячейкой этого типа часто используют так называемые погружные электроды, позволяющие проводить титрование в любых сосудах, в которых можно разместить электроды.

Рис.4. Ячейки для кондуктометрических измерений:

а – ячейка с жестко закрепленными электродами

б – погружные электроды
Прямые определения удельной электрической проводимости очень сложны, так как сопротивление раствора зависит не только от скорости движения ионов, но и от их пути. Путь ионов обусловлен геометрией сосуда, площадью электродов и расстоянием между ними.

Выдержать площадь электродов 1 м 2 (1см 2) и расстояние между ними 1 м (1 см) с высокой точностью невозможно. Однако при стационарном расположении электродов величина кондуктометрической ячейки, необходимая для расчета удельной электрической проводимости, для различных растворов электролитов является постоянной величиной, обозначается К с и называется постоянной конуктометрической ячейки (сосуда). Постоянная сосуда (К с) показывает, во сколько раз сопротивление, измеряемое в данном сосуде, больше, чем измеренное в стандартном с площадью электродов 1 м 2 (1 см 2) при расстоянии между ними 1 м (1 см).

Поскольку R = 
= K c имеем R = K c

или R = К с /æ , так как = æ , отсюда K c = R  æ

На практике постоянную сосуда К с определяют по электрической проводимости стандартного раствора хлорида калия, удельная электрическая проводимость которого при различных температурах является справочной величиной:

K c = æ KCl R KCl

Применение метода электропроводности для аналитических и физико-химических измерений (кондуктометрия).
Кондуктометрия – это совокупность физико-химических методов, основанных на измерении сопротивления изучаемых объектов, представляющих собой проводники второго рода. По значению сопротивления раствора электрическому току, протекающему между двумя электродами, погруженными в раствор, определяют электрическую проводимость. При помощи кондуктометрии можно определить концентрацию растворенного вещества, константу и степень диссоциации слабого электролита, растворимость и произведение растворимости труднорастворимых веществ, ионное произведение воды и другие физико-химические величины.

Кондуктометрическое определение степени и константы

диссоциации слабого электролита
Зависимость между молярной электрической проводимостью λ m и концентрацией слабого электролита может быть установлена с помощью закона разбавления Оствальда. Например, для равновалентных электролитов:

K д =

где K д – константа равновесия диссоциации слабого электролита,  – степень диссоциации, С – молярная концентрация электролита. Подставляя в это уравнение соотношение Аррениуса  = λ m / λ , получим:

K д =

Это выражение может быть использовано для определения константы диссоциации слабого электролита, если измерить электрическую проводимость раствора заданной концентрации. Значение λ можно получить из закона Кольрауша.

Кондуктометрическое титрование

Измерение электрической проводимости растворов широко применяют в титриметрическом анализе для определения точки эквивалентности (кондуктометрическое титрование). Метод кондуктометрического титрования основан на том, что в растворе, благодаря идущей в нем химической реакции, ионы, движущиеся с одной скоростью заменяются ионами, движущимися с другой скоростью. В методах кондуктометрического титрования измеряют электрическую проводимость раствора после добавления небольших определенных порций титранта и находят точку эквивалентности графическим методом с помощью кривой в координатах æ – V титранта. Практически в этом методе могут быть использованы такие химические реакции, в ходе которых достаточно заметно изменяется электрическая проводимость раствора или происходит резкое изменение электрической проводимости после точки эквивалентности (реакции кислотно-основного взаимодействия, осаждения и т.д.).

При титровании слабой кислоты сильным основанием (рис.5б) увеличивается электрическая проводимость раствора, что объясняется значительной диссоциацией образующейся соли по сравнению с диссоциацией исходного вещества (ветвь АВ):

CH 3 COOH + Na + + OH – = H 2 O + CH 3 COO – + Na +

После точки эквивалентности начинается резкий подъем электрической проводимости (ветвь ВС) т.к. в растворе будет нарастать концентрация ионов Na + и ОН – .

Кондуктометрическое титрование используют для определения концентрации окрашенных, мутных растворов, в которых изменение цвета индикатора маскируется, в том числе и в биологических жидкостях.

Основные вопросы темы

  1. Жидкости и ткани организма как проводники II рода.

  2. Абсолютная скорость движения ионов и факторы определяющие ее. Размерность. Абсолютная скорость движения Н + и ОН – . Подвижность ионов.

