Горение органических веществ. Характеристика процесса горения

Всем нам практически ежедневно приходится сталкиваться с тем или иным проявлением процессом горения. В нашей статье мы хотим более подробно рассказать какие особенности включает в себя данный процесс с научной точки зрения.

Является основной составляющим процессом на пожаре. Пожар начинается с возникновения горения, его интенсивность развития как правило путь пройденный огнем, то есть скорость горения, а тушение заканчивается прекращением горения.

Под горением обычно понимают экзотермическую реакцию между горючим и окислителем, сопровождающуюся, по крайней мере, одним из трех следующих факторов: пламенем, свечением, дымообразованием. Из-за сложности процес­са горения указанное определение не является исчерпывающим. В нем не учтены такие важнейшие особенности горения, как быстрое протекание лежащей в его основе экзотермической реакции, ее самоподдерживающийся характер и способность к самораспространению процесса по горючей смеси.

Различие между медленной экзотермической окислительно-вос­становительной реакцией (коррозия железа, гниение) и горением заключается в том, что последняя протекает настолько быстро, что теплота производится быстрее, чем рассеивается. Это приводит к по­вышению температуры в зоне реакции на сотни и даже тысячи гра­дусов, к видимому свечению и образованию пламени. По сути так образуется пламенное горение.Если происходит выделение тепла но пламя при это отсутствует, то этот процесс называется тлением.И в том и в другом процессе происходит – аэрозоля полного или неполного сгорания ве­ществ. Стоит отметить, что при горении некоторых веществ пламени не видно, а также отсутствует и выделение дыма, к таким веществам относится водород. Слишком быстрые реакции (взрывчатое пре­вращение) также не входят в понятие горения.

Необходимым условием для возникновения горения является на­личие горючего вещества, окислителя (при пожаре его роль выпол­няет кислород воздуха) и источника зажигания. Для непосредственно­го возгорания необходимо наличие критических условий по составу горючей смеси, геометрии и температуре горючего материала, давле­нию и др. После возникновения горения в качестве источника зажи­гания выступает уже само пламя или зона реакции.

Например, метан способен окисляться кислородом с выделением тепла до метилового спирта и муравьиной кислоты при 500-700 К. Однако, чтобы реакция продолжилась, необходимо пополнение теп­лоты за счет внешнего подогрева. Горением это не является. При на­гревании реакционной смеси до температуры выше 1000 К скорость окисления метана возрастает настолько, что выделяющегося тепла становится достаточно для дальнейшего продолжения реакции, необ­ходимость в подводе теплоты извне исчезает, начинается горение. Та­ким образом, реакция горения, возникнув, способна сама себя поддер­живать. Это главная отличительная особенность процесса горения. Другая, связанная с ней особенность - способность пламени, являю­щегося зоной химической реакции, самопроизвольно распростра­няться по горючей среде или горючему материалу со скоростью, оп­ределяемой природой и составом реакционной смеси, а также услови­ями процесса. Это основной механизм развития пожара.

Типичная модель горения построена на реакции окисления органических веществ или углерода кислородом воздуха. Множество физических и химических процессов сопровождают горение. Физика это перенос тепла в систему. Окислительные и восстановительные реакции это составляющая природы горения со стороны химии. Отсюда из понятия горение вытекают самые разные химические превращения, включая разложение исходных соединений, диссоциации и ионизации продуктов.

Совокупность горючего вещества или материала с окислителем представляет собой горючую среду. В результате разложения горю­чих веществ под воздействием источника зажигания происходит об­разование газопаровоздушной реакционной смеси. Горючие смеси, которые по составу (соотношению компонентов горючего и окисли­теля) отвечают уравнению химической реакции, называются смесями стехиометрического состава. Они наиболее опасны в пожарном от­ношении: легче воспламеняются, интенсивнее горят, обеспечивая полное сгорание вещества, в результате чего выделяют максималь­ное количество теплоты.

Рис. 1. Формы диффузионных пламен

а – горение реактивной струи, б – горение разлитой жидкости, в – горение лесной подстилки

По соотношению количества горючего материала и объема окислителя различают бедные и богатые смеси: бедные содержат в изобилии окислитель, богатые - горючий материал. Минимальное количество окислителя, необходимое для полного сгорания единицы массы (объема) того или иного горю­чего вещества, определяется по уравнению химической реакции. При горении с участием кислорода требуемый (удельный) расход воздуха для большинства горючих веществ находится в пределах 4-15 м 3 /кг. Горение веществ и материалов возможно только при обусловленном содержании в воздухе их паров или газообразных продуктов, а также при концентрации кислорода не ниже заданного предела.

