Лабораторная работа измерение длины световой волны вывод. Просмотр содержимого документа «Световые явления уровень А»

Цель урока:

  • рассмотреть практическое применение явлений дифракции и интерференции света;
  • познакомить учащихся с одним из способов определения длины световой волны с помощью дифракционной решётки;
  • продолжить формирование умений учащихся пользоваться измерительными приборами, проводить наблюдения, снимать показания приборов, записывать их в таблицу, составлять отчёт и делать выводы.

Оборудование:

  • мультимедийный проектор, компьютер, слайдовые презентации, подготовленные к уроку учителем (Приложение№3 ) и учащимися (Приложение №1 ; Приложение №2 );
  • оптическая скамья, рейтер, источник света, слайд-рамка с комплектом масок, пенал, соединительные провода, выпрямитель ВУ-4М (для лабораторной работы).

Ход урока

1. Актуализация знаний.

Учитель: Уже несколько уроков мы изучаем с вами световые волны. Свет это поперечная электромагнитная волна, поэтому как и механические волны световые волны могут огибать препятствия на своём пути, могут усиливать и ослаблять друг друга. Как называются эти явления? При каких условиях и с помощью каких приборов их можно наблюдать?

(Заслушать ответы учащихся)

2. Проверка домашнего задания творческого характера.

Учитель: Проверим домашнее задание. К сегодняшнему уроку вам нужно было подготовить мини-проект на тему “Практическое применение интерференции и дифракции света” и представить свою работу в виде небольшой презентации.

Учащиеся представляют свои работы (Приложение №2 “Явление дифракции в природе и технике” , приложение №1 “Техническое применение интерференции” )

3. Выполнение лабораторной работы.

Учитель: Теоретический материал о дифракционной решётке мы разобрали на предыдущем уроке, а сейчас с помощью этого замечательного прибора мы будем определять длину световой волны согласно описанию, данному в учебнике Г.Я.Мякишева, Б.Б.Буховцева “Физика-11” на стр. 329-330. Время выполнения работы – 15-17 минут.

Инструктаж учащихся по технике безопасности с росписями в журнале по ТБ!

4. Закрепление материала по теме “Волновые свойства света” (фронтальная работа)

Учитель: Приступаем к выполнению заданий различного уровня сложности из КИМов по подготовке к ЕГЭ (Приложение №3 “Готовимся к ЕГЭ” ).

5. Дополнительный материал к уроку

Учитель: Известно ли вам, что существует наука цветология? В основу этой науки положено изучение психологического восприятия цвета. Сегодня доказано, что каждый цвет испускает свойственную только ему определенную вибрацию. Вибрации чистых цветов оказывают восстанавливающее действие на те или иные функции организма, нормализуя их деятельность. Сегодня цветотерапия переживает второе рождение – специальная аппаратура позволяет во много раз усилить терапевтический эффект метода. Цветотерапия успешно используется в офтальмологии. Например, если 2-3 раза в год проводить лечение воздействием цвета на глаз, то возрастная дальнозоркость отодвинет время своего наступления. Успешно лечится косоглазие. Снимается астенопатия – зрительная утомляемость, которая возникает утех, кто много работает с компьютером.

Сообщение ученицы. Недавно читая газету-целительницу "Ай, Болит", я обратила внимание на статью Надежды Николаевны Ивановой из города Армавир Краснодарского края. Название статьи "Цвет – хорош он или нет – ищи ответ". В ней говорится, что с помощью "цветной" воды можно облегчить боль, поддержать себя и близкого человека в трудную минуту. Чтобы приготовить такую цветную воду нужно взять подставку (это может быть салфетка, бумага или картон) и поставит на нее стакан с чистой прозрачной водой нe менее, чем на 5 -10 минут. Вода воспримет и передаст вам энергию цвета. А пить ее следует не спеша, маленькими глотками.