  3. Удельная электрическая проводимость и ее зависимость от абсолютной скорости движения ионов, от концентрации (разведения), температуры.

  4. Молярная электрическая проводимость, ее связь с удельной электрической проводимостью, зависимость от абсолютной скорости движения ионов и разведения (концентрации).

  5. Молярная электрическая проводимость при бесконечном разведении. Закон Кольрауша.

  6. Электрическая проводимость биологических жидкостей и тканей в норме и патологии.

  7. Кондуктометрия, кондуктометрическое определение степени и константы диссоциации слабых электролитов.

10. Электропроводность растворов электролитов

Электропроводность ("Каппа") раствора - величина, обратная его сопротивлению R , имеет размерность Ом -1 . Для проводника постоянного сечения

,

где - удельное сопротивление; S - площадь сечения проводника; l - длина проводника; - удельная электропроводность.

Удельной электропроводностью ("каппа") раствора называется электропроводность слоя раствора длиной 1 см, заключенного между электродами площадью 1см 2 . Она выражается в Ом -1. см -1 . В системе СИ удельная электропроводность измеряется в Ом -1. м -1 .

Эквивалентной электропроводностью ("лямбда") называется электропроводность такого объема раствора, в котором содержится 1 г-экв растворенного вещества; при условии, что электроды находятся на расстоянии 1 см друг от друга, она выражается в Ом -1. см 2. г-экв -1 .

где V = 1/C - разведение (или разбавление) раствора, т.е. объем, в котором содержится 1 г-экв растворенного вещества, а C - эквивалентная концентрация (нормальность) раствора. В системе СИ эквивалентная электропроводность выражается в Ом -1. м 2. кг-кв -1 .

Эквивалентная электропроводность растворов электролитов возрастает с ростом разбавления раствора и при бесконечном разбавлении (т.е. при бесконечно малой концентрации) достигает предельного значения 0. которое называется эквивалентной электропроводностью раствора при бесконечном разведении .

В разбавленных растворах сильных электролитов выполняется эмпирический закон Кольрауша (закон квадратного корня):

где и 0 - эквивалентная электропроводность раствора при концентрации С и при бесконечном разведении, A - константа (при данной температуре) для данного электролита и растворителя.

В растворах слабых электролитов и 0 связаны со степенью диссоциации электролита уравнением Аррениуса :

Кроме того, выполняется закон разведения Оствальда , который для бинарного электролита записывается следующим образом:

,

где K - константа диссоциации слабого электролита.

Электропроводность электролитов связана со скоростями движения ионов в растворе. Скорость движения v i [м. с -1 ] иона в растворе пропорциональна напряженности приложенного электрического поля E [В. м -1 ]:

Коэффициент пропорциональности u [м 2. с -1. В -1 ] называется абсолютной подвижностью иона.

Произведение u i F (F - постоянная Фарадея) называется подвижностью иона i [Ом -1. м 2. кг-экв -1 ]:

i = u i F .

Подвижность иона при бесконечном разбавлении называется предельной подвижностью иона и обозначается i 0 . Предельные подвижности i 0 некоторых ионов в водном растворе [Ом -1. см 2. г-экв -1 ] приведены в Таблице 10.1.

Согласно закону Кольрауша о независимой миграции ионов, эквивалентная электропроводность раствора при бесконечном разведении равна сумме предельных подвижностей катионов и анионов:

0 = 0 + + 0 - .

Доля тока, переносимая данным ионом, называется числом переноса t i иона:

,

причем по определению .

Согласно закону Стокса , предельная подвижность 0 иона с зарядом z и радиусом r в растворителе с вязкостью h описывается формулой:

где e - элементарный заряд, F - постоянная Фарадея.

Таблица 10.1

Предельные подвижности i 0 некоторых ионов в водном растворе при 25 o C [Ом -1. см 2. г-экв -1 ]

H + 349.8 OH - 198.3
Li + 36.68 F - 55.4
Na + 50.10 Cl - 76.35
K + 73.50 Br - 78.14
Rb + 77.81 I - 78.84
Ag + 61.90 ClO 3 - 64.6
NH 4 + 73.55 ClO 4 - 67.36
N(CH 3) 4 + 44.92 BrO 3 - 55.74
1 / 2 Mg 2+ 53.05 CN - 78
1 / 2 Ca 2+ 59.50 NO 3 - 71.46
1 / 2 Ba 2+ 63.63 CH 3 COO - 40.90
1 / 2 Mg 2+ 56.6 C 6 H 5 COO - 35.8
1 / 2 Cd 2+ 54 H 2 PO 4 - 36
1 / 3 Al 3+ 63 1 / 2 SO 4 2- 80.02
1 / 3 La 3+ 69.7 1 / 2 S 2 O 6 2- 93

Из этого уравнения следует правило Вальдена-Писаржевского , согласно которому для любого иона или электролита:

.