Так, для картона и хлопка самопотухание наступает уже при 14 об. % кис­лорода, а полиэфирной ваты - при 16 об. %. В процессе горения, как и в других химических процессах, обяза­тельны два этапа: создание молекулярного контакта между реаген­тами и само взаимодействие молекул горючего с окислителем с об­разованием продуктов реакции. Если скорость превращения исход­ных реагентов определяется диффузионными процессами, т.е. ско­ростью переноса (пары горючих газов и кислорода переносятся в зону реакции за счет градиента концентраций в соответствии с зако­нами диффузии Фика), то такой режим горения называется диффу­зионным. На рис. 1 приведены различные формы диффузионных пламен. При диффузионном режиме зона горения размыта, и в ней образуется значительное количество продуктов неполного сгора­ния. Если же скорость горения зависит только от скорости химиче­ской реакции, которая значительно выше скорости диффузии, то режим горения называется кинетическим. Ему свойственны более высокие скорости и полнота сгорания и как следствие высокие ско­рости тепловыделения и температура пламени. Этот режим имеет место в предварительно перемешанных смесях горючего и окисли­теля. Отсюда, если реагенты в зоне химической реакции находятся в одинаковой (обычно газовой) фазе, то такое горение называют го­могенным, при нахождении горючего и окислителя в зоне реакции в разных фазах - гетерогенным. Гомогенным является горение не только газов, но и , а также большинства твердых . Объясняется это тем, что в зоне реакции горят не сами материалы, а их пары и газообразные продукты разложе­ния. Наличие пламени является отличительным признаком гомоген­ного горения.

Примерами гетерогенного горения служат горение углерода, уг­листых остатков древесины, нелетучих металлов, которые даже при высоких температурах остаются в твердом состоянии. Химическая реакция горения в этом случае будет происходить на поверхности раздела фаз (твердой и газообразной). Отметим, что конечными про­дуктами горения могут быть не только оксиды, но и фториды, хлори­ды, нитриды, сульфиды, карбиды и др.

Характеристики процесса горения разнообразны. Их можно подразделить на следующие группы: форма, размер и структура пламе­ни; температура пламени, его излучательная способность; тепловы­деление и теплота сгорания; скорость горения и концентрационные пределы устойчивого горения и др.

Всем известно, что при горении образуется свечение которое сопровождает продукта горения.

Рассмотрим две системы:

  • газообразная система
  • конденсированная система

В первом случае при возникновении горения весь процесс будет происходить в пламени, во втором же случае часть реакций будет происходить в самом материале, либо его поверхности. Как упоминалось выше существуют газы которые могут гореть без пламени, но если рассматривать твердые вещества существуют также группы металлов которые также способны гореть без проявления пламени.

Часть пламени с максимальным значением, где происходят интенсивные превращения, называется фронтом пламени.

Теплообменные процессы и диффузия активных частиц из зоны горения которые являются ключевыми механизмами движения фронта пламени по горючей смеси.

Скорость распространения пламени принято разделять на:

  • дефлаграционное (нормальное), протекаю­щее с дозвуковыми скоростями (0,05-50 м/с)
  • детонационное, ког­да скорости достигают 500-3000 м/с.

Рис. 2. Ламинарное диффузионное пламя

В зависимости от характера скорости движения газового потока, создающего пламя, различают ламинар­ные и турбулентные пламена. В ламинарном пламени движение газов происходит в разных слоях, все процессы тепло-, массоообмена происходят путем мо­лекулярной диффузии и конвекции. В турбулентных пламенах про­цессы тепло-, массообмена осуществляются в основном за счет мак­роскопического вихревого движения. Пламя свечи - пример лами­нарного диффузионного пламени (рис. 2). Любое пламя высотой более 30 см будет уже обладать случайной газовой механической не­устойчивостью, которая проявляется видимыми завихрениями дыма и пламени.

Рис. 3. Переход ламинарного потока в турбулентный

Очень наглядным примером перехода ламинарного потока в тур­булентный является струйка сигаретного дыма (рис. 3), которая, поднявшись на высоту около 30 см, приобретает турбулентность.

При пожарах пламена имеют диффузионный турбулентный ха­рактер. Присутствие турбулентности в пламени усиливает перенос тепла, а смешивание влияет на химические процессы. В турбулент­ном пламени выше также скорости горения. Это явление делает затруднительным перенос поведения мелкомасштабных пламен на крупномасштабные, имеющих большую глубину и высоту.

Экспериментально доказано, что температура горения веществ в воздухе гораздо ниже температуры горения в атмосферной кислородной среде

В воздухе температура будет колебаться от 650 до 3100 °С, а в кислородной показатели температуры возрастут на 500-800 °С.

Многим известно, что смерть во время пожара наступает чаще из-за отравления продуктами горения, нежели от термического воздействия. Но отравиться можно не только во время пожара, но и в повседневной жизни. Возникает вопрос о том, какие существуют виды продуктов горения и при каких условиях они образуются? Давайте попробуем в этом разобраться.

Что такое горение и его продукт?

Бесконечно можно смотреть на три вещи: как течет вода, как работают другие люди и, конечно, как горит огонь...

Горение - это физико-химический процесс, основой которого является окислительно-восстановительная реакция. Сопровождается она, как правило, выбросом энергии в виде огня, тепла и света. В этом процессе принимают участие вещество или смесь веществ, которые горят, - восстановители, а также окислитель. Чаще всего эта роль принадлежит кислороду. Горение также можно назвать процессом окисления горящих веществ (важно помнить, что горение - подвид реакций окисления, а не наоборот).

Продукты горения - это все то, что выделяется во время сжигания. Химики в таких случаях говорят: "Все, что находится в правой части уравнения реакции". Но это выражение неприменимо в нашем случае, так как, кроме окислительно-восстановительного процесса, происходят также и а некоторые вещества просто остаются неизменными. То есть продуктами горения являются дым, зола, копоть, выделяемые газы, в том числе и выхлопные. Но особым продуктом является, конечно, энергия, которая, как отмечено в прошлом абзаце, выбрасывается в виде тепла, света, огня.