  • Если вы с кем-то крупно поссорились, возбуждены, раздражены, выпейте несколько глотков воды из стакана, стоявшего на зеленой подставке.
  • После того как немного yспокоитесь, можете прибегнуть к помощи розового цвета: вы избавитесь от остатков напряженности. Так же работает и голубой цвет.
  • Бывает, после неприятного события или досадной неудачи никак не получается успокоиться: мучаете себя, вновь и вновь проигрывая в памяти, как все было. В таких случаях поможет лимонный цвет. Так же этот цвет поможет вам укрепить память.
  • При ежедневной работе на компьютере хорошо иметь рядом с собой стакан воды на бирюзовой подставке и почаще делать небольшие глотки, бирюзовый цвет защищает от радиоактивности и от теплового излучения компьютера. Эта вода способна сотворить чудо, она поможет вам подобрать без труда нужное слово на экзамене.
  • Если вы отправились в школу на контрольную, выпейте немного воды, приправленной энергией желтого цвета. Этот цвет способствует генерации блестящих идей, стимулирует духовную деятельность.
  • Если вы переутомились – то выпейте глоток воды из красного стакана. Вы сразу ощутите прилив энергии.
  • Воздействие оранжевого цвета зачастую становится первым толчком к позитивным переменам, а так же повышает аппетит.

6. Итоги урока.

7. Рефлексия.

Учащиеся продолжают фразу:

Сегодня на уроке я…

Больше всего мне сегодня запомнилось…

Самым интересным было…

8. Задание на дом:

п.66-72. Разобрать примеры решения задач на стр.207-208. Упр.10(1.4).

Лабораторная работа №6.

Измерение световой волны.

Оборудование: дифракционная решетка с периодом 1/100 мм или 1/50 мм.

Схема установки:

  1. Держатель.

  2. Черный экран.

    Узкая вертикальная щель.

Цель работы: экспериментальное определение световой волны с помощью дифракционной решетки.

Теоретическая часть:

Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными помежутками.

Источник

Длина волны определяется по формуле:

Где d – период решетки

k – порядок спектра

    Угол, под котором наблюдается максимум света

Уравнение дифракционной решетки:

Поскольку углы, под которыми наблюдается максимумы 1-го и 2-го порядков, не превышают 5 , можно вместо синусов углов использовать их тангенсы.

Следовательно,

Расстояние а отсчитывают по линейке от решетки до экрана, расстояние b – по шкале экрана от щели до выбранной линии спектра.

Окончательная формула для определения длины волны имеет вид

В этой работе погрешность измерений длин волн не оценивается из-за некоторой неопределенности выбора середины части спектра.

Примерный ход работы:

    b=8 см, a=1 м; k=1; d=10 -5 м

(красный цвет)

d – период решетки

Вывод: Измерив экспериментально длину волн красного света с помощью дифракционной решетки, мы пришли к выводу, что она позволяет очень точно измерить длины световых волн.

Лабораторная работа №5

Лабораторная работа №5

Определение оптической силы и фокусного расстояния собирающей линзы .

Оборудование: линейка, два прямоугольных треугольника, длиннофокусная собирающая линза, лампочка на подставке с колпачком, источник тока, выключатель, соединительные провода, экран, направляющая рейка.

Теоретическая часть:

Простейший способ измерения оптической силы и фокусного расстояния линзы основан на использовании формулы линзы

d – расстояние от предмета до линзы

f – расстояние от линзы до изображения

F – фокусное расстояние

Оптической силой линзы называют величину

В качестве предмета используется светящаяся рассеянным светом буква в колпачке осветителя. Действительное изображение этой буквы получают на экране.

Изображение действительное перевернутое увеличенное:

Изображение мнимое прямое увеличенное:

Примерный ход работы:

    F = 8 см = 0,08 м

    F = 7 см = 0,07 м

    F = 9 см = 0,09 м

Лабораторная работа № 4

Лабораторная работа № 4

Измерение показателя преломления стекла

ученицы 11 класса «Б» Алексеевой Марии.

Цель работы: измерение показателя преломления стеклянной пластины, имеющей форму трапеции.

