Какое значение имеет земной магнетизм. Магниты и магнитные свойства вещества

Земля обладает магнитным полем, наглядно проявляющимся в воздействии на магнитную стрелку. Свободно подвешенная в пространстве, магнитная стрелка устанавливается в любом месте в направлении магнитных силовых линий, сходящихся в магнитных полюсах.
Магнитные полюсы Земли не совпадают с географическими и медленно изменяют свое местоположение. В настоящий период географические координаты магнитных полюсов таковы: в северном полушарии - 72° с. ш. и 96° з. д., в южном полушарии - 70° ю. ш. и 150° в. д. Силовые линии, идущие от одного магнитного полюса к другому, - магнитные меридианы не совпадают по направлению с географическими меридианами, и магнитная стрелка компаса не указывает строго направление север - юг. Угол между магнитным и географическим меридианами называется углом магнитного склонения или магнитным склонением. Склонение бывает восточным (положительным) и западным (отрицательным). В первом случае стрелка отклоняется к востоку от географического меридиана, во втором - к западу от него. Линии, соединяющие точки с одинаковым склонением, - изогоны . Изогоны, соединяющие точки с нулевым склонением и называемые агоническими линиями , делят Землю на область восточного и западного склонений. Агонические линии имеют сложную форму (см. карту 23).


Свободно подвешенная магнитная стрелка сохраняет горизонтальное положение только на линии магнитного экватора . К северу от этой линии северный конец магнитной стрелки опускается, причем тем больше, чем меньше расстояние до магнитного полюса. На магнитном полюсе северного полушария стрелка становится вертикально, северным концом вниз. К югу от магнитного экватора вниз наклоняется, наоборот, южный конец магнитной стрелки. Угол, образованный магнитной стрелкой с горизонтальной плоскостью, называется углом магнитного наклонения или магнитным наклонением . Магнитное наклонение может быть северным и южным, оно изменяется от 0° на магнитном экваторе до 90° на магнитных полюсах. Линии, соединяющие точки с одинаковым наклонением, - изоклины .
Склонение и наклонение характеризуют направление магнитных силовых линий в любом пункте в данный момент.
Сила магнитного поля характеризуется его напряженностью . За единицу напряженности принимают напряженность такого магнитного поля, в котором сила, действующая на единицу магнитной массы, равна одной дине. Единица измерения напряженности магнитного поля называется эрстед (0,00001 эрстеда - гамма). Напряженность магнитного поля Земли невелика: на магнитном экваторе - 0,3-0,5 эрстеда, на магнитном полюсе - 0,6-0,7. Линии равного напряжения магнитного поля - изодинамы .