Вещества, выделяемые во время горения: оксиды углерода

Существует два оксида углерода: CO 2 и CO. Первый носит название углекислый газ (углекислота, оксид углерода (IV)), так как представляет собой бесцветный газ, состоящий из углерода, полностью окисленного кислородом. То есть углерод в данном случае имеет максимальную степень окисления - четвертую (+4). Этот оксид является продуктом горения абсолютно всех органических веществ, если те во время горения находятся в избытке кислорода. Кроме того, углекислота выделяется живыми существами при дыхании. Сам по себе он не опасен, если его концентрация в воздухе не превышает 3 процентов.

Оксид углерода (II) (окись углерода) - CO - это ядовитый газ, в молекуле которого углерод находится в степени окисления +2. Именно поэтому это соединение может "догорать", то есть продолжать реакцию с кислородом: СО+О 2 =СО 2 . Главной опасной особенностью этого оксида является его невероятно большая, по сравнению с кислородом, способность присоединяться к эритроцитам. Эритроциты - красные клетки крови, задачей которых является транспортировка кислорода от легких к тканям и наоборот, углекислого газа к легким. Поэтому главная опасность окиси в том, что она мешает переносу кислорода к различным органам тела человека, тем самым вызывая кислородное голодание. Именно СО чаще всего вызывает отравление продуктами горения при пожаре.

Оба оксида углерода не имеют ни цвета, ни запаха.

Вода

Всем известная вода - Н 2 О - также выделяется во время горения. При температуре горения продукты выделяются в А вода как пар. Вода является продуктом горения газа метана - СН 4 . Вообще, вода и углекислота , опять все зависит от количества кислорода) в основном выделяются при полном сгорании всех органических веществ.

Сернистый газ, сероводород

Сернистый газ также является оксидом, но на этот раз серы - SO 2 . Он имеет большое количество названий: двуокись серы, диоксид серы, сернистый ангидрид, оксид серы (IV). Представляет собой этот продукт горения бесцветный газ, с резким запахом подожженной спички (он при ее возгорании и выделяется). Выделяется ангидрид при горении серы, серосодержащих органических и неорганических соединений, например, сероводорода (Н 2 S).

При попадании на слизистую глаз, носа или рта человека двуокись легко реагирует с водой, образуя сернистую кислоту, которая легко разлагается обратно, но при этом успевает раздражать рецепторы, спровоцировать воспалительные процессы дыхательных путей: H 2 O+SO 2 ⇆H 2 SO 3 . Этим обусловлена токсичность продукта горения серы. Сернистый газ, так же как и угарный, может гореть - окисляться до SO 3 . Но происходит это при очень высокой температуре. Данное свойство используется при производстве серной кислоты на заводе, так как SO 3 реагирует с водой, образует H 2 SO 4 .

А вот сероводород выделяется при термическом разложении некоторых соединений. Этот газ также ядовит, имеет характерный запах тухлых яиц.

Цианистый водород

Тогда Гиммлер сжал челюсти, раскусил ампулу с цианистым калием и через несколько секунд умер.

Цианистый калий - сильнейший яд - соль также известной как цианистый водород - HCN. Это бесцветная жидкость, но очень летучая (легко переходящая в газообразное состояние). То есть при горении она тоже будет выделяться в атмосферу в виде газа. Синильная кислота очень ядовита, даже небольшая - 0,01 процент - концентрация в воздухе приводит к летальному исходу. Отличительной чертой кислоты является характерный запах горького миндаля. Аппетитно, не правда ли?

Но синильной кислоте присуща одна "изюминка" - отравиться ей можно, не только вдыхая непосредственно органами дыхания, но и через кожу. Так что защититься только противогазом не получится.

Акролеин

Пропеналь, акролеин, акрилальдегид - все это названия одного вещества, ненасыщенного альдегида акриловой кислоты: СН2=СН-СНО. Этот альдегид тоже является сильно летучей жидкостью. Акролеин бесцветен, с резким запахом, очень ядовит. При попадании жидкости или ее паров на слизистые, особенно в глаза, вызывает сильное раздражение. Пропеналь является высокореакционным соединением, и это объясняет его высокую токсичность.

Формальдегид

Подобно акролеину, формальдегид принадлежит к классу альдегидов и является альдегидом муравьиной кислоты. Также это соединение известно как метаналь. бесцветный газ с резким запахом.

Чаще всего во время горения веществ, содержащих азот, выделяется чистый азот - N2. Этот газ и так содержится в атмосфере в большом количестве. Азот может быть примером продукта горения аминов. Но при термическом разложении, к примеру, солей аммония, а в некоторых случаях и при самом горении, в атмосферу выбрасываются и его оксиды, со степенью окисления азота в них плюс один, два, три, четыре, пять. Оксиды - газы, имеют бурый цвет и чрезвычайно токсичны.

Пепел, зола, копоть, сажа, уголь

Копоть, или сажа - остатки углерода, который не вступил в реакцию, по разным причинам. Сажу называют также амфотерным углеродом.

Зола, или пепел - мелкие частицы неорганических солей, не сгоревших или не разложившихся при температуре горения. При выгорании топлива эти микросоединения переходят во взвешенное состояние или скапливаются внизу.

А уголь - это продукт неполного сгорания дерева, то есть не сгоревшие его остатки, но при этом еще способные гореть.