Теоретическая часть: показатель преломления стекла относительно воздуха определяется по формуле:

Таблица вычислений:

Вычисления:

n пр1=AE 1 / DC 1 =34мм/22мм=1,5

n пр2=AE 2 / DC 2 =22мм/14мм=1,55

Вывод: Определив показатель преломления стекла, можно доказать что это величина не зависит от угла падения.

Лабораторная работа по физике №3

Лабораторная работа по физике №3

ученицы 11 класса «Б»

Алексеевой Марии

Определение ускорения свободного падения при помощи маятника.

Оборудование:

Теоретическая часть:

Для измерения ускорения свободного падения применяются разнообразные гравиметры, в частности маятниковые приборы. С их помощью удается измерить ускорение свободного падения с абсолютной погрешностью порядка 10 -5 м/с 2 .

В работе используется простейший маятниковый прибор – шарик на нити. При малых размерах шарика по сравнению с длиной нити и небольших отклонениях от положения равновесия период колебания равен

Для увеличения точности измерения периода нужно измерить время t остаточно большого числа N полных колебаний маятника. Тогда период

И ускорение свободного падения может быть вычислено по формуле

Проведение эксперимента:

    Установить на краю стола штатив.

    У его верхнего конца укрепить с помощью муфты кольцо и повесить к нему шарик на нити. Шарик должен висеть на расстоянии 1-2 см от пола.

    Измерить лентой длину l маятника.

    Возбудить колебания маятника, отклонив шарик в сторону на 5-8 см и отпустив его.

    Измерить в нескольких экспериментах время t 50 колебаний маятника и вычислить t ср:

    Вычислить среднюю абсолютную погрешность измерения времени и результаты занести в таблицу.

    Вычислить ускорение свободного падения по формуле

    Определить относительную погрешность измерения времени.

    Определить относительную погрешность измерения длины маятника

    Вычислить относительную погрешность измерения g по формуле

Вывод: Получается, что ускорение свободного падения, измеренное при помощи маятника, приблизительно равно табличному ускорению свободного падения (g=9,81 м/с 2) при длине нити 1 метр.

Алексеева Мария, ученица 11 “Б” класса гимназии № 201 , г. Москва

Учитель физики гимназии № 201 Львовский М.Б.

Лабораторная работа по физике №7

Ученицы 11 класса «Б» Садыковой Марии

Наблюдение сплошного и линейчатого спектров.

О
борудование:
проекционный аппарат, спектральные трубки с водородом, неоном или гелием, высоковольтный индуктор, источник питания, штатив, соединительные провода, стеклянная пластина со скошенными гранями.

Цель работы: с помощью необходимого оборудования наблюдать (экспериментально) сплошной спектр, неоновый, гелиевый или водородный.

Ход работы:

Располагаем пластину горизонтально перед глазом. Сквозь грани наблюдаем на экране изображение раздвижной щели проекционного аппарата. Мы видим основные цвета полученного сплошного спектра в следующем порядке: фиолетовый, синий, голубой, зеленый, желтый, оранжевый, красный.

Данный спектр непрерывен. Это означает, что в спектре представлены волны всех длин. Таким образом, мы выяснили, что сплошные спектры дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы.

Мы видим множество цветных линий, разделенных широкими темными полосами. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенной длины волны.

Водородный спектр: фиолетовый, голубой, зеленый, оранжевый.


Наиболее яркой является оранжевая линия спектра.

Спектр гелия: голубой, зеленый, желтый, красный.


Наиболее яркой является желтая линия.

Основываясь на нашем опыте, мы можем сделать вывод, что линейчатые спектры дают все вещества в газообразном состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Изолированные атомы излучают строго определенные длины волн.

Федеральное государственное образовательное учреждение

высшего профессионального образования

"Сибирский федеральный университет"

Институт градостроительства, управления и региональной экономики

Кафедра Физики

Отчет по лабораторной работе

Измерение длины световой волны с помощью дифракционной решетки

Преподаватель

В.С Иванова

Студент ПЭ 07-04

К.Н. Дубинская

Красноярск 2009


Цель работы

Изучение дифракции света на одномерной решетке, измерение длины световой волны.