Различают постоянное и переменное магнитные поля Земли. Постоянное магнитное поле обусловлено магнетизмом самой планеты. Представление о состоянии постоянного магнитного поля Земли дают магнитные карты. Ho так как все элементы земного магнетизма (склонение, наклонение, напряженность) непрерывно, хотя и очень медленно, изменяются, карты сохраняют необходимую точность только в течение нескольких лет. Обычно магнитная карта приурочивается к середине года, оканчивающегося на 0 или на 5, например на 1 июля 1950, 1955, 1960, 1965 г. и т. д. Пятилетний период, для которого магнитная карта действительна, называется магнитной эпохой . Сейчас эпоха 1965 г. На основании анализа магнитных карт, построенных для определенной эпохи, составляют поправочные таблицы для постоянного магнитного поля на будущее.
Существующее распределение элементов земного магнетизма позволяет сделать вывод о сходстве постоянного магнитного поля Земли с магнитным полем однородно намагниченного шара. Магнитные полюса такого поля называются геомагнитными полюсами. Их географические координаты - 78°32" с. ш. и 69°9" з. д., 78°32" ю. ш. и 110°52" в. д.
Магнитные аномалии проявляются в отклонениях значений элементов земного магнетизма от их среднего значения для данного места. Магнитные аномалии, охватывающие огромные площади, называются региональными в отличие от локальных (местных), занимающих площадь от нескольких десятков до нескольких десятков тысяч квадратных километров. Примером региональной магнитной аномалии является Восточно-Сибирская. На огромной территории Восточной Сибири обнаружено западное склонение вместо восточного. Магнитное поле этой аномалии очень медленно затухает с высотой Это значит, что региональные аномалии вызваны процессами, происходящими глубоко в Земле, возможно в земном ядре.
Примером локальной (местной) аномалии может быть Курская магнитная аномалия, создающая напряжение магнитного поля в 5 раз больше среднего напряжения магнитного поля Земли. Аномалия проявляется в изменениях склонения от 0 до 180° и наклонения от 40 до 80°. Местные аномалии вызываются присутствием в верхних слоях земной коры залежей магнитных пород и руд. С высотой магнитное поле таких аномалий сравнительно быстро затухает.
Существование постоянного магнитного поля Земли объясняют вихревыми электрическими таками, возникающими в земном ядре (во внешней его части) благодаря непрерывному движению заряженных электронов, описывающих круги и петли. Изменения в характере этих движений вызывают медленные изменения постоянного магнитного поля Земли - его вековые колебания.
Переменное магнитное поле составляет всего 6% общей напряженности магнитного поля Земли. Оно вызывается движением электрически заряженных частиц в земной атмосфере и как бы накладывается на постоянное магнитное поле. На фоне спокойного магнитного поля возникают отдельные его колебания - вариации. Существуют вариации с годичным периодом, вызываемые сезонными движениями земной атмосферы, суточные вариации, связанные со сменой дня и ночи, лунные вариации, являющиеся результатом приливов в атмосфере. Вариации, обладающие периодом от 5 до 100 сек. и называемые пульсациями, пока не имеют объяснения.
Магнитные бури - особенно сильные возмущения магнитного поля, проявляющиеся в быстром отклонении магнитной стрелки от нормального положения. Магнитные бури вызываются вспышками на Солнце и сопровождающим их проникновением к Земле и в ее атмосферу корпускулярных потоков. 23 февраля 1956 г. на Солнце произошел взрыв, продолжавшийся несколько минут, а на Земле разразилась магнитная буря, в результате которой была на 2 часа нарушена работа радиостанций, вышел на некоторое время из строя трансатлантический телефонный кабель и т. д. Особенно сильные магнитные бури возникают в том случае, если корпускулярный поток охватывает всю Землю, менее сильные магнитные бури вызываются потоками, проходящими мимо Земли.
Магнитное поле Земли простирается вверх до высоты 90 000 км. До высоты 44 000 км величина магнитного поля Земли убывает обратно пропорционально кубу расстояния от поверхности Земли. В слое от 44 000 до 80 000 км магнитное поле неустойчиво, в нем постоянно происходят резкие колебания. Выше 80 000 км интенсивность магнитного поля быстро падает, принимая значение, сохраняющееся в межпланетном пространстве. На расстоянии 90 000 км от поверхности Земли магнитное поле теряет способность притягивать (захватывать) заряженные частицы. Эту границу предлагают считать верхней границей газовой оболочки Земли.
Величина магнитного поля Земли в сотни раз меньше, например, величины магнитного поля, возникающего около обыкновенного подковообразного магнита. Ho магнитное поле Земли имеет огромный объем, а так как энергия магнитного поля пропорциональна объему поля, влияние его на процессы, происходящие на Земле, очень велико. Магнитное поле Земли либо отклоняет, либо захватывает заряженные частицы, летящие от Солнца или образующиеся при воздействии космических лучей на атомы и молекулы воздуха. Заряженные частицы, попавшие в магнитное поле Земли, образуют радиационные пояса: нижний, или внутренний, и верхний, или внешний.
Внутренний радиационный пояс простирается от высоты 2400 до высоты 5600 км. Он состоит из протонов сравнительно высоких энергий и представляет непосредственную опасность для космических полетов. Этот пояс сравнительно устойчив во времени.
Внешний радиационный пояс имеет максимальную интенсивность излучения на высоте 20 тыс. км. В нем зарегистрированы и протоны и электроны. Этот пояс не стабилен во времени, его изменения согласуются с изменениями солнечной активности. Непосредственной опасности для космических полетов внешний пояс не представляет. Результаты полетов космических ракет дают основания предполагать существование третьего, очень нестабильного пояса заряженных частиц, называемого «круговым током» и находящегося на высоте 45-60 тыс. км.
Всю область околоземного пространства, в которой находятся заряженные частицы, захваченные магнитным полем Земли, называют магнитосферой . Магнитосфера довольно четко ограничена магнитопаузой. Под действием солнечного ветра она имеет овальную форму.
Частица, попавшая в магнитное толе Земли, вращаясь по спирали вокруг магнитной силовой линии, двигается из одного полушария в другое и обратно, смещаясь к востоку (протоны) или к западу (электроны). Движение заряженной частицы продолжается до тех пор, пока она не потеряет заряд от столкновения с молекулами воздуха. На близкое расстояние к Земле проникают только частицы больших энергий, они и создают полярные сияния , очерчивающие область, где заканчиваются пути заряженных частиц, попавших в атмосферу. Полярные сияния чаще возникают в зоне, опоясывающей Землю примерно на расстоянии 23° от геомагнитных полюсов. Полярные сияния обычно сопровождаются магнитными бурями.
Влияние магнитного поля отражается на всех процессах, происходящих на Земле, но механизм и степень этого влияния пока еще недостаточно изучены.
По мнению специалистов, изучающих намагниченность древних горных пород, направление магнитных силовых линий в течение геологической истории Земли изменялось. Это значит, что изменялось направление круговых токов в земном ядре. Изменение, а может быть, и временное прекращение этих токов должно вызывать изменение и временное исчезновение магнитных силовых линий, а следовательно, и «ловушек» заряженных частиц, идущих к Земле и образующих радиационные пояса. В такие периоды космическое излучение достигнет земной поверхности, а это существенно отразится на процессах, происходящих в географической оболочке, и прежде всего на процессах, происходящих в живом веществе.

В 1891 году английский ученый Шустер пытался объяснить магнетизм Земли ее вращением вокруг оси. Много труда этой гипотезе отдал известный физик П. Н. Лебедев. Он предполагал, что под влиянием центробежной силы электроны в атомах смещаются в сторону поверхности Земли. От того поверхность должна быть отрицательно заряженной, это и вызывает магнетизм. Но опыты с вращением кольца до 35 тыс. оборотов в минуту гипотезу не подтвердили – магнетизм в кольце не появился.

Английский ученый В. Гельберт считал, что Земля состоит из магнитного камня. Позднее решили, что Земля намагнитилась от Солнца. Расчеты опровергли эти гипотезы.

Пытались объяснить магнетизм Земли течениями масс в ее жидком металлической ядре. Однако, эта гипотеза сама опирается на гипотезу жидкого ядра Земли. Многие ученые считают, что ядро твердое и отнюдь не железное.

В 1947 году П. Блекет (Англия) высказал предположение, что присутствие магнитного поля у вращающихся тел – неизвестный закон природы. Блекет попытался установить зависимость магнетизма от скорости вращения тела.

В то время были известны данные о скорости вращения и магнитных полях трех небесных тел – Земли, Солнца и Белого Карлика – звезды Е78 из созвездия Девы.

Магнитное поле тела характеризуется его магнитным моментом, вращение тела – угловым моментом (при учете размеров и массы тела). Давно известно, что магнитные моменты Земли и Солнца относятся друг к другу так же, как их угловые моменты. Звезда Е78 соблюдала эту пропорциональность! Отсюда стало очевидным, что существует прямая связь вращения небесных тел с их магнетизмом.

Складывалось впечатление, что все же именно вращение тел вызывает магнетизм. Блекет пытался экспериментально доказать существование предложенного им закона. Для опыта был изготовлен золотой цилиндр весом в 20 кг. По тончайшие опыты с упомянутым цилиндром ничего не дали. Немагнитный золотой цилиндр не показал и признаков магнетизма.