Конечно, это далеко не все соединения, которые выделятся при сгорании тех или иных веществ. Перечислить их всех нереально, да и не нужно, потому что другие вещества выделяются в ничтожно малых количествах, и только при окислении определенных соединений.

Прочие смеси: дым

Звезды, лес, гитара... Что может быть романтичней? А не хватает одного из самых главных атрибутов - костра и струйки дыма над ним. А что такое дым?

Дым - это некая смесь, которая состоит из газа и взвешенных в нем частиц. В роли газа выступают пары воды, угарный и углекислый газ и другие. А твердыми частицами являются пепел и просто не сгоревшие остатки.

Выхлопные газы

Большинство современных машин работает на двигателе внутреннего сгорания, то есть для движения используется энергия, получающаяся при сгорании топлива. Чаще всего это бензин и другие нефтепродукты. Но при выгорании в атмосферу выбрасывается большое количество отходов. Это и есть выхлопные газы. Они высвобождаются в атмосферу в виде дыма из выхлопных труб автомобиля.

Большую часть от их объема занимает азот, а также вода, углекислота. Но также выбрасываются и токсичные соединения: угарный газ, оксиды азота, не сгоревшие углеводороды, а также сажа и бензпирен. Последние два являются канцерогенами, то есть повышают риск развития рака.

Особенности продуктов полного окисления (в данном случае горения) веществ и смесей: бумага, сухая трава

При сгорании бумаги выделяется в основном также углекислый газ и вода, а при недостатке кислорода - угарный газ. Кроме того, бумага в своем составе содержит склеивающие вещества, которые могут выделяться и концентрироваться, и смолы.

Та же ситуация происходит и при сгорании сена, только без склеивающих веществ и смолы. В обоих случаях дым белый с желтым оттенком, со специфическим запахом.

Древесина - дрова, доски

Древесина состоит из органических веществ (в том числе серо- и азотсодержащих) и небольшого количества минеральных солей. Поэтому при ее полном сгорании выделяются углекислота, вода, азот и сернистый газ; образуется серый, а иногда черный дым со смолистым запахом, пепел.

Сера и азотсодержащие вещества

Про токсичность, продукты горения этих веществ мы уже говорили. Стоит отметить еще, что при горении серы выделяется дым с серовато-серым цветом и резким запахом сернистого газа (так как именно двуокись серы и выделяется); а при горении азотистых и других азотсодержащих веществ желто-бурый, с раздражающим запахом (но дым появляется не всегда).

Металлы

При горении металлов образуются оксиды, пероксиды или надпероксиды этих металлов. Кроме того, если металл содержал какие-то органические или неорганические примеси, то образуются продукты горения этих примесей.

Но особенность горения имеет магний, так как горит он не только в кислороде, как другие металлы, но и в углекислом газе, образуя при этом углерод и оксид магния:2 Mg+CO 2 =C+2MgO. Дым образуется белый, без запаха.

Фосфор

При горении фосфора выделяется белый дым, пахнущий чесноком. При этом образуется оксид фосфора.

Резина

И, конечно, резина. Дым от горящей резины - черный, из-за большого количества сажи. Кроме того, выделяются продукты горения органических веществ и оксид серы, а благодаря ему дым приобретает сернистый запах. Также выделяются тяжелые металлы, фуран и другие токсичные соединения.

Классификация отравляющих веществ

Как вы, наверное, уже могли заметить, большинство продуктов горения являются отравляющими веществами. Поэтому, говоря об их классификации, будет правильным разобрать и классификацию отравляющих веществ.

В первую очередь, все отравляющие вещества - далее ОВ - делятся на смертельные, временно выводящие из строя и раздражающие. Первые делят на ОВ поражающие нервную систему (Ви-Икс), удушающие (угарный газ), кожно-нарывные (иприт) и обще-ядовитые (цианистый водород). К примерам временно выводящих из строя ОВ можно отнести Би-Зет, а раздражающим - адамсит.

Объем

Теперь поговорим про те вещи, про которые нельзя забывать, говоря о продуктах, выбрасываемых при сгорании.

Объем продуктов горения - важная и очень полезная информация, которая, например, поможет определить уровень опасности сгорания того или иного вещества. То есть, зная объем продуктов, можно определить количество вредных соединений, входящих в состав выделившихся газов (как вы помните, большинство продуктов - газы).

Чтобы рассчитать искомый объем, в первую очередь нужно знать, был ли избыток или недостаток окислителя. Если, допустим, кислород содержался в избытке, то вся работа сводится к тому, чтобы составить все уравнения реакции. Следует помнить, что топливо, в большинстве случаев, содержит примеси. После высчитывается по закону сохранения массы количество вещества всех продуктов горения и, учитывая температуру и давление, по формуле Менделеева-Клапейрона, находится сам объем. Конечно, для ничего не смыслящего в химии человека все выше перечисленное выглядит страшно, но на самом деле ничего трудного нет, надо только разобраться. Подробнее на этом останавливаться не стоит, так как статья не об этом. При недостатке кислорода увеличивается сложность расчета - меняются уравнения реакций и сами продукты горения. Кроме того, сейчас используются более сокращенные формулы, но для начала лучше считать представленным способом (если это требуется), чтобы понять смысл вычислений.