Пример 10-1. Удельная электропроводность 0.135 моль. л -1 раствора пропионовой кислоты C 2 H 5 COOH равна 4.79 . 10 -2 См. м -1 . Рассчитать эквивалентную электропроводность раствора, константу диссоциации кислоты и pH раствора, если предельные подвижности H + и C 2 H 5 COO - равны 349.8 См. см 2. моль -1 и 37.2 См. см 2 моль -1. соответственно.

0 = 349.8 + 37.2 = 387.0 См. см 2. моль -1 .

= /C? 1000 = 4.79 . 10 -2 См. м -1 /0.135 моль. л -1. 1000 = 3.55 См. см 2. моль -1 .

= / 0 = 3.55/387.0 = 0.009.

= 1.15 . 10 -5 (моль. л -1).

C =1.24 . 10 -3 (моль. л -1).

pH = -lg = 2.91.

Ответ. = 3.55 См. см 2. моль -1 ; = 0.009; K = 1.15 . 10 -5 моль. л -1 ; pH = 2.91.

Пример 10-2. Удельная электропроводность насыщенного раствора BaCO 3 в воде при 18 o C равна 25.475 . 10 -4 См. м -1 . Удельная электропроводность воды 4.5 . 10 -5 См. м -1 . Подвижности ионов Ba 2+ и CO 3 2- при 18 o C равны соответственно 55 и 66 См. см 2. г-экв -1 . Рассчитать растворимость BaCO 3 в воде при 18 o C в моль. л -1. считая соль полностью диссоциированной, а подвижности ионов равными подвижностям при бесконечном разведении.

(BaCO 3) = (р-ра) - (H 2 O) = 25.475 . 10 -4 - 4.5 . 10 -5 = 25.025 . 10 -4 См. м -1 .

0 (BaCO 3) = 0 (Ba 2+) + 0 (CO 3 2-) =

55 + 66 = 121 См. см 2. г-экв -1 = 1.21 . 10 -2 См. м 2. г-экв -1 .

С = / 0 = 0.206 г-экв. м -3 = 2.06 . 10 -4 г-экв. л -1 = 1.03 . 10 -4 моль. л -1 .

Ответ. С = 1.03 . 10 -4 моль. л -1 .

Пример 10-3. Удельная электропроводность 5%-го раствора Mg(NO 3) 2 при 18 o C равна 4.38 См. м -1. а его плотность - 1.038 г. см -3 . Рассчитать эквивалентную электропроводность раствора и кажущуюся степень диссоциации соли в растворе. Подвижности ионов Mg 2+ и NO 3 - при 18 o C равны соответственно 44.6 и 62.6 См. см 2. г-экв -1 .

0.35 моль. л -1 = 0.70 г-экв. л -1 .

= 6.25 . 10 -3 См. м 2. г-экв -1 = 62.5 (См. см 2. г-экв -1).

0 = 44.6 + 62.6 = 107.2 (См. см 2. г-экв -1).

= / 0 = 62.5/107.2 = 0.583.

Ответ: = 62.5 См. см 2. г-экв -1. = 0.583.

10-2 . Удельная электропроводность бесконечно разбавленных растворов KCl, KNO 3 и AgNO 3 при 25 o C равна соответственно 149.9, 145.0 и 133.4 См. м 2. моль -1 . Какова удельная электропроводность бесконечно разбавленного раствора AgCl при 25 o C? (ответ)

10-3. Удельная электропроводность бесконечно разбавленных растворов соляной кислоты, хлорида натрия и ацетата натрия при 25 o C равна соответственно 425.0. 128.1 и 91.0 См. м 2 . моль -1 . Какова удельная электропроводность бесконечно разбавленного раствора уксусной кислоты при 25 o C? (ответ)

10-4 . Удельная электропроводность 4% водного раствора H 2 SO 4 при 18 o C равна 0.168 См. см -1. плотность раствора - 1.026 г. см -3 . Рассчитать эквивалентную электропроводность раствора. (ответ)