Теперь установлены магнитный и угловой моменты у Юпитера, а также предварительно у Венеры. И снова их магнитные поля, разделенные на угловые моменты, получаются близкими к числу Блекета. После такого совпадения коэффициентов трудно приписать дело случаю.

Так что же – вращение Земли возбуждает магнитное поле, или магнетизм Земли вызывает ее вращение? Почему-то всегда ученые считали, что вращение присуще Земле с момента ее образования. Так ли это? А может быть, не так. Аналогия с нашим телевизионным опытом ставит вопрос: не потому ли Земля вращается вокруг своей оси, что она, как большой магнит, находится в потоке заряженных частиц? Поток состоит в основном из ядер водорода (протонов), гелия (альфа-частицы). Электронов в " " не наблюдается, они, вероятно, образуются в магнитных ловушках в момент столкновений корпускул и рождаются каскадами в зонах магнитного поля Земли.

Связь магнетизма Земли с ее ядром теперь вполне очевидна. Расчеты ученых показывают, что Луна не имеет текучего ядра, поэтому не должна иметь и магнитного поля. И действительно, измерения при помощи космических ракет показали, что Луна не имеет вокруг себя заметного магнитного поля.

Интересные данные получены в результате наблюдений земных токов в Арктике и Антарктиде. Интенсивность земных электротоков там очень велика. Она в десятки и сотни раз превышает интенсивность в средних широтах. Этот факт свидетельствует о том, что приток электронов из колец магнитных ловушек Земли усиленно поступает в Землю через полярные шапки в зонах магнитных полюсов, как, например, в опыте с .

В момент усиления солнечной активности усиливаются и земные электротоки. Теперь, вероятно, можно считать установленным, что электротоки в Земле вызываются течениями масс ядра Земли и притоков в Землю электронов из космоса, главным образом из ее радиационных колец.

Итак, электротоки вызывают магнетизм Земли, а магнетизм Земли, в свою очередь, очевидно, заставляет вращаться нашу Землю. Нетрудно догадаться, что скорость вращения Земли будет зависеть от соотношения отрицательно и положительно заряженных частиц, захваченных ее магнитным полем извне, а также рожденных в пределах магнитного поля Земли.

Земной магнетизм

геомагнетизм, магнитное поле Земли и околоземного космического пространства; раздел геофизики, изучающий распределение в пространстве и изменения во времени геомагнитного поля, а также связанные с ним геофизические процессы в Земле и верхней атмосфере.

В каждой точке пространства геомагнитное поле характеризуется вектором напряжённости Т, величина и направление которого определяются 3 составляющими X, Y, Z (северной, восточной и вертикальной) в прямоугольной системе координат (рис. 1 ) или 3 элементами З. м.: горизонтальной составляющей напряжённости Н, склонением магнитным D (См. Склонение магнитное) (угол между Н и плоскостью географического меридиана) и наклонением магнитным I (угол между Т и плоскостью горизонта).

З. м. обусловлен действием постоянных источников, расположенных внутри Земли и испытывающих лишь медленные вековые изменения (вариации), и внешних (переменных) источников, расположенных в магнитосфере Земли (См. Магнитосфера Земли) и ионосфере (См. Ионосфера). Соответственно различают основное (главное, Земной магнетизм99%) и переменное (Земной магнетизм1%) геомагнитные поля.

Основное (постоянное) геомагнитное поле . Для изучения пространственного распределения основного геомагнитного поля измеренные в разных местах значения Н, D, I наносят на карты (Магнитные карты) и соединяют линиями точки равных значений элементов. Такие линии называют соответственно изодинамами (См. Изодинамы), изогонами (См. Изогоны), изоклинами (См. Изоклины). Линия (изоклина) I = 0, т. е. магнитный экватор, не совпадает с географическим экватором. С увеличением широты значение I возрастает до 90° в магнитных полюсах (См. Магнитный полюс). Полная напряжённость Т (рис. 2 ) от экватора к полюсу растет с 33,4 до 55,7 а/м (от 0,42 до 0,70 э). Координаты северного магнитного полюса на 1970: долгота 101,5° з. д., широта 75,7° с. ш.; южного магнитного полюса: долгота 140,3° в. д., широта 65,5° ю. ш. Сложную картину распределения геомагнитного поля в первом приближении можно представить полем диполя (См. Диполь) (эксцентричного, со смещением от центра Земли приблизительно на 436 км ) или однородного намагниченного шара, магнитный момент которого направлен под углом 11,5° к оси вращения Земли. Полюсы геомагнитные (полюсы однородно намагниченного шара) и полюсы магнитные задают соответственно систему геомагнитных координат (широта геомагнитная, меридиан геомагнитный, экватор геомагнитный) и магнитных координат (широта магнитная, меридиан магнитный). Отклонения действительного распределения геомагнитного поля от дипольного (нормального) называют магнитными аномалиями (См. Магнитные аномалии). В зависимости от интенсивности и величины занимаемой площади различают мировые аномалии глубинного происхождения, например Восточно-Сибирскую, Бразильскую и др., а также аномалии региональные и локальные. Последние могут быть вызваны, например, неравномерным распределением в земной коре ферромагнитных минералов. Влияние мировых аномалий сказывается до высот Земной магнетизм 0,5R 3 над поверхностью Земли (R 3 - радиус Земли). Основное геомагнитное поле имеет дипольный характер до высот Земной магнетизм3R 3 .

Оно испытывает вековые вариации, неодинаковые на всём земном шаре. В местах наиболее интенсивного векового хода вариации достигают 150γ в год (1γ = 10 -5 э). Наблюдается также систематический дрейф магнитных аномалий к западу со скоростью около 0,2°в год и изменение величины и направления магнитного момента Земли со скоростью Земной магнетизм20γ в год. Из-за вековых вариаций и недостаточной изученности геомагнитного поля на больших пространствах (океанах и полярных областях) возникает необходимость заново составлять магнитные карты. С этой целью проводятся мировые магнитные съёмки на суше, в океанах (на немагнитных судах), в воздушном пространстве (Аэромагнитная съёмка) и в космическом пространстве (при помощи искусственных спутников Земли). Для измерений применяют: Компас магнитный, Теодолит магнитный, магнитные весы, Инклинатор , Магнитометр , Аэромагнитометр и др. приборы. Изучение З. м. и составление карт всех его элементов играет важную роль для морской и воздушной навигации, в геодезии, маркшейдерском деле.

