Как найти чему равна сила упругости. Последовательное соединение системы пружин

Сила упругости - одна из сил взаимодействия тел, и ее изучением занимается механика. Как она возникает, от чего зависит, куда направлена? Прочитав статью, вы узнаете ответы на эти вопросы.

Как и когда возникает сила упругости?

Проведем эксперимент:

  • укрепим пружинку с помощью пластилина на нижней стороне горизонтальной поверхности, например, стола;
  • подвесим к свободному концу пружинки небольшой груз.

Рис. 1. Сила упругости

Из-за действия силы тяжести груз должен был упасть. Почему же этого не произошло? Причина - сила упругости, которая подействовала на груз со стороны пружинки. В общем случае ее возникновение обусловлено деформацией: растяжением, сжатием, сдвигом, кручением или изгибом. В нашем эксперименте она возникла из-за растяжения пружинки.

Направление силы упругости

Каждое тело содержит молекулы и атомы, которые состоят из заряженных частиц. Они притягиваются и отталкиваются друг от друга с определенной силой. Какое из этих взаимодействий будет преобладать, зависит от расстояния между ними.

Рис. 2. Заряженные частицы

Увеличение расстояния ведет к увеличению действия сил притяжения, уменьшение - к преобладанию сил отталкивания. В состоянии же покоя тела обе силы находятся в равновесии.

Из вышесказанного можно однозначно сказать, почему и куда направлена сила упругости. Ее направление противоположно движению атомов и молекул тела, так как она стремится восстановить первоначальную форму тела.

Взаимодействия между заряженными частицами обуславливают электромагнитную природу силы упругости.

Всегда ли деформация приводит к появлению силы упругости?

Вспомните, как легко пружинка восстанавливает свою форму, а вот пластилин всегда ее сохраняет. Происходит это из-за существования двух предельных случаев деформаций. Пример с пружинкой демонстрирует проявление упругой, а с пластилином - пластической деформации.

Когда мы говорим о силе упругости, то имеем в виду только упругую деформацию. Причем, значение ее невелико, и длится она недолго. Для пластической деформации характерны другие силы. Они зависят от скорости возникновения деформаций. Их не изучают в курсе физики 10 класса.

Связь между силой упругости и деформацией

Какова связь между силой упругости и деформацией? Как найти ее? Ответы на эти вопросы нашел английский изобретатель и естествоиспытатель Роберт Гук. Результаты его экспериментов показали линейный характер связи. В письменном виде установленный им закон выглядит следующим образом:

Fупр=k|Δl| или Fупр=k|x| ,

где k - коэффициент упругости, Δl , или x - абсолютное удлинение.

Δl , или x – разница между длиной деформированного тела и начальной длиной в метрах (м).

k -жесткость. Она выражается в ньютонах на метр (Н/м), ее значение обуславливают размеры тела и свойства материала. Единица измерения Fупр – ньютон (Н).

Обратите внимание, что закон Гука применяется только в случае малых упругих деформаций.

Рис. 3. Закон Гука

Если размеры не играют никакой роли, а важны только свойства материала, то в формулу силы упругости можно подставит постоянную E и записать закон так:

Fупр=ESΔl/l0 или Δl/l0=Fупр/ES ,

где E - модуль упругости (модуль Юнга) в Н/м2=Па, S - площадь поперечного сечения в м2, Δl/l0 - относительная деформация, Fупр/S - напряжение.

Что мы узнали?

Прочитав статью, мы узнали, от чего зависит сила упругости, чему равны коэффициенты в законе Гука. Теперь вы сможете смело решать задачки на определение силы упругости.

Оценка доклада

Средняя оценка: 3.9 . Всего получено оценок: 7.

ОПРЕДЕЛЕНИЕ

Деформациями называются любые изменения формы, размеров и объема тела. Деформация определяет конечный результат движения частей тела друг относительно друга.

ОПРЕДЕЛЕНИЕ

Упругими деформациями называются деформации, полностью исчезающие после устранения внешних сил.

Пластическими деформациями называются деформации, полностью или частично сохраняющиеся после прекращения действии внешних сил.

Способность к упругим и пластическим деформациям зависит от природы вещества, из которого состоит тело, условий, в которых оно находится; способов его изготовления. Например, если взять разные сорта железа или стали, то у них можно обнаружить совершенно разные упругие и пластичные свойства. При обычных комнатных температурах железо является очень мягким, пластичным материалом; закаленная сталь, наоборот, — твердый, упругий материал. Пластичность многих материалов представляет собой условие для их обработки, для изготовления из них нужных деталей. Поэтому она считается одним из важнейших технических свойств твердого вещества.