Краткое теоретическое введение

Одномерная дифракционная решетка представляет собой ряд прозрачных параллельных щелей одинаковой ширины а, разделенных равными непрозрачными промежутками b. Сумму размеров прозрачного и непрозрачного участков принято называть периодом, или постоянной решеткой d.

Период решетки связан с числом штрихов на одном миллиметре n соотношением

Общее число штрихов решетки N равно

где l – ширина решетки.

Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех N щелей, т.е. дифракционная решетка осуществляет многолучевую интерференцию когерентных дифрагированных пучков света, идущих от всех щелей.

Пусть на решетку падает параллельный пучок монохроматического света с длиной волны

. За решеткой в результате дифракции лучи будут распространяться по разным направлениям. Так как щели находятся на одинаковых расстояниях друг от друга, то разности хода ∆ вторичных лучей, образующихся согласно принципу Гюйгенса – Френеля и идущих от соседних щелей в одном направлении , будут одинаковы в пределах всей решетки и равны

Если эта разность хода кратна целому числу длин волн, т.е.

то при интерференции в фокальной плоскости линзы возникнут главные максимумы. Здесь m = 0,1,2, … - порядок главных максимумов.

Главные максимумы расположены симметрично относительно центрального, или нулевого, с m = 0, соответствующего лучам света, прошедшим через решетку без отклонений (недифрагированным,

= 0). Равенство (2) называют условием главных максимумов на решетке. Каждая щель также образует свою дифракционную картину. В тех направлениях, в которых одна щель дает минимумы, будут наблюдаться минимумы и от других щелей. Эти минимумы определяются условием

Положение главных максимумов зависит от длины волны λ. Поэтому при пропускании через решетку белого света все максимумы, кроме центрального (т = 0), разложатся в спектр, фиолетовая часть которого будет обращена к центру дифракционной картины, а красная - наружу. Это свойство дифракционной решетки используется для исследования спектрального состава света, т.е. дифракционная решетка может быть использована как спектральный прибор.

Обозначим расстояние между серединой нулевого максимума и максимумами 1,2, ... m- го порядков, соответственно, х 1 х 2 ... х т а расстояние между плоскостью дифракционной решетки и экраном -L. Тогда синус угла дифракции

Используя последнее соотношение, из условия главных максимумов можно определить λ любой линии спектра.

В экспериментальной установке имеются:

S- источник света, КЛ- коллиматорная линза, Щ- щель для ограничения размеров пучка света, ФЛ- фокусирующая линза, ДР- дифракционная решетка с периодом d = 0.01 мм, Э- экран для наблюдения дифракционной картины. Для работы в монохроматическом свете используются светофильтры.

Порядок выполнения работы

1. Расположим детали установки по 1 оси в указанном порядке, закрепляем на экране лист бумаги.

2. Включаем источник света S. Устанавливаем светофильтр белого цвета.

3. Измеряем прикрепленной к установке линейкой расстояние L от решетки до экрана.


L 1 = 13.5см=0.135м, L 2 =20.5см=0.205м.

4. Отмечаем на листе бумаги середины нулевого, первого и других максимумов вправо и влево от центра. С предельной точностью измерить расстояние х 1, х 2 .

5. Рассчитаем длины волн, пропускаемых светофильтром.

6. Найдем среднеарифметическое значение длины волны по формуле

7. Рассчитаем абсолютную погрешность измерений по формуле

Лабораторная работа № 43

Раздел 5. Оптика

Тема 5.2. Волновые свойства света

Название лабораторной работы: определение длины световой волны с помощью дифракционной решётки

Учебная цель: получить дифракционный спектр, определить длины световых волн разного цвета

Учебные задачи: наблюдать интерференционную картину, получить спектры первого и второго порядков, определить видимые границы спектра фиолетового света и красного света, вычислить их длины волн.