Изучение геомагнитного поля прошлых эпох производится по остаточной намагниченности горных пород (см. Палеомагнетизм), а для исторического периода - по намагниченности изделий из обожжённой глины (кирпичи, керамическая посуда и т.д.). Палеомагнитные исследования показывают, что направление основного магнитного поля Земли в прошлом многократно изменялось на противоположное. Последнее такое изменение имело место около 0,7 млн. лет назад.

А. Д. Шевнин.

Происхождение основного геомагнитного поля. Для объяснения происхождения основного геомагнитного поля выдвигалось много различных гипотез, в том числе даже гипотезы о существовании фундаментального закона природы, согласно которому всякое вращающееся тело обладает магнитным моментом. Делались попытки объяснить основное геомагнитное поле присутствием ферромагнитных материалов в коре Земли или в её ядре; движением электрических зарядов, которые, участвуя в суточном вращении Земли, создают электрический ток; наличием в ядре Земли токов, вызываемых термоэлектродвижущей силой на границе ядра и мантии и т.д., и, наконец, действием так называемого гидромагнитного динамо в жидком металлическом ядре Земли. Современные данные о вековых вариациях и многократных изменениях полярности геомагнитного поля удовлетворительно объясняются только гипотезой о гидромагнитном динамо (ГД). Согласно этой гипотезе, в электропроводящем жидком ядре Земли могут происходить достаточно сложные и интенсивные движения, приводящие к самовозбуждению магнитного поля, аналогично тому, как происходит генерация тока и магнитного поля в динамо-машине с самовозбуждением. Действие ГД основано на электромагнитной индукции в движущейся среде, которая в своём движении пересекает силовые линии магнитного поля.

Исследования ГД опираются на магнитную гидродинамику (См. Магнитная гидродинамика). Если считать скорость движения вещества в жидком ядре Земли заданной, то можно доказать принципиальную возможность генерации магнитного поля при движениях различного вида, как стационарных, так и нестационарных, регулярных и турбулентных. Усреднённое магнитное поле в ядре можно представить в виде суммы двух составляющих - тороидального поля В φ и поля Вр, силовые линии которого лежат в меридиональных плоскостях (рис. 3 ). Силовые линии тороидального магнитного поля В φ замыкаются внутри земного ядра и не выходят наружу. Согласно наиболее распространённой схеме земного ГД, поле B φ в сотни раз сильнее, чем проникающее из ядра наружу поле В р , имеющее преимущественно дипольный вид. Неоднородное вращение электропроводящей жидкости в ядре Земли деформирует силовые линии поля В р и образует из них силовые линии поля В (. В свою очередь, поле В р генерируется благодаря индукционному взаимодействию движущейся сложным образом проводящей жидкости с полем В φ. Для обеспечения генерации поля В р из В φ движения жидкости не должны быть осесимметричными. В остальном, как показывает кинетическая теория ГД, движения могут быть весьма разнообразными. Движения проводящей жидкости создают в процессе генерации, кроме поля В р , также др. медленно изменяющиеся поля, которые, проникая из ядра наружу, вызывают вековые вариации основного геомагнитного поля.

Общая теория ГД, исследующая и генерацию поля, и «двигатель» земного ГД, т. е. происхождение движений, находится ещё в начальной стадии развития, и в ней ещё многое гипотетично. В качестве причин, вызывающих движения, выдвигаются архимедовы силы, обусловленные небольшими неоднородностями плотности в ядре, и силы инерции (См. Сила инерции).

Первые могут быть связаны либо с выделением тепла в ядре и тепловым расширением жидкости (термическая Конвекция), либо с неоднородностью состава ядра вследствие выделения примесей на его границах. Вторые могут вызываться ускорением, обусловленным прецессией (См. Прецессия) земной оси. Близость геомагнитного поля к полю диполя с осью, почти параллельной оси вращения Земли, указывает на тесную связь между вращением Земли и происхождением З. м. Вращение создаёт Кориолиса силу (См. Кориолиса сила), которая может играть существенную роль в механизме ГД Земли. Зависимость величины геомагнитного поля от интенсивности движения вещества в земном ядре сложна и изучена ещё недостаточно. Согласно палеомагнитным исследованиям, величина геомагнитного поля испытывает колебания, но в среднем, по порядку величины, она сохраняется неизменной в течение длительного времени - порядка сотен млн. лет.

Функционирование ГД Земли связано со многими процессами в ядре и в мантии Земли, поэтому изучение основного геомагнитного поля и земного ГД является существенной частью всего комплекса геофизических исследований внутреннего строения и развития Земли.

С. И. Брагинский.

Переменное геомагнитное поле. Измерения, выполненные на спутниках и ракетах, показали, что взаимодействие плазмы солнечного ветра (См. Солнечный ветер) с геомагнитным полем ведёт к нарушению дипольной структуры поля с расстояния Земной магнетизм3от центра Земли. Солнечный ветер локализует геомагнитное поле в ограниченном объёме околоземного пространства - магнитосфере Земли, при этом на границе магнитосферы динамическое давление солнечного ветра уравновешивается давлением магнитного поля Земли. Солнечный ветер сжимает земное магнитное поле с дневной стороны и уносит геомагнитные силовые линии полярных областей на ночную сторону, образуя вблизи плоскости эклиптики магнитный хвост Земли протяжённостью не менее 5 млн. км (см. рис. в статьях Земля и Магнитосфера Земли). Приблизительно дипольная область поля с замкнутыми силовыми линиями (внутренняя магнитосфера) является магнитной ловушкой заряженных частиц околоземной плазмы (см. Радиационные пояса Земли).