Отравление

Некоторые вещества, выбрасываемые в атмосферу при окислении горючего, токсичны. Отравление продуктами горения - вполне реальная угроза не только при пожаре, но и в автомобиле. Кроме того, вдыхание или другой способ попадания некоторых из них не приводит к мгновенному негативному результату, а напомнит об этом через некоторое время. К примеру, так ведут себя канцерогены.

Естественно, каждому нужно знать правила, предотвращающие негативные последствия. В первую очередь, это правила противопожарной безопасности, то есть то, что каждому ребенку рассказывают с самого раннего детства. Но, почему-то, часто бывает, что и взрослые, и дети просто забывают их.

Правила оказания первой помощи при отравлении многим тоже, скорее всего, знакомы. Но на всякий случай: самое главное, вынести отравившегося человека на свежий воздух, то есть отгородить от дальнейшего попадания токсинов в его организм. Но и нужно помнить, что существуют методы защиты от продуктов горения органов дыхания, поверхности тела. Это защитный костюм пожарных, противогазы, кислородные маски.

Защита от токсичных продуктов горения очень важна.

Использование в личных целях человека

Тот момент, когда люди научились использовать огонь в своих целях, стал, несомненно, переломным в процессе развития всего человечества. К примеру, одни из самых главных его продуктов - тепло и свет - использовались (и используются до сих пор) человеком при приготовлении пищи, освещении и согревании в холодное время. Уголь в древности использовался как чертежный инструмент, а сейчас, например, как лекарство (активированный уголь). То, что оксид серы используется при приготовлении кислоты, также отмечалось, таким же образом используется и оксид фосфора.

Вывод

Стоит отметить, что все рассказанное здесь - лишь общие сведения, представленные для ознакомления с вопросами о продуктах горения.

Хочется сказать, что соблюдение правил безопасности и разумное обращение как с самим процессом горения, так и с его продуктами, позволит использовать их с пользой.

1.6. ПРОДУКТЫ ГОРЕНИЯ

Продукты горения – это газообразные, жидкие или твердые вещества, образующиеся в процессе горения. Состав продуктов сгорания зависит от состава горящего вещества и от условий его горения. Органические и неорганические горючие вещества состоят, главным образом, из углерода, кислорода, водорода, серы, фосфора и азота. Из них углерод, водород, сера и фосфор способны окисляться при температуре горения и образовывать продукты горения: СО, CO 2 , SO 2 , P 2 O 5 . Азот при температуре горения не окисляется и выделяется в свободном состоянии, а кислород расходуется на окисление горючих элементов вещества. Все указанные продукты сгорания (за исключение окиси углерода СО) гореть в дальнейшем больше не способны. Они образуются при полном сгорании, то есть при горении, которое протекает при доступе достаточного количества воздуха и при высокой температуре.

При неполном сгорании органических веществ в условиях низких температур и недостатка воздуха образуются более разнообразные продукты – окись углерода, спирты, кетоны, альдегиды, кислоты и другие сложные химические соединения. Они получаются при частичном окислении как самого горючего, так и продуктов его сухой перегонки (пиролиза). Эти продукты образуют едкий и ядовитый дым. Кроме того, продукты неполного горения сами способны гореть и образовывать с воздухом взрывчатые смеси. Такие взрывы бывают при тушении пожаров в подвалах, сушилках и в закрытых помещениях с большим количеством горючего материала. Рассмотрим кратко свойства основных продуктов горения.

Углекислый газ

Углекислый газ или двуокись углерода (СО 2) – продукт полного горения углерода. Не имеет запаха и цвета. Плотность его по отношению к воздуху = 1.52. Плотность углекислого газа при температуре Т = 0 0 С и при нормальном давлении р = 760 миллиметров ртутного столба (мм Hg ) равна 1.96 кг/м 3 (плотность воздуха при этих же условиях равна ρ = 1.29 кг/м 3). Углекислый газ хорошо растворим в воде (при Т = 15 0 С в одном литре воды растворяется один литр газа). Углекислый газ не поддерживает горение веществ, за исключением щелочных и щелочно-земельных металлов. Горение магния, например, происходит в атмосфере углекислого газа по уравнению:

CO 2 +2 Mg = C + 2 MgO .

Токсичность углекислого газа незначительна. Концентрация углекислого газа в воздухе 1.5% безвредна для человека длительное время. При концентрации углекислого газа в воздухе, превышающей 3-4.5%, нахождение в помещении и вдыхание газа в течение получаса опасно для жизни. При температуре Т = 0 0 С и давлении р = 3,6 МПа углекислый газ переходит в жидкое состояние. Температура кипения жидкой углекислоты составляет Т = –78 0 С. При быстром испарении жидкой углекислоты газ охлаждается и переходит в твердое состояние. Как в жидком, так и твердом состоянии, капли и порошки углекислоты применяются для тушения пожаров.

Оксид углерода

Оксид углерода или угарный газ (СО) – продукт неполного сгорания углерода. Этот газ не имеет запаха и цвета, поэтому особо опасен. Относительная плотность = 0.97. Плотность угарного газа при Т = 0 0 С и р = 760 мм Hg составляет 1.25 кг/м 3 . Этот газ легче воздуха и скапливается в верхней части помещения при пожарах. В воде оксид углерода почти не растворяется. Способен гореть и с воздухом образует взрывчатые смеси. Угарный газ при горении дает пламя синего цвета. Угарный газ является очень токсичным. Вдыхание воздуха с концентрацией угарного газа 0.4% смертельно для человека. Стандартные противогазы от угарного газа не защищают, поэтому при пожарах применяются специальные фильтры или кислородные изолирующие приборы.