При деформации твердого тела происходит смещение частиц (атомов, молекул или ионов) из первоначальных положений равновесия в новые положения. При этом изменяются силовые взаимодействия между отдельными частицами тела. В результате в деформированном теле возникают внутренние силы, препятствующие его деформации.

Различают деформации растяжения (сжатия), сдвига, изгиба, кручения.

Силы упругости

ОПРЕДЕЛЕНИЕ

Силы упругости – это силы, возникающие в теле при его упругой деформации и направленные в сторону, противоположную смещению частиц при деформации.

Силы упругости имеют электромагнитную природу. Они препятствуют деформациям и направлены перпендикулярно поверхности соприкосновения взаимодействующих тел, а если взаимодействуют такие тела, как пружины, нити, то силы упругости направлены вдоль их оси.

Силу упругости, действующую на тело со стороны опоры, часто называют силой реакции опоры.

ОПРЕДЕЛЕНИЕ

Деформация растяжения (линейная деформация) – это деформация, при которой происходит изменение только одного линейного размера тела. Ее количественными характеристиками являются абсолютное и относительное удлинение.

Абсолютное удлинение:

где и длина тела в деформированном и недеформированном состоянии соответственно.

Относительное удлинение:

Закон Гука

Небольшие и кратковременные деформации с достаточной степенью точности могут рассматриваться как упругие. Для таких деформаций справедлив закон Гука:

где проекция силы на ось жесткость тела, зависящая от размеров тела и материала, из которого оно изготовлено, единица жесткости в системе СИ Н/м.

Примеры решения задач

ПРИМЕР 1

Задание Пружина жесткостью Н/м в ненагруженном состоянии имеет длину 25 см. Какова будет длина пружины, если к ней подвесить груз массой 2 кг?
Решение Сделаем рисунок.

На груз, подвешенный на пружине, действуют и сила упругости .

Спроектировав это векторное равенство на координатную ось , получим:

По закону Гука сила упругости:

поэтому можно записать:

откуда длина деформированной пружины:

Переведем в систему СИ значение длины недеформированной пружины см м.

Подставив в формулу численные значения физических величин, вычислим:

Ответ Длина деформированной пружины составит 29 см.

ПРИМЕР 2

Задание По горизонтальной поверхности передвигают тело массой 3 кг с помощью пружины жесткостью Н/м. На сколько удлинится пружина, если под ее действием при равноускоренном движении за 10 с скорость тела изменилась от 0 до 20 м/с? Трением пренебречь.
Решение Сделаем рисунок.

На тело действуют , сила реакции опоры и сила упругости пружины .

Рано или поздно при изучении курса физики ученики и студенты сталкиваются с задачами на силу упругости и закон Гука, в которых фигурирует коэффициент жесткости пружины. Что же это за величина, и как она связана с деформацией тел и законом Гука?

Для начала определим основные термины , которые будут использоваться в данной статье. Известно, если воздействовать на тело извне, оно либо приобретет ускорение, либо деформируется. Деформация - это изменение размеров или формы тела под влиянием внешних сил. Если объект полностью восстанавливается после прекращения нагрузки, то такая деформация считается упругой; если же тело остается в измененном состоянии (например, согнутом, растянутом, сжатым и т. д.), то деформация пластическая.

Примерами пластических деформаций являются:

  • лепка из глины;
  • погнутая алюминиевая ложка.

В свою очередь, упругими деформациями будут считаться:

  • резинка (можно растянуть ее, после чего она вернется в исходное состояние);
  • пружина (после сжатия снова распрямляется).

В результате упругой деформации тела (в частности, пружины) в нем возникает сила упругости, равная по модулю приложенной силе, но направленная в противоположную сторону. Сила упругости для пружины будет пропорциональна ее удлинению. Математически это можно записать таким образом:

где F - сила упругости, x - расстояние, на которое изменилась длина тела в результате растяжения, k - необходимый для нас коэффициент жесткости. Указанная выше формула также является частным случаем закона Гука для тонкого растяжимого стержня. В общей форме этот закон формулируется так: «Деформация, возникшая в упругом теле, будет пропорциональна силе, которая приложена к данному телу». Он справедлив только в тех случаях, когда речь идет о малых деформациях (растяжение или сжатие намного меньше длины исходного тела).