Обтекание магнитосферы плазмой солнечного ветра с переменной плотностью и скоростью заряженных частиц, а также прорыв частиц в магнитосферу приводят к изменению интенсивности систем электрических токов в магнитосфере и ионосфере Земли. Токовые системы в свою очередь вызывают в околоземном космическом пространстве и на поверхности Земли колебания геомагнитного поля в широком диапазоне частот (от 10 -5 до 10 2 гц ) и амплитуд (от 10 -3 до 10 -7 э ). Фотографическая регистрация непрерывных изменений геомагнитного поля осуществляется в магнитных обсерваториях при помощи Магнитограф ов. В спокойное время в низких и средних широтах наблюдаются периодические солнечно-суточные и лунно-суточные Вариации магнитные с амплитудами 30-70γ и 1-5γ соответственно. Другие наблюдаемые неправильные колебания поля различной формы и амплитуды называют магнитными возмущениями, среди которых выделяют несколько типов магнитных вариаций.

Магнитные возмущения, охватывающие всю Землю и продолжающиеся от одного (рис. 4 ) до нескольких дней, называются мировыми магнитными бурями (См. Магнитные бури), во время которых амплитуда отдельных составляющих может превзойти 1000γ. Магнитная буря - одно из проявлений сильных возмущений магнитосферы, возникающих при изменении параметров солнечного ветра, особенно скорости его частиц и нормальной составляющей межпланетного магнитного поля относительно плоскости эклиптики. Сильные возмущения магнитосферы сопровождаются появлением в верхней атмосфере Земли полярных сияний, ионосферных возмущений, рентгеновского и низкочастотного излучений.

Практические применения явлений З. м. Под действием геомагнитного поля магнитная стрелка располагается в плоскости магнитного меридиана. Это явление с древнейших времён используется для ориентирования на местности, прокладывания курса судов в открытом море, в геодезической и маркшейдерской практике, в военном деле и т.д. (см. Компас , Буссоль).

Исследование локальных магнитных аномалий позволяет обнаружить полезные ископаемые, в первую очередь железную руду (см. Магнитная разведка), а в комплексе с др. геофизическими методами разведки - определить место их залегания и запасы. Широкое распространение получил магнитотеллурический способ зондирования недр Земли, в котором по полю магнитной бури вычисляют электропроводность внутренних слоев Земли и оценивают затем существующие там давление и температуру.

Одним из источников сведений о верхних слоях атмосферы служат геомагнитные вариации. Магнитные возмущения, связанные, например, с магнитной бурей, наступают на несколько часов раньше, чем под её воздействием происходят изменения в ионосфере, нарушающие радиосвязь. Это позволяет делать магнитные прогнозы, необходимые для обеспечения бесперебойной радиосвязи (прогнозы «радиопогоды»). Геомагнитные данные служат также для прогноза радиационной обстановки в околоземном пространстве при космических полётах.

Постоянство геомагнитного поля до высот в несколько радиусов Земли используется для ориентации и маневра космических аппаратов.

Геомагнитное поле воздействует на живые организмы, растительный мир и человека. Например, в периоды магнитных бурь увеличивается количество сердечно-сосудистых заболеваний, ухудшается состояние больных, страдающих гипертонией, и т.д. Изучение характера электромагнитного воздействия на живые организмы представляет собой одно из новых и перспективных направлений биологии.

А. Д. Шевнин.

Лит.: Яновский Б. М., Земной магнетизм, т. 1-2, Л., 1963-64; его же, Развитие работ по геомагнетизму в СССР за годы Советской власти. «Изв. АН СССР, Физика Земли», 1967, № 11, с. 54; Справочник по переменному магнитному полю СССР, Л., 1954; Околоземное космическое пространство. Справочные данные, пер. с англ., М., 1966; Настоящее и прошлое магнитного поля Земли, М., 1965; Брагинский С. И., Об основах теории гидромагнитного динамо Земли, «Геомагнетизм и аэрономия»,1967, т.7, № 3, с. 401; Солнечно-земная физика, М., 1968.

Рис. 2. Карта полной напряжённости геомагнитного поля (в эрстедах) для эпохи 1965 г.; чёрные кружочки - магнитные полюсы (М. П.). На карте указаны мировые магнитные аномалии: Бразильская (Б. А.) и Восточно-Сибирская (В.-С. А.).

Рис. 3. Схема магнитных полей в гидромагнитном динамо Земли: NS - ось вращения Земли: В р - поле, близкое к полю диполя, направленного вдоль оси вращения Земли; B φ - тороидальное поле (порядка сотен гаусс), замыкавщееся внутри земного ядра.

Рис. 4. Магнитограмма, на которой зафиксирована малая магнитная буря: Н 0 , D 0 , Z 0 - начало отсчёта соответствующей составляющей земного магнетизма; стрелками показано направление отсчёта.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Земной магнетизм" в других словарях:

    - (геомагнетизм), 1) магнитное поле Земли. 2) Раздел геофизики, изучающий распределение в пр ве и изменения во времени магн. поля Земли, а также связанные с ним физ. процессы в Земле и в атмосфере. В каждой точке пр ва геомагн. поле характеризуется … Физическая энциклопедия

    - (Terrestrial magnetism) магнитное поле вблизи земли, обнаруживаемое проще всего по его влиянию на магнитную стрелку. Направление силы З. М. определяется обычно двумя углами: магнитным склонением и магнитным наклонением, а величина силы З. М.… … Морской словарь

    Большой Энциклопедический словарь

    земной магнетизм - геомагнетизм — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы геомагнетизм EN Earth magnetismterrestrial… … Справочник технического переводчика

    земной магнетизм - Магнитное поле Земли, рассматриваемое в целом, разнящееся по своей интенсивности и направлению, воздействующее на стрелку магнитного компаса, который указывает на северный геомагнитный полюс … Словарь по географии