Сернистый газ

Сернистый газ (SO 2 ) – продукт горения серы и сернистых соединений. Бесцветный газ с характерным резким запахом. Относительная плотность сернистого газа = 2.25. Плотность этого газа при Т = 0 0 С и р = 760 мм Hg составляет 2.9 кг/м 3 , то есть он намного тяжелее воздуха. Сернистый газ хорошо растворяется в воде, например, при температуре Т = 0 0 С в одном литре воды растворяется восемьдесят литров SO 2 , а при Т = 20 0 С – сорок литров. Сернистый газ горение не поддерживает. Действует раздражающим образом на слизистые оболочки дыхательных путей, вследствие чего является очень токсичным.

Дым

При горении многих веществ, кроме рассмотренных выше продуктов сгорания выделяется дым – дисперсная система, состоящая из мельчайших твердых частиц, находящихся во взвешенном состоянии в каком-либо газе. Диаметр частиц дыма составляет 10 -4 –10 -6 см (от 1 до 0.01 мкм). Отметим, что 1 мкм (микрон) равен 10 -6 м или 10 -4 см. Более крупные твердые частицы, образующиеся при горении, быстро оседают в виде копоти и сажи. При горении органических веществ дым содержит твердые частицы сажи, взвешенные в CO 2 , CO , N 2 , SO 2 и других газах. В зависимости от состава и условий горения вещества получаются различные по составу и по цвету дымы. При горении дерева, например, образуется серовато-черный дым, ткани – бурый дым, нефтепродуктов – черный дым, фосфора – белый дым, бумаги, соломы – беловато-желтый дым.

Сгорание органических веществ сопровождается уменьшением внутренней энергии.
Сгорание органического вещества в избытке кислорода при 1000 - 1200 С проходит практически мгновенно, и нет необходимости опасаться того, что образовавшиеся пары воды и углекислый газ не успеют поглотиться в аппаратах. Поглотительная способность аскарита, безводного хлорида кальция и ангидрона весьма велики. Например, нами установлено, что органические вещества в количествах до 0 5 г сгорают количественно без катализаторов в струе кислорода, пропускаемого со скоростью 6 л / мин в течение 2 мин.
После сгорания органического вещества колбу вращают 1 мин.
Аппарат Сокслета. После сгорания органического вещества остаток в тигле прокаливают до постоянного веса. Для получения однородных результатов всю золу обычно переводят в сернокислые соли. Для этого к содержимому тигля прибавляют несколько капель концентрированной серной кислоты. Серную кислоту выпаривают под тягой на маленьком пламени газовой горелки и тигель прокаливают до постоянного веса.
Теплоты сгорания органических веществ довольно велики (обычно от 3 5 до 10 ккал / г), поэтому для их измерения часто используют жидкостные калориметры больших размеров - з калориметрический сосуд помещается от 2 до 4 л воды. Форма калориметрического сосуда и тип мешалки выбирают с учетом возможно быстрого и полного перемешивания всей массы жидкости.
Теплотой сгорания органического вещества называется тепловой эффект реакции полного сгорания данного вещества до СО2 (Газ), Н2ОЖИДК и соответствующих продуктов полного окисления других элементов, если они входили в состав данного вещества.
Продукты сгорания органического вещества вместе с содержащимся в нем в качестве примеси мышьяка массой 2 00 г были поглощены щелочным раствором ЬЬСЬ. Образовавшийся арсенат был оттитрован 15 85 мл 0 01 М Pb (NO3) 2 (/ С 0 9612) в присутствии пиридилазорезорцина.
Продукты сгорания органического вещества вместе с содержащимся в нем в качестве примеси мышьяка массой 2 00 г были поглощены щелочным раствором ШСЬ. Образовавшийся арсенат был оттитрован 15 85 мл 0 01 М Pb (NO3) 2 (/ (0 9612) в присутствии пиридилазорезорцина.
При сгорании органического вещества в калориметре выделяется тепло.
При сгорании органического вещества в водородном пламени образуется ряд ионизированных углеродных соединений. Вследствие образования этих ионов между изолированной горелкой, на которую подано напряжение, и электродом может протекать ток. Для изучения свойств пламенных детекторов разработана конструкция двухпламенного ионизационного детектора (рис. 1 и 2), который можно использовать и в виде однопламенного.
При сгорании органического вещества в водородном пламени образуется ряд ионизированных углеродных соединений. Вследствие образования этих ионов между изолированной горелкой, на которую подано напряжение, и электродом может протекать ток. Для изучения свойств пламенных детекторов разработана конструкция двухпламенного ионизационного детектора (рис. 1 и 2), который можно использовать и в виде одноплеменного.
Поэтому теплоту сгорания органических веществ (особенно многоатомных) можно считать относительно не изменяющейся с темпера-турой.