Правила безопасности: правила проведения в кабинете во время выполнения практического занятия

Норма времени: 2 часа

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь: измерять длину световой волны, делать выводы на основе экспериментальных данных

знать: устройство дифракционной решётки, период решётки, условия образования максимумов

Обеспеченность занятия

Методические указания по выполнению лабораторного занятия

Лабораторная тетрадь, карандаш, линейка, прибор для определения длины световой волны, подставка для прибора, дифракционная решётка, источник света.

Порядок проведения занятия: работа индивидуальная

Теоретическое обоснование

Параллельный пучок света, проходя через дифракционную решётку, вследствие дифракции за решёткой, распространяется по всевозможным направлениям и интерферирует. На экране, установленном на пути интерферирующего света, можно наблюдать интерференционную картину. Максимумы света наблюдаются в точках экрана. Для которых выполняется условие: = n (1)

 - разность хода волн;  - длина световой волны, n – номер максимума. Центральный максимум называют нулевым: для него  = 0. Слева и справа от него располагаются максимумы высших порядков.

Условие возникновения максимума (1) можно записать иначе: n = d Sin

Рисунок 1

Здесь d – период дифракционной решётки,  - угол, под которым виден

световой максимум (угол дифракции). Так как углы дифракции малы, то для них можно принять Sin  = tg , а tg  = a/b рисунок 1, поэтому n = d а/ b (2)

Эту формулу используют для определения длины световой волны.

В результате измерений было установлено, что для красного света λкр = 8 10-7 м, а для фиолетового - λф = 4 10-7 м.

В природе нет никаких красок, есть лишь волны разных длин волн

Анализ формулы (1) показывает, сто положение световых максимумов зависит от длины волны монохроматического света: чем больше длина волны. Тем дальше максимум от нулевого.

Белый свет по составу – сложный. Нулевой максимум для него - белая полоса, а максимумы высших порядков представляют собой набор цветных

полос, совокупность которых называют спектром  и  рисунок 2


Рисунок 2

Прибор состоит из бруска со шкалой 1, стержнем 2, винта 3 (можно регулировать брусок под разными углами). Вдоль бруска в боковых пазах можно перемещать ползунок 4 с экраном 5. К концу бруска прикреплена рамка 6, в которую вставляют дифракционную решётку, рисунок 3

Рисунок 4


Рисунок 3 дифракционная решётка

Дифракционная решётка разлагает свет в спектр и позволяет точно определить длины световых волн


Рисунок 5

Порядок выполнения работы

    Собрать установку, рисунок 6

    Установить источник света, включить его.

    Смотря через дифракционную решётку, направить прибор на лампу так, чтобы через окно экрана прибора была видна нить лампы

    Экран установить на возможно большем расстоянии от дифракционной решётки.

    Измерить по шкале бруска расстояние «b от экрана прибора до дифракционной решётки.

    Определить расстояние от нулевого деления (0) шкалы экрана до середины фиолетовой полосы как слева «а л », так и справа «а п » для спектров  порядка, рисунок 4 и вычислить среднее значение, а ср

    Опыт повторить со спектром  порядка.

    Такие же измерения выполнить для красных полос дифракционного спектра.

    Вычислить по формуле (2) длину волны фиолетового света для спектров  и  порядков, длину волны красного света  и  порядков.

    Результаты измерений и вычислений занести в таблицу 1

    Сделать вывод

Таблица №1

Период дифракционной

решётки d мм

Порядок спектра

Расстояние от

дифракционной

решётки до экрана

Границы спектра фиолетового

Границы спектра красного

Длина световой

Красного

Излучения

Фиолетового

Излучения

Вопросы для закрепления теоретического материала к лабораторному занятию

    Почему нулевой максимум дифракционного спектра белого света – белая полоса, а максимум высших порядков – набор цветных полос?

    Почему максимумы располагаются как слева, так и справа от нулевого максимума?

    В каких точках экрана получаются , ,  максимумы?

    Какой вид имеет интерференционная картина в случае монохроматического света?

    В каких точках экрана получается световой минимум?

    Чему равна разность хода светового излучения (= 0,49 мкм), дающего 2-й максимум в дифракционном спектре? Определите частоту этого излучения

    Дифракционная решётка и её параметры.