    ЗЕМНОЙ МАГНЕТИЗМ - магнитное поле Земли. Оно слагается из двух составляющих: постоянного поля, обусловленного внутренним строением Земли, и переменного поля, обусловленного действием электрических токов в ионосфере и магнитосфере, не превышающего 1 % постоянной… … Большая политехническая энциклопедия

    Магнитное поле Земли, существование которого обусловлено действием постоянных источников, расположенных внутри Земли (см. Гидромагнитное динамо) и создающих основной компонент поля (99%), а также переменных источников (электрических токов) в… … Энциклопедический словарь

    земной магнетизм - Žemės magnetizmas statusas T sritis fizika atitikmenys: angl. earth magnetism; geomagnetismus; terrestrial magnetism vok. Erdmagnetismus, m rus. геомагнетизм, m; земной магнетизм, m pranc. géomagnétisme, m; magnétisme terrestre, m … Fizikos terminų žodynas

ЗЕМНОЙ МАГНЕТИЗМ (геомагнетизм), магнитное поле Земли и околоземного космического пространства; раздел геофизики, изучающий магнитное поле Земли и связанные с ним явления (магнетизм горных пород, теллурические токи, полярные сияния, токи в ионосфере и магнитосфере Земли).

История изучения магнитного поля Земли . О существовании магнетизма было известно с глубокой древности. Считается, что первый компас появился в Китае (дата появления спорна). В конце 15 века во время плавания Х. Колумба было установлено, что склонение магнитное различно для разных точек поверхности Земли. Это открытие положило начало развитию науки о земном магнетизме. В 1581 году английский исследователь Р. Норман высказал предположение о том, что стрелку компаса разворачивают определённым образом силы, источник которых находится под поверхностью Земли. Следующим знаменательным шагом стало появление в 1600 книги У. Гильберта «О магните, магнитных телах и о большом магните - Земле», где было дано представление о причинах земного магнетизма. В 1785 начались разработки способа измерения напряжённости магнитного поля, базирующегося на методе вращающего момента, предложенном Ш. Кулоном. В 1839 К. Гаусс теоретически обосновал метод измерения горизонтальной составляющей вектора магнитного поля планеты. В начале 20 века была определена связь между магнитным полем Земли и её строением.

В результате наблюдений было установлено, что намагниченность земного шара более или менее однородна, а магнитная ось Земли близка к её оси вращения. Несмотря на относительно большой объём экспериментальных данных и многочисленные теоретические исследования, вопрос о происхождении земного магнетизма окончательно не решён. К началу 21 века наблюдаемые свойства магнитного поля Земли стали связывать с физическим механизмом гидромагнитного динамо (смотри Магнитная гидродинамика), согласно которому первоначальное магнитное поле, проникшее в ядро Земли из межпланетного пространства, может усиливаться и ослабляться в результате движения вещества в жидком ядре планеты. Для усиления поля достаточно наличия определённой асимметрии такого движения. Процесс усиления продолжается до тех пор, пока рост потерь на нагрев среды, идущий за счёт увеличения силы токов, не уравновесит приток энергии, поступающей за счёт её гидродинамического движения. Сходный эффект наблюдается при генерации электрического тока и магнитного поля в динамо-машине с самовозбуждением.

Напряжённость магнитного поля Земли. Характеристикой любого магнитного поля служит вектор его напряженности Н - величина, не зависящая от среды и численно равная магнитной индукции в вакууме. Собственное магнитное поле Земли (геомагнитное поле) является суммой полей, созданных различными источниками. Принято считать, что на поверхности планеты магнитное поле Н Т складывается из: поля, создаваемого однородной намагниченностью земного шара (дипольное поле, Н 0); поля, связанного с неоднородностью глубоких слоёв земного шара (поле мировых аномалий, Н а); поля, обусловленного намагниченностью верхних частей земной коры (Н к); поля, вызываемого внешними причинами (Н В); поля вариаций (δН), также связанных с источниками, расположенными вне земного шара: Н Т = Н о + Н к + Н а + Н в + δН. Сумма полей Н 0 + Н к образует главное магнитное поле Земли. Его вклад в поле, наблюдаемое на поверхности планеты, составляет более 95%. Аномальное поле Н а (вклад Н а в Н т около 4%) подразделяется на поле регионального характера (региональная аномалия), распространяющееся на большие площади, и поле местного характера (локальная аномалия). Сумму полей Н 0 + Н к + Н а часто называют нормальным полем (Н н). Так как Н в мало по сравнению с Н о и Н к (около 1% от Н т), нормальное поле практически совпадает с главным магнитным полем. Реально наблюдаемое поле (за вычетом поля вариаций δН) есть сумма нормального и аномального магнитных полей: Н т = Н н + Н а. Задача разделения поля на поверхности Земли на эти две части является неопределённой, так как разделение можно провести бесконечным числом способов. Для однозначности решения данной задачи необходимы сведения об источниках каждой из составляющих магнитного поля Земли. К началу 21 века установлено, что источниками аномального магнитного поля являются намагниченные горные породы, залегающие на глубинах, малых по сравнению с радиусом Земли. Источник главного магнитного поля находится на глубине больше половины радиуса Земли. Многочисленные экспериментальные данные позволяют построить математическую модель магнитного поля Земли, основанную на формальном изучении её структуры.

Элементы земного магнетизма. Для разложения вектора Н т на составляющие обычно используют прямоугольную систему координат с началом в точке измерения поля О (рисунок). В этой системе ось Ох ориентирована по направлению географического меридиана на север, ось Оу - по направлению параллели на восток, ось Oz направлена сверху вниз к центру земного шара. Проекцию Н Т на ось Ох называют северной составляющей поля, проекцию на ось Оу - восточной составляющей, проекцию на ось Oz - вертикальной составляющей; они обозначаются соответственно через Х, Y, Z. Проекцию Н т на плоскость ху обозначают как Н и называют горизонтальной составляющей поля. Вертикальная плоскость, проходящая через вектор Н т и ось Оz, называется плоскостью меридиана магнитного, а угол между географическим и магнитным меридианами - магнитным склонением, обозначаемым через D. Если вектор Н отклонён от направления оси Ох к востоку, склонение будет положительным (восточное склонение), а если к западу - отрицательным (западное склонение). Угол между векторами Н и Н т в плоскости магнитного меридиана носит название наклонения магнитного и обозначается через I. Наклонение I положительно, когда вектор Н т направлен вниз от земной поверхности, что имеет место в Северном полушарии Земли, и отрицательно, когда Н т направлен вверх, то есть в Южном полушарии. Склонение, наклонение, горизонтальная, вертикальная, северная, восточная составляющие носят название элементов земного магнетизма, которые можно рассматривать как координаты конца вектора Н т в различных системах координат (прямоугольной, цилиндрической и сферической).