Измерение теплот сгорания органических веществ и изучение закономерностей в их величинах является одним из старейших разделов термохимии.
В продуктах сгорания органических веществ, содержащих азот, азот находится в свободном состоянии. Поэтому, чтобы открыть присутствие азота в органическом соединении, нужно разрушить это соединение и перевести азот в такое соединение, которое легко открыть какими-нибудь качественными реакциями.
Общий вид камерной цилиндрической вертикальной печи для сжигания сточных вод (конструкция ВНИИТ. На полноту сгорания органических веществ, находящихся в ПСВ-г, сильное влияние оказывают условия диспергирования и распределения жидкости форсунками в печи.
Определение теплоты сгорания органических веществ, производимое при помощи особых калориметрических установок в калориметрических бомбах, дает возможность вычислить энергию (теплоту) образования данных соединений, а отсюда и энергию отдельных химических связей.
Теплоты образования изомеров. Для теплот сгорания органических веществ еще не найдено общего выражения для всех отдельных закономерностей, наблюдаемых для разных классов органических соединений, но в пределах одного гомологического ряда имеются закономерности, весьма точно подтверждающиеся результатами опытов.
Схема прибора для определения органических веществ. Образующаяся при сгорании органических веществ двуокись углерода поглощается в барботере 10 титрованным раствором щелочи.
Анализ значений теплот сгорания органических веществ позволяет также делать выводы о стабильности их молекул.
Потеря, обусловленная сгоранием органического вещества, не поддается учету.
Так как при сгорании органического вещества выделяется двуокись серы и частично пары серного ангидрида, то процесс нужно вести под тягой. После сжигания смесь переносят в прибор (рис. 29), состоящий из круглодонной колбы, служащей для разложения аммонийных солей и отгонки аммиака, соединенной через каплеуловитель с холодильником. Нижний конец холодильника опущен в приемник с раствором кислоты.
Так, при сгорании органических веществ всегда образуется вода; она и должна быть признана элементарным телом.
Это осветление происходит вследствие сгорания органического вещества, в результате чего мета-морфизованные разности теряют свой характерный запах. Фосфориты эти имеют чаще всего тонкослоистую текстуру, пронизаны мелкими трещинами, становятся более хрупкими, иногда рассыпчатыми, мажущимися породами.
Качество сжигания или полноту сгорания органических веществ было решено контролировать по степени затемнен-ности дымовых газов.

В настоящее время по энтальпиям сгорания органических веществ накоплен очень обширный экспериментальный материал. Однако далеко не весь этот материал следует рассматривать как достаточно достоверный. Можно полностью согласиться с высказанным Россини еще в 1937 г. мнением о том, что все полученные до начала тридцатых годов нашего столетия числовые данные по энтальпиям сгорания органических веществ нельзя считать надежными, несмотря на то что во многих из выполненных в то время работ авторам удавалось достичь очень высокой воспроизводимости (до 0 03 - 0 05 %) результатов калориметрических измерений.
В нижнем пламени 17 происходит сгораний органических веществ, в том числе растворителя. В верхнем пламени 19 наблюдается эмиссия представляющих интерес молекул. Детектор более устойчив при вводе больших концентраций органических веществ.
Остаток, полученный в результате сгорания органического вещества, называется золой.
Накопление вполне надежных данных по энтальпиям сгорания органических веществ стало возможным только начиная с 30 - х годов нашего века.
Представляет собой продукт, получаемый при сгорании органических веществ без доступа воздуха; обладает большой поверхностью, ч го обусловливает его адсорбционную способность в отношении газов и многих растворенных веществ.
Пусть наша задача состоит в определении теплоты сгорания органического вещества. В этом случае, даже при наличии систематических ошибок в измерении подъема температуры в главном периоде, мы получим величину теплоты сгорания исследуемого вещества не искаженной.
Для измерения теплот реакций, особенно теплот сгорания органических веществ, используют прочный герметичный сосуд из нержавеющей стали - так называемую калориметрическую бомбу, в которой сжигают отвешенное количество вещества под давлением кислорода 20 - 40 атм. Вещество поджигают стальной проволокой, через которую пропускают электрический ток; при этом вещество испаряется.
Для количественного поглощения воды, образующейся при сгорании органического вещества, служит U-образная трубка (рис. 43), наполненная безводным зерне-ным хлористым кальцием, предварительно отсеянным от мелких частиц.
Наполненная хлоркальциевая трубка. Для количественного поглощения воды, образующейся при сгорании органического вещества, служит U-образная трубка (рис. 43), наполненная безводным зерненым хлористым кальцием, предварительно отсеянным от мелких частиц.
Для количественного поглощения воды, образующейся при сгорании органического вещества, служит U-образная трубка (рис. 43), наполненная безводным зерне-ньш хлористым кальцием, предварительно отсеянным от мелких частиц.
Графики изменения минерального состава грунтов в результате. В интервале температур 350 - 700 С происходит сгорание органических веществ, продукты окисления которых удаляются о аморфизации глинистых минералов.
В процессе биологического окисления замечательно то, что сгорание органического вещества за счет молекулярного кислорода, которое происходит с большой скоростью при невысокой температуре тела, осуществляется.
Накопленный в настоящее время термохимический материал по энтальпиям сгорания органических веществ и вычисленные на его основе величины стандартных энтальпий образования этих веществ дают возможность вычислить изменение энтальпии во многих реакциях. Однако следует иметь в виду, что даже при условии измерения энтальпий сгорания с очень высокой относительной точностью (например, 0 01 - 0 02 %) вычисленные из этих данных энтальпии соответствующих реакций часто могут быть получены лишь с очень большой величиной относительной погрешности. Погрешность особенно увеличивается в тех случаях, когда тепловой эффект реакции мал.