Определение коэффициента жесткости

Коэффициент жесткости (он также имеет названия коэффициента упругости или пропорциональности) чаще всего записывается буквой k, но иногда можно встретить обозначение D или c. Численно жесткость будет равна величине силы, которая растягивает пружину на единицу длины (в случае СИ - на 1 метр). Формула для нахождения коэффициента упругости выводится из частного случая закона Гука:

Чем больше величина жесткости, тем больше будет сопротивление тела к его деформации. Также коэффициент Гука показывает, насколько устойчиво тело к действию внешней нагрузки. Зависит этот параметр от геометрических параметров (диаметра проволоки, числа витков и диаметра намотки от оси проволоки) и от материала, из которого она изготовлена.

Единица измерения жесткости в СИ - Н/м.

Расчет жесткости системы

Встречаются более сложные задачи, в которых необходим расчет общей жесткости . В таких заданиях пружины соединены последовательно или параллельно.

Последовательное соединение системы пружин

При последовательном соединении общая жесткость системы уменьшается. Формула для расчета коэффициента упругости будет иметь следующий вид:

1/k = 1/k1 + 1/k2 + … + 1/ki,

где k - общая жесткость системы, k1, k2, …, ki - отдельные жесткости каждого элемента, i - общее количество всех пружин, задействованных в системе.

Параллельное соединение системы пружин

В случае когда пружины соединены параллельно , величина общего коэффициента упругости системы будет увеличиваться. Формула для расчета будет выглядеть так:

k = k1 + k2 + … + ki.

Измерение жесткости пружины опытным путем — в этом видео.

Вычисление коэффициента жесткости опытным методом

С помощью несложного опыта можно самостоятельно рассчитать, чему будет равен коэффициент Гука . Для проведения эксперимента понадобятся:

  • линейка;
  • пружина;
  • груз с известной массой.

Последовательность действий для опыта такова:

  1. Необходимо закрепить пружину вертикально, подвесив ее к любой удобной опоре. Нижний край должен остаться свободным.
  2. При помощи линейки измеряется ее длина и записывается как величина x1.
  3. На свободный конец нужно подвесить груз с известной массой m.
  4. Длина пружины измеряется в нагруженном состоянии. Обозначается величиной x2.
  5. Подсчитывается абсолютное удлинение: x = x2-x1. Для того чтобы получить результат в международной системе единиц, лучше сразу перевести его из сантиметров или миллиметров в метры.
  6. Сила, которая вызвала деформацию, - это сила тяжести тела. Формула для ее расчета - F = mg, где m - это масса используемого в эксперименте груза (переводится в кг), а g - величина свободного ускорения, равная приблизительно 9,8.
  7. После проведенных расчетов остается найти только сам коэффициент жесткости, формула которого была указана выше: k = F/x.

Примеры задач на нахождение жесткости

Задача 1

На пружину длиной 10 см действует сила F = 100 Н. Длина растянутой пружины составила 14 см. Найти коэффициент жесткости.

  1. Рассчитываем длину абсолютного удлинения: x = 14-10 = 4 см = 0,04 м.
  2. По формуле находим коэффициент жесткости: k = F/x = 100 / 0,04 = 2500 Н/м.

Ответ: жесткость пружины составит 2500 Н/м.

Задача 2

Груз массой 10 кг при подвешивании на пружину растянул ее на 4 см. Рассчитать, на какую длину растянет ее другой груз массой 25 кг.

  1. Найдем силу тяжести, деформирующей пружину: F = mg = 10 · 9.8 = 98 Н.
  2. Определим коэффициент упругости: k = F/x = 98 / 0.04 = 2450 Н/м.
  3. Рассчитаем, с какой силой действует второй груз: F = mg = 25 · 9.8 = 245 Н.
  4. По закону Гука запишем формулу для абсолютного удлинения: x = F/k.
  5. Для второго случая подсчитаем длину растяжения: x = 245 / 2450 = 0,1 м.

Ответ: во втором случае пружина растянется на 10 см.

Если на середину доски, лежащей горизонтально на двух опорах поставить груз, то под действием силы тяжести некоторое время груз будет двигаться вниз, прогибая доску, а затем остановится.

Эту остановку можно объяснить тем, что кроме силы тяжести, направленной вниз, на доску подействовала другая сила, направленная вверх. При движении вниз доска деформируется, при этом возникает сила, с которой опора действует на тело, лежащее на ней, эта сила направленна вверх, то есть в сторону, противоположную силе тяжести. Такую силу называют силой упругости . Когда сила упругости становится равной силе тяжести, действующей на тело, опора и тело останавливаются.