    Определения интерференции и дифракции света.

    Условия максимумов света от дифракционной решётки.

    По окончанию практической работы студент должен представить: - Выполненную в лабораторной тетради работу в соответствии с вышеуказанными требованиями.
    Список литературы:

    В. Ф. Дмитриева Физика для профессий и специальностей технического профиля М.: ИД Академия – 2016

    Р. А. Дондукова Руководство по проведению лабораторных работ по физике для СПО М.: Высшая школа,2000

    Лабораторные работы по физике с вопросами и заданиями

О. М. Тарасов М.: ФОРУМ-ИНФА-М, 2015

Дифракционной решетки

Цель работы

С помощью дифракционной решетки получить спектр, изучить его. Определить длину волны фиолетовых, зеленых и красных лучей

Теоретическая часть работы

Параллельный пучок света, проходя через дифракционную решетку, вследствие дифракции за решеткой распространяется по все возможным направлениям и интерферирует. На экране, установленном на пути интерферирующего света, можно наблюдать интерференционную картину. В точке О поставленного за решеткой экрана разность хода лучей любой цветности будет равна нулю, здесь будет центральный нулевой максимум – белая полоса. В точке экрана, для которой разность хода фиолетовых лучей будет равна длине волны этих лучей, лучи будут иметь одинаковые фазы; здесь будет максимум – фиолетовая полоса – Ф. В точке экрана, для которой разность хода красных лучей будет равна длине их волны, будет максимум для лучей красного света – К. Между точками Ф и К расположатся максимумы всех остальных составляющих белого цвета в порядке возрастания длины волны. Образуется дифракционный спектр. Сразу за первым спектром расположен спектр второго порядка. Длину волны можно определить по формуле:

Где λ- длина волны, м

φ – угол, под которым наблюдается максимум для данной длины волны,

d – период дифракционной решетки d= 10 -5 м,

k – порядок спектра.

Поскольку углы, под которыми наблюдаются максимумы первого и второго порядков не превышают 5 0 , можно вместо синусов углов использовать их тангенсы:

где a – расстояние от центра окна до середины лучей спектра, м;

ℓ - расстояние от дифракционной решетки до экрана, м

Тогда длина волны может быть определена по формуле:

Оборудование

Прибор для определения длины световой волны, дифракционная решетка, лампа накаливания.

Ход работы

1. Установите экран на расстоянии 40-50 см от решетки (ℓ).

2. Глядя сквозь решетку и щель в экране на источник света, добейтесь, чтобы по обе стороны от щели были четко видны дифракционные спектры.

3. По шкале на экране, определите расстояние от центра окна до середины фиолетовых, зеленых и красных лучей (a), вычислить длину световой волны по формуле: ,

4. Изменив расстояние от решетки до экрана (ℓ), опыт повторите для спектра второго порядка для лучей того же цвета.

5. Найдите среднее значение длины волны для каждого из монохроматических лучей и сравните с табличными данными.

Таблица Значения длин волн для некоторых цветов спектра



Таблица Результаты измерений и вычислений

Вычисления

1. Для спектра первого порядка: k=1 , d= , ℓ 1 =

а ф1 = , а з1 = , а кр1 =

Длина волны для спектра первого порядка:

- фиолетового цвета: , λ ф1 =

- зеленого цвета: , λ з1 =

- красного цвета: , λ кр1 =

2. Для спектра второго порядка: k=2 , d= , ℓ 2 =

а ф2 = , а з2 = , а кр2 =

Длина волны для спектра второго порядка:

- фиолетового цвета: , λ ф2 =

- зеленого цвета: , λ з2 =

- красного цвета: , λ кр2 =

3. Среднее значение длин волн:

- фиолетового цвета: , λ фср =

- зеленого цвета: , λ зср =

- красного цвета: , λ крср =

Вывод

Записать ответы на вопросы полными предложениями

1. Что называется дифракцией света?

2. Что называется дифракционной решеткой?

3. Что называется периодом решетки?

4. Записать формулу периода решетки и комментарии к ней