Наиболее точными измерениями в калориметрии являются определения теплоты сгорания органических веществ и теплоемкости.
Учащимся уже, известны причины образования копоти при сгорании органических веществ. Учитель предлагает им самим объяснить наблюдаемое явление.
Во второй главе книги сжато изложены вопросы измерения энтальпий сгорания органических веществ, содержащих помимо С, Н, О и другие элементы. Эта область калориметрии в настоящее время бурно развивается и совершенствуется.
Калориметрическая установка (калориметр) предназначена для определения теплоты сгорания органических веществ, в том числе углей.
В природе самопроизвольно совершаются медленные процессы, аналогичные как сгоранию органических веществ, полному или неполному, так и сухой перегонке. На поверхности земли при достаточном доступе воздуха остатки растений или животных подвергаются обычно сложным процессам гниения или тления под действием микроорганизмов. Окончательным результатом этих процессов является полное сгорание углерод - и водо-родсодержащих веществ с образованием двуокиси углерода и воды; азот частью выделяется в свободном виде или в виде а.
В природе самопроизвольно совершаются медленные процессы, аналогичные как сгоранию органических веществ, полному или неполному, так и сухой перегонке.
Сжигание необходимо производить под тягой, так как при сгорании органического вещества выделяется сернистый газ и частично пары серного ангидрида.
Следует отметить две основные причины несовершенства старых данных по энтальпиям сгорания органических веществ. Первая из них - это недостаточная степень чистоты объектов исследования. Во многих работах того времени сведения о чистоте исследованных веществ вообще отсутствуют.

Оглавление книги Следующая страница>>

§ 1. Общие сведения о горении

Горение — это сложный физико-химический процесс взаимодействия горючего вещества и окислителя, сопровождающийся выделением тепла и излучением света.

Обычным окислителем в процессах горения является газообразный кислород, находящийся в воздухе. Для возникновения и протекания горения необходимо наличие горючего вещества, кислорода (воздуха) и источника воспламенения. Горючее вещество и кислород являются реагирующими веществами, они составляют горючую систему.

Источник воспламенения вызывает в этой системе реакцию горения. Однако горение некоторых веществ может происходить и без кислорода. Окислителями в процессе горения могут быть хлор, бром и некоторые сложные вещества: азотная кислота, бертолетова соль, перекись натрия.

Горючие системы могут быть химически однородными и неоднородными.

К химически однородным относятся системы, в которых горючее вещество и воздух равномерно перемешаны друг с другом; например, смеси горючих газов, паров или пылей с воздухом.

Скорость горения однородных горючих систем определяется скоростью химической реакции. Она может быть значительной при высокой температуре. В связи с этим горение таких однородных горючих систем представляет собой взрыв или детонацию и носит название кинетического горения.

К химически неоднородным горючим системам относятся такие, в которых горючее вещество и воздух не перемешаны друг с другом и имеют поверхности раздела, например, твердые горючие материалы и жидкости, находящиеся на воздухе, струи горючих газов и паров, поступающие в воздух и т. д.

При горении химически неоднородных горючих систем кислород воздуха, непрерывно диффундируя (проникая) сквозь продукты сгорания к горючему веществу, вступает с ним в реакцию. Такое горение называют диффузионным. Его скорость определяется главным образом диффузией окислителя к горючему веществу.

Количество воздуха, необходимого для горения, может быть определено расчетным путем.

Продуктами сгорания называют газообразные, жидкие и твердые вещества, образующиеся в результате соединения горючего вещества с кислородом. Состав их зависит от состава горючего вещества и условий его горения. На пожарах в машиностроительных предприятиях чаще всего горят органические вещества: древесина, ткани, растворители, лакокрасочные материалы, резина и др. В их состав входят главным образом углерод, водород, кислород и азот. При горении их образуются продукты горения: СO 2 , СО, Н 2 O, N 2 , которые при высоких температурах находятся в газообразном состоянии.

При неполном сгорании органических веществ в продуктах сгорания содержатся твердые частицы сажи (углерод).

Дисперсная система, состоящая из мельчайших твердых частиц, взвешенных в смеси продуктов сгорания с воздухом, носит название дыма.

Продукты полного и неполного сгорания в определенных концентрациях представляют опасность для жизни человека. Так, концентрация CO 2 , равная 8—10%, вызывает быструю потерю сознания и смерть. Вдыхание воздуха, содержащего 0,4% окиси углерода, также может привести к смерти. Между тем на пожарах в помещениях с низкой интенсивностью газообмена (подвалы, сушилки, склады) концентрация окиси углерода в дыме может намного превышать указанную.

Вредные для дыхания вещества содержатся в продуктах горения пластмасс. Так, при горении линолеума может образовываться сероводород и сернистый газ, при горении пенополиуретана — цианистый водород и толуилендиизоцианат, при горении винипласта — хлористый водород и окись углерода, при горении капрона — цианистый водород.

Продукты неполного сгорания способны гореть, когда их концентрация в дыме становится достаточной. Смешиваясь с воздухом, они образуют взрывчатые смеси. Это следует учитывать при тушении пожаров в закрытых помещениях, где происходило тление. При открывании таких помещений возможны взрывы.

В процессе горения одновременно с образованием продуктов сгорания происходит выделение тепла. Количество выделившихся продуктов сгорания и тепла может быть рассчитано.