Ни один из элементов земного магнетизма не остаётся постоянным во времени: их величина меняется от часа к часу и от года к году. Такие изменения получили название вариаций элементов земного магнетизма (смотри Магнитные вариации). Изменения, происходящие в течение короткого промежутка времени (около суток), носят периодический характер; их периоды, амплитуды и фазы чрезвычайно разнообразны. Изменения среднегодовых значений элементов носят монотонный характер; их периодичность выявляется лишь при очень большой длительности наблюдений (порядка многих десятков и сотен лет). Медленные вариации магнитной индукции называются вековыми; их величина составляет около 10 -8 Тл/год. Вековые вариации элементов связаны с источниками поля, лежащими внутри земного шара, и вызываются теми же причинами, что и само магнитное поле Земли. Быстротечные вариации периодического характера обусловлены электрическими токами в околоземной среде (смотри Ионосфера, Магнитосфера) и весьма различаются по амплитуде.

Современные исследования магнитного поля Земли. К началу 21 века принято выделять следующие причины, вызывающие земной магнетизм. Источник главного магнитного поля и его вековых вариаций расположен в ядре планеты. Аномальное поле обусловлено совокупностью источников в тонком верхнем слое, называемом магнитоактивной оболочкой Земли. Внешнее поле связано с источниками в околоземном пространстве. Поле внешнего происхождения называется переменным электромагнитным полем Земли, поскольку оно является не только магнитным, но и электрическим. Главное и аномальное поля часто объединяют общим условным термином «постоянное геомагнитное поле».

Основной метод изучения геомагнитного поля - непосредственное наблюдение пространственного распределения магнитного поля и его вариаций на поверхности Земли и в околоземном пространстве. Наблюдения сводятся к измерениям элементов земного магнетизма в различных точках пространства и носят название магнитных съёмок. В зависимости от места проведения съёмок их подразделяют на наземные, морские (гидромагнитные), воздушные (аэромагнитные) и спутниковые. В зависимости от размера территории, которую охватывают съёмки, выделяют глобальные, региональные и локальные съёмки. По измеряемым элементам съёмки делятся на модульные (Т-съёмки, при которых ведётся измерение модуля вектора поля) и компонентные (измеряется только одна или несколько компонент этого вектора).

Земное магнитное поле находится под воздействием потока солнечной плазмы - солнечного ветра. В результате взаимодействия солнечного ветра с магнитным полем Земли образуется внешняя граница околоземного магнитного поля (магнитопауза), ограничивающая земную магнитосферу. Форма магнитосферы постоянно меняется под воздействием солнечного ветра, часть энергии которого проникает внутрь неё и передаётся токовым системам, существующим в околоземном пространстве. Изменения магнитного поля Земли во времени, вызванные действием этих токовых систем, называются геомагнитными вариациями и различаются как по своей длительности, так и по локализации. Существует множество различных типов временных вариаций, каждый из которых имеет свою морфологию. Под действием солнечного ветра магнитное поле Земли искажается и приобретает «шлейф» в направлении от Солнца, который простирается на сотни тысяч километров, выходя за орбиту Луны.

Дипольный магнитный момент Земли составляет около 8·10 22 А·м 2 и постоянно уменьшается. Средняя индукция геомагнитного поля на поверхности планеты около 5·10 -5 Тл. Основное магнитное поле Земли (на расстоянии менее трёх радиусов Земли от её центра) по форме близко к полю эквивалентного магнитного диполя, центр которого смещён относительно центра Земли примерно на 500 км в направлении на точку с координатами 18° северной широты и 147,8° восточной долготы. Ось этого диполя наклонена к оси вращения Земли на 11,5°. На такой же угол полюсы геомагнитные отстоят от соответствующих географических полюсов. При этом южный геомагнитный полюс находится в Северном полушарии.

Широкомасштабные наблюдения за изменениями элементов земного магнетизма ведутся в магнитных обсерваториях, образующих мировую сеть. Вариации геомагнитного поля регистрируются специальными приборами, данные измерений обрабатываются и поступают в мировые центры сбора данных. Для визуального представления картины пространственного распределения элементов земного магнетизма проводится построение карт изолиний, то есть кривых, соединяющих на карте точки с одинаковыми значениями того или иного элемента земного магнетизма (смотри карты). Кривые, соединяющие точки одинаковых магнитных склонений, называются изогонами, кривые одинаковых магнитных наклонений - изоклинами, одинаковых горизонтальных или вертикальных, северных или восточных составляющих вектора Н т - изодинамами соответствующих составляющих. Линии равных изменений поля принято называть изопорами; линии равных значений поля (на картах аномального поля) - изоаномалиями.

Результаты исследований земного магнетизма применяют для изучения Земли и околоземного пространства. Измерения интенсивности и направления намагниченности горных пород позволяют судить об изменении геомагнитного поля во времени, что служит ключевой информацией для определения их возраста и развития теории литосферных плит. Данные о геомагнитных вариациях используются при магнитной разведке полезных ископаемых. В околоземном пространстве на расстоянии тысячи и более километров от поверхности Земли её магнитное поле отклоняет космические лучи, защищая всё живое на планете от жёсткой радиации.

Лит.: Яновский Б. М. Земной магнетизм. Л., 1978; Калинин Ю. Д. Вековые геомагнитные вариации. Новосиб., 1984; Колесова В. И. Аналитические методы магнитной картографии. М., 1985; Паркинсон У. Введение в геомагнетизм. М., 1986.