10-5. Удельная электропроводность насыщенного раствора AgCl в воде при 25 o C равна 2.28 . 10 -4 См. м -1. а удельная электропроводность воды 1.16 . 10 -4 См. м -1 . Рассчитать растворимость AgCl в воде при 25 o C в моль. л -1 . (ответ)

10-6 . Какую долю общего тока переносит ион Li + в водном растворе LiBr при 25 o C? (ответ)

10-7 . Рассчитать число переноса H + в растворе HCl с концентрацией 1 . 10 -3 моль. л -1 . Каково будет число переноса H + , если к этому раствору добавить NaCl, чтобы его концентрация была равна 1.0 моль. л -1 ? (ответ)

10-9. Рассчитать скорость движения иона Na + в водном растворе при 25 o C, если разность потенциалов 10 В приложена к электродам, находящимся на расстоянии 1 см друг от друга. Сколько времени понадобится иону, чтобы пройти расстояние от одного электрода до другого?(ответ)

10-10. Удельная электропроводность водного раствора KI равна 89.00 См. м -1. а раствора KCl той же концентрации - 186.53 См. м -1 . Удельная электропроводность раствора, содержащего обе соли, равна 98.45 См. м -1 . Рассчитать долю KCl в растворе.

10-11 . Удельная электропроводность водного раствора сильного электролита при 25 o C равна 109.9 См. см 2 . моль -1 при концентрации 6.2 . 10 -3 моль. л -1 и 106.1 См. см 2 . моль -1 при концентрации 1.5 . 10 -2 моль. л -1 . Какова удельная электропроводность раствора при бесконечном разбавлении? (ответ)

10-12 . Рассчитать радиус иона N(CH 3) 4 + по закону Стокса из его предельной подвижности в водном растворе при 25 o C. Вязкость воды при 25 o C равна 8.91? 10 -4 Па. с. Оценить предельную подвижность этого иона в глицерине, вязкость которого равна 1.49 Па. с. (ответ)

10-13 . Оценить предельную подвижность иона K + в формамиде и метилацетате, если вязкость формамида в 3.7 раз больше, а вязкость метилацетата в 2.6 раз меньше, чем вязкость воды. (ответ)

10-14 . Рассчитать удельную электропроводность 1.0 . 10 -3 M водного раствора NaCl при 25 o C, считая, что подвижности ионов при этой концентрации равны их предельным подвижностям. Через слой раствора длиной 1 см, заключенный между электродами площадью 1 см 2. пропускают ток силой 1 мА. Какое расстояние пройдут ионы Na + и Cl - за 10 минут? (ответ)

10-15. Рассчитать эффективный радиус иона Li + при 25 o C из его предельной подвижности, используя закон Стокса. Рассчитать приблизительное число молекул воды, входящих в гидратную оболочку иона Li + . Кристаллографический радиус иона Li + равен 60 пм. Вязкость воды при 25 o C равна 8.91 . 10 -4 Па. с. Собственный объем молекулы воды оценить из параметров уравнения Ван-дер-Ваальса. (ответ)

10-16. Константа диссоциации гидроксида аммония равна 1.79 . 10 -5 моль. л -1 . Рассчитать концентрацию NH 4 OH, при которой степень диссоциации равна 0.01. и эквивалентную электропроводность раствора при этой концентрации. (ответ)

10-17 . Эквивалентная электропроводность 1.59 . 10 -4 моль. л -1 раствора уксусной кислоты при 25 o C равна 12.77 См. см 2 . моль -1 . Рассчитать константу диссоциации кислоты и pH раствора. (ответ)

10-18 . Константа диссоциации масляной кислоты C 3 H 7 COOH равна 1.74 . 10 -5 моль. л -1 . Эквивалентная электропроводность раствора при разведении 1024 л. моль -1 равна 41.3 См. см 2 . моль -1 . Рассчитать степень диссоциации кислоты и концентрацию ионов водорода в этом растворе, а также эквивалентную электропроводность раствора при бесконечном разведении. ( = 0.125; = 1.22 . 10 -4 моль. л -1 ; 0 = 330.7 См. см 2 . моль -1 .) (ответ)

10-19 . Эквивалентная электропроводность раствора гидроксида этиламмония C 2 H 5 NH 3 OH при бесконечном разведении равна 232.6 См. см 2 . моль -1 . Рассчитать константу диссоциации гидроксида этиламмония, эквивалентную электропроводность раствора, степень диссоциации и концентрацию ионов гидроксила в растворе при разведении 16 л. моль -1. если удельная электропроводность раствора при данном разведении равна 1.312 . 10 -3 См. см -1 .