Сила упругости — это сила, возникающая при деформации тела (то есть при изменении его формы, размеров) и всегда направлена в сторону, противоположную деформирующей силы.

Причина возникновения силы упругости

Причиной возникновения сил упругости является взаимодействие молекул тела . На малых расстояниях молекулы отталкиваются, а на больших – притягиваются. Конечно речь идёт о расстояниях сравнимых с размерами самих молекул.

В недеформированном теле молекулы находятся на таком расстоянии, при котором силы притяжения и отталкивания уравновешиваются. При деформации тела (при растяжении или сжатии) расстояния между молекулами изменяются – начинают преобладать либо силы притяжения, либо – отталкивания. В результате и возникает сила упругости, которая всегда направлена так, чтобы уменьшить величину деформации тела .

Закон Гука

Если к пружине повесить одну гирьку, то мы увидим, что пружина деформировалась — удлинилась на некоторую величину х . Если к пружине подвесить две одинаковые гирьки, то увидим, что удлинение стало в два раза больше. Удлинение пружины пропорционально силе упругости.

Сила упругости, возникающая при деформации тела, по модулю пропорциональна удлинению тела и направлена так, что стремится уменьшить величину деформации тела.

Закон Гука справедлив только для упругих деформаций, то есть таких видов деформации, которые исчезают, когда деформирующая сила перестаёт действовать!!!

Закон Гука можно записать в виде формулы:

где k — жёсткость пружины;
х — удлинение пружины (равно разнице конечной и начальной длине пружины);
знак «–» показывает, что сила упругости всегда направлена в противоположную сторону деформирующей силы.

«Разновидности» силы упругости

Силу упругости, которая действует со стороны опоры, называют силой нормальной реакции опоры . Нормальная от слова «нормаль», то есть реакция опоры всегда перпендикулярна поверхности.

Силу упругости, которая действует со стороны подвеса, называют силой натяжения нити (подвеса) .

Сила упругости — это та сила, которая возникает при деформации тела и которая стремится восстановить прежние форму и размеры тела.

Сила упругости возникает в результате электромагнитного взаимодействия между молекулами и атомами вещества.

Самый простой вариант деформации можно рассмотреть на примере сжатия и растяжения пружины.

На данном рисунке (x > 0) — деформация растяжения; (x < 0) — деформация сжатия. (Fx) — внешняя сила.

В том случае, когда деформация самая незначительная, т.е малая, сила упругости направлена в сторону, которая является противоположной по направлению перемещающихся частиц тела и пропорциональна деформации тела:

Fx = Fупр = - kx

С помощью данного соотношения выражен закон Гука, который был установлен экспериментальным методом. Коэффициент k принято называть жесткостью тела. Жесткость тела измеряется в ньютонах на метр (Н/м) и зависит от размеров и формы тела, а также от того, из каких материалов состоит данное тело.

Закон Гука в физике для определения деформации сжатия или растяжения тела записывают совершенно в другой форме. В данном случае относительной деформацией называется


Роберт Гук

(18.07.1635 - 03.03.1703)

Английский естествоиспытатель, учёный-энциклопедист

отношение ε = x / l . В то же время напряжением называется площадь поперечного сечения тела после относительной деформации:

σ = F / S = -Fупр / S

В данном случае закон Гука формулируют так: напряжению σ пропорциональна относительная деформация ε . В данной формуле коэффициент Е называют модулем Юнга. Данный модуль не зависит от формы тела и его размеров, но в то же время, напрямую зависит от свойств материалов, из которого состоит данное тело. Для различных материалов модуль Юнга колеблется в достаточно широком диапазоне. Например, для резины E ≈ 2·106 Н/м2, а для стали E ≈ 2·1011 Н/м2 (т.е. на пять порядков больше).

Вполне допустимо обобщить закон Гука и в тех случаях, когда совершаются более сложные деформации. Например, рассмотрим деформацию изгиба. Рассмотрим стержень, который лежит на двух опорах и имеет существенный прогиб.

Со стороны опоры (или подвеса) на данное тело действует упругая сила, это сила реакции опоры. Сила реакции опоры при соприкосновении тел будет направлена к поверхности соприкосновения строго перпендикулярно. Такую силу принято называть силой нормального давления.

Рассмотрим второй вариант. Путь тело лежит на неподвижном горизонтальном столе. Тогда реакции опоры уравновешивает силу тяжести и направлена она вертикально вверх. Причем весом тела считают силу, с которой тело воздействует на стол.