Понятие о массе и плотности Земли

Знание массы Земли позволяет определить массу Солнца, других планет Солнечной системы, Галактики и т. п.

Наиболее точными измерениями установлено, что масса Земли равна 5,98-10 27 г. Чтобы определить среднюю плотность Земли, достаточно ее массу разделить на объем. Средняя плотность Земли 5,517 г/см 3 . Так как плотность пород, залегающих на поверхности 12


Земли и на глубинах, достигнутых бурением, не превышает 3- 3,3 г/см 3 , то на больших глубинах плотность вещества должна достигать 12 г/см 3 .

У Земли есть магнитное поле, причины существования кото­рого не установлены. Магнитное поле имеет два магнитных по­люса и магнитную ось. Положение магнитных полюсов не совпа­дает с положением географических. Магнитные полюсы располо­жены в Северном и Южном полушариях несимметрично относи­тельно друг друга. В связи с этим линия, соединяющая их, - магнитная ось Земли образует с осью ее вращения угол до 11°.

Магнетизм Земли характеризуется магнитной напряженностью, склонением и наклонением. Магнитная напряженность изме­ряется в эрстедах.

Магнитным склонением называется угол отклоне­ния магнитной стрелки от географического меридиана в данном месте. Поскольку магнитная стрелка указывает направление магнитного меридиана, то магнитное склонение будет соответ­ствовать углу между магнитным и географическим меридианами. Склонение может быть восточным и западным. Линии, соединя­ющие на карте одинаковые склонения, называются изого­нами. Изогона склонения, равного нулю, называется нулевым магнитным меридианом. Изогоны исходят из магнитного полюса, расположенного в Южном полушарии, и сходятся в магнитном полюсе, находящемся в Северном полушарии.

Магнитным наклонением называется угол на­клона магнитной стрелки к горизонту. Линии, соединяющие точки с равным наклонением, называются изоклинами. Нулевая изо­клина называется магнитным экватором. Изоклины, подобно параллелям, вытягиваются в широтном направлении и изме­няются от 0 до 90°.

Плавный ход изогон и изоклин в некоторых местах земной поверхности довольно резко нарушается, что связано с существо­ванием магнитных аномалий. Источниками таких аномалий могут служить крупные скопления железных руд. Самая крупная маг­нитная аномалия - Курская. Магнитные аномалии могут быть вызваны также разрывами в земной коре - сбросами, взбросами, в результате чего происходит соприкосновение пород с различными магнитными характеристиками, и т. п. Магнитные аномалии широко используются для поиска месторождений полезных иско­паемых и изучения строения недр.

Величины магнитных напряженностей, склонений и наклоне­ний испытывают суточные и вековые колебания (вариации).



Суточные вариации вызываются солнечными и лунными воз­мущениями ионосферы и проявляются больше летом, чем зимой, и больше днем, чем ночью. Гораздо значительнее интенсивность


вековых вариаций. Считается, что они обусловлены изменениями, происходящими в верхних слоях земного ядра. Вековые вариации в разных географических точках различны.

Внезапные, длящиеся несколько суток магнитные колебания (магнитные бури) связаны с солнечной активностью и наиболее интенсивно проявляются в высоких широтах.

§ 4. Теплота Земли

Земля получает тепло из двух источников: от Солнца и из собственных недр. Тепловое состояние поверхности Земли почти полностью зависит от нагрева ее Солнцем. Однако под влиянием многих факторов происходит перераспределение солнечного тепла, попавшего на поверхность Земли. Различные точки земной по­верхности получают неодинаковое количество тепла вследствие наклонного положения оси вращения Земли относительно пло­скости эклиптики.

Для сравнения температурных условий введены понятия о среднесуточных, среднемесячных и среднегодовых температурах на отдельных участках поверхности Земли.

Наибольшие колебания температур испытывает верхняя толща Земли. Вглубь от поверхности суточные, месячные и годовые колебания температур постепенно уменьшаются. Толща земной коры, в пределах которой породы испытывают влияние солнечного тепла, называется гелиотермической зоной. Глубина этой зоны варьирует от нескольких метров до 30 м.

Под гелиотермической зоной располагается пояс постоянной температуры, где сезонные колебания температуры не сказы­ваются. В районе Москвы он находится на глубине 20 м.

Ниже пояса постоянной температуры расположена зона гео­термии. В этой зоне происходит повышение температуры с глуби­ной за счет внутренней теплоты Земли - в среднем на 1 °С на каждые 33 м. Этот интервал глубин называется „геотерми­ческой ступенью. Прирост температуры при углублении внутрь Земли на 100 м называется геотермическим градиентом. Величины геотермических ступени и гра­диента обратно пропорциональны и различны для разных районов Земли. Их произведение - величина постоянная и равна 100. Если, например, ступень равна 25 м, то градиент равен 4 °С.

Различия в величинах геотермической ступени могут быть обусловлены разной радиоактивностью и теплопроводностью гор­ных пород, гидрохимическими процессами в недрах, характером залегания горных пород, температурой подземных вод, удален­ностью от океанов и морей.

Величина геотермической ступени изменяется в широких пределах. В районе Пятигорска она равна 1,5 м, Ленинграда - 19,6 м, Москвы - 38,4 м, в Карелии - более 100 м, в районе Поволжья и Башкирии - 50 м и т. д. 14


Главным источником внутренней теплоты Земли является радиоактивный распад веществ, сосредоточенных в основном в зем­ной коре. Предполагают, что теплота в ней увеличивается в соот­ветствии с геотермической ступенью до глубины 15-20 км. Глубже происходит резкое возрастание величины геотермической ступени. Специалисты считают, что температура в центре Земли не превышает 4000 °С. Если бы величина геотермической ступени сохранилась одинаковой до центра Земли, то температура на глу­бине 900 км равнялась бы 27 000 °С, а в центре Земли достигла бы примерно 193 000 °С.