Скорость направленного движения иона, т. е. путь, пройденный ионом в растворе под действием электрического поля в направлении к электроду за единицу времени, зависит от действующей на ион силы, т. е. от напряженности электрического поля:

V = иЕ

где V - скорость движения иона, м/с; Е - напряженность поля, В/м; и - коэф­фициент пропорциональности, называемый электрической подвижностью иона или просто подвижностью иона, м 2 /(В с).

ПОДВИЖНОСТЬ ИОНА характеризует его способность преодолевать со­противление среды при направленном движении в электрическом по­ле. Рассмотрим основные факторы, влияющие на подвижность иона в водных растворах при наличии электрического поля.

Заряд и радиус иона , т. е. его природа: чем больше заряд и чем меньше радиус иона, тем сильнее гидратируется ион, тем ниже подвижность иона в растворе.

Природа растворителя, его диэлектрическая проницаемость и вязкость. Чем полярнее растворитель, тем больше размеры гидратированного иона и меньше его подвижность. Вязкость растворителя обуславливает сопротивление среды движущемуся иону: чем больше вязкость, тем меньше подвиж­ность иона.

Температура раствора. При повышении температуры уменьшают­ся вязкость растворителя и толщина сольватных оболочек ионов, а также снижается межионное взаимодействие. Все это приводит к уве­личению подвижности ионов.

Ионная сила раствора. Чем больше ионная сила раствора, тем сильнее межионное электростатическое взаимодействие и создаваемые им тормозящие эффекты.

Концентрация ионов. Чем больше концентрация ионов в раство­ре, тем сильнее электростатическое взаимодействие ионов, снижающее их подвижность. Концентрация ионов зависит от силы электролита и его количества в растворе. При разбавлении растворов сильных электро­литов подвижность соответствующих ионов растет, поскольку уменьша­ется их концентрация, а следовательно, снижается межионное взаимо­действие в растворе. В растворах слабых электролитов (обычно а < 0,03) подвижность ионов практически не зависит от разбавления, так как концентрация ионов в этих растворах всегда невелика.

Поскольку подвижность ионов зависит от многих факторов, и прежде всего от их концентрации в растворе, то для характеристики свойств ионов используются значения предельной электрической под­вижности ионов в данном растворителе при данной температуре.

Предельной подвижностью иона (и°,м 2 /(В с)) называется средняя скорость его направленного движения, приобретаемая им в бесконечно разбавленном растворе в однородном элек­трическом поле напряженностью 1 В/м.

7. Удельная электрическая проводимость

Количественной характеристикой способности растворов проводить ток служит электрическая проводимость.

Электрической проводимостью называется физическая вели­чина, обратная электрическому сопротивлению проводника: ω = 1 /R.

Единицей электрической проводимости в СИ является сименс (См), 1 См - 1 .

Электрическое сопротивление однородного проводника прямо про­порционально его длине l и обратно пропорционально площади попе­речного сечения в:

где р - удельное сопротивление, характеризующее природу проводника и вы­ражаемое в Ом м.

Удельная электрическая проводимость характеризует свойства про­водящей среды - раствора электролита.

Удельная электрическая проводимость раствора электро­лита равна количеству электричества, переносимому содер­жащимися в нем ионами через поперечное сечение раствора площадью 1 м 2 в однородном электрическом поле напряженно­стью 1В/мза 1 секунду.

Удельная электрическая прово­димость зависит от многих факторов, и прежде всего от природы электро­лита, его концентрации и температу­ры. Анализ позволяет сделать следующие выводы:

    Удельная электрическая проводимость максимальна у растворов сильных кислот и несколько меньше у растворов сильных оснований, что объясняется полной диссоциацией этих электролитов и высокой подвижностью ионов Н 3 0+ и ОН - .

    Наименьшие значения во всем интервале концентраций имеет удельная электрическая проводимость растворов слабых электролитов (СН3СООН) в связи с низкой концентрацией ионов в их растворах (а « 1).

    Удельная электрическая проводимость растет с концентрацией до некоторых максимальных значений, что отвечает увеличению ко­личества ионов в единице объема раствора. Достигнув максимума, удельная электрическая проводимость начинает снижаться несмотря на рост концентрации электролита. Подобный характер зависимости связан у сильных электролитов с уменьшением подвижности ионов из-за возрастающего по мере увеличения концентрации раствора межионного взаимодействия, а у слабых электролитов - со снижением степени электролитической диссоциации, а значит, с уменьшением ко­личества ионов.

При снижении концентрации электролита до очень малых значе­ний (при с -> 0) удельная электрическая проводимость растворов элек­тролитов стремится к удельной электрической проводимости чистой воды (10" 6 -1()- 5 См/м).

Увеличение температуры повышает удельную электрическую про­водимость, так как возрастают подвижность ионов и степень электро­литической диссоциации слабого электролита.

В бесконечно разбавленных растворах эквивалентная электро­проводность достигает предела и от концентрации больше не зависит, так как в растворах слабых электролитов наступает полная диссоциация (α = 1), а в растворах сильных электролитов межионное взаимодействие исчезает.

Эквивалентная электропроводность бесконечно разбавленных растворов называется электропроводностью при бесконечном разведении и обозначается l ∞ (или l 0).

Эквивалентная электропроводность при бесконечном разведении, согласно закону независимого движения ионов Кольрауша, равна сумме предельных подвижностей ионов

Подвижность связана с абсолютной скоростью движения ионов n:

l + =n + F, l - =n - F, =F, =F

где F – число Фарадея, 96487 к. ≈ 96500к.

Под абсолютной скоростью движения иона v, понимают скорость перемещения его в электрическом поле с градиентом потенциала 1 в/см. Размерность n см 2 сек -1 – в -1 . Величина абсолютной скорости движения иона при прочих равных условиях (температура, вязкость среды, градиент поля) зависит от концентрации раствора и достигает предельного значения в бесконечно разбавленных растворах, т. е. при φ→∞, n + → , n - → .Taк как скорость движения ионов очень мала, то используют величины в F раз большие - подвижности l + и l - .

Подвижность также называется эквивалентной электропроводностью ионов. Она измеряется в тех же единицах, что и эквивалентная электропроводность электролита (Ом -1 см 2 -г-экв -1). Подвижности ионов зависят от концентрации, особенно в растворах сильных электролитов, в которых межионное взаимодействие велико (f l < 1). Предельные подвижности ионов и достигаются при бесконечном разведении (φ→∞,f l →1), их значения приводятся в справочной литературе.

Зависимость эквивалентной электропроводности от степени дис­социации и межионного взаимодействия описывается уравнением:

В растворах слабых электролитов число ионов, участвующих в переносе электричества, определяется степенью диссоциации a. В концентрированных растворах слабых электролитов α весьма мала, поэтому и число ионов в растворе также мало и практически отсутствует межионное взаимодействие. При сильном разбавлении растворов α возрастает и увеличивается число
ионов в растворе, однако межионные расстояния так велики, что взаимодействие ионов также отсутствует (f l = 1). Таким образом, в растворах слабых электролитов при любых разведениях ионы обладают предельной подвижностью и и эквивалентная электропроводность зависит только от степени диссоциации



Следовательно, отношение электропроводностей будет отвечать степени диссоциации слабых электролитов

Это уравнение называют формулой Аррениуса, на практике его используют для определения степени диссоциации растворов электролитов.

Для 1–1–валентного слабого электролита, диссоциирующего по схеме АВ↔А+ В – , используя закон разведения Оствальда и учитывая, что можно определить константу диссоциации через эквивалентную электропроводность по формуле:

(10.8)

где С – концентрация электролита, моль/л.

Согласно теории Дебая-Хюккеля, сильные электролиты в растворах полностью диссоциированы на ионы (α =1) и межионные взаимодействия велики (f l < 1), значит уравнение (10.6) должно быть записано в виде

откуда коэффициент электропроводности равен

;

Коэффициент электропроводности является функцией концентрации, экспериментально его определяют исходя из эквивалентной электропроводности раствора. Величина зависит от валентности ионов: 1–1–валентного электролита (типа NaCI, HCI) в 0,1 н. растворе 0,8; для 1–2–валентных (Na 2 SО 4 , СаСI 2) f x ~ 0,75; 2–2–валентных (CuSО 4) ~ 0,4. При разбавлении растворов уменьшается межионное взаимодействие, и эти различия сглаживаются: эквивалентная электропроводность достигает предела и

10.4 Механизм влияния ионов атмосферы на электропроводность
растворов, закон квадратного корня Кольрауша.

Качественно механизм влияния ионной атмосферы на электропроводность состоит в следующем: центральный ион, например катион, при наложении постоянного электрического поля движется к катоду, противоположно заряженная ионная атмосфера перемещается к аноду. Это вызывает так называемое электрофоретическое торможение.

Окружающая центральный ион атмосфера должна исчезать позади иона, движущегося в электрическом поле, и вновь образовываться впереди него. Оба процесса разрушения и образования ионной атмосферы происходят не мгновенно, например в 0,1 н растворе хлористого калия за 0,6·10 -9 сек, а в 0,001 н растворе – за 0,6·10 -7 сек. Это вызывает релаксационное торможение. Поэтому коэффициент электропроводности принимает значения меньше единицы не в результате неполной диссоциации, а за счет проявления этих торможений.

Кроме электрофоретического и релаксационного торможения, существует третья сила, тормозящая движение ионов в растворе. Это сила трения, зависящая от вязкости растворителя, в котором движется ион. Поэтому повышение температуры вызывает увеличение скорости движения ионов, и как следствие возрастание электропроводности.

Для разбавленных растворов сильных электролитов теория дает линейную зависимость эквивалентной электропроводности от корня квадратного из концентрации (закон квадратного корня Кольрауша)

(10.9)

Постоянная А, зависящая от природы растворителя, температуры и валентного типа электролита, экспериментально определяется тангенсом угла наклона прямой к оси абсцисс (рис. 10.2).

Предельную эквивалентную электропроводность сильных электролитов можно найти экстраполяцией опытных данныхдо значения С = 0. Необходимо подчеркнуть, что, хотя предельную электропроводность понимают как проводимость при концентрации электролита, близкой к нулю, она никоим образом не идентична эквивалентной электропроводности растворителя.

Рис. 10.2 Зависимость эквивалентной электропроводности от корня квадратного из концентрации для сильных электролитов (НСI, КОН, LiCI) , и слабого электролита (СН 3 СООН) в водных растворах.

Для растворов слабых электролитов зависимость эквивалентной
электропроводности от концентрации вытекает из закона разбавления Оствальда. При α1 получаем

(10.10)

откуда

или в логарифмическом виде

Эта зависимость не является линейной, поэтому значение, не­возможно определить экстраполяцией, его определяют только косвенным путем исходя из закона независимого движения ионов Кольрауша.

Данные о подвижности ионов показывают, что радиусы ионов в кристаллической решетке не сохраняются в растворах. Например, радиусы
ионов щелочных металлов по ряду Li + возрастают, однако в растворе наблюдается обратный порядок. Ион Li + имеет более сильное электрическое поле, так как его удельный заряд (отношение величины заряда частицы к ее массе) больше, чем других щелочных ионов, поэтому в растворе он гидратируется сильнее. Сильно гидратированный ион Li + движется между молекулами воды в электрическом поле гораздо медленнее, чем менее гидратированпый ион Cs + (например,= 38,6; = 77,2 ом -1 см 2 г-экв -1).

С увеличением заряда ионов скорость перемещения его в элек­трическом поле, а, следовательно, и электропроводность раствора возрастают. Однако самыми большими скоростями обладают ионы Н+ (точнее ионы гидроксония) и ОН - . Только их подвижности выражаются трехзначными числами (= 349,8; =198,3 ом -1 -см 2 -экв -1). Это, по-видимому, объясняется тем, что протон может переносится от молекулы к молекуле воды по так называемому «эстафетному» механизму

анод (+) | Н 3 O + Н 2 O| катод (–).

В результате такого перескока протон проходит 0,86 А, что отвечает перемещению катиона гидроксония на 3,1 Ǻ, или перенос гидроксила в электрическом поле к аноду

анод (+) | Н 2 O ОН – | катод (–),

при котором перескок протона вправо имеет следствием перемещение гидроксила влево. При этом гидроксил, принимающий протон, превращается в молекулу воды, а вместо него возникает новый анион, находящийся к аноду ближе, чем тот, который исчезает вследствие присоединения протона. Естественно, что при таком механизме проводимости подвижность ионов водорода и гидроксила значительно больше, чем ионов, которые просто дви­гаются в электрическом поле.