Магниты и магнитные свойства вещества. Магнит

О лечебных свойствах магнитов людям было известно с далекой древности. Представление о воздействии магнитного поля у наших предков формировалось постепенно и основывалось на многочисленных наблюдениях. Первые описания того, что дает магнитотерапия человеку, датированы Х веком, когда лекари применяли магниты для лечения спазмов мышц. Позже их стали использовать и для избавления от других недугов.



Влияние магнитов и магнитного поля на организм человека

Магнит считается одним из самых древних открытий, которое было сделано людьми. В природе он встречается в виде магнитного железняка. С давних времен свойства магнита интересовали людей. Его способность вызывать притяжение и отталкивание заставила даже самые древние цивилизации обратить на эту горную породу особое внимание как на уникальное природное творение. То, что население нашей планеты существует в магнитном поле и подвержено его воздействию, а также тот факт, что сама Земля является гигантским магнитом, было известно давно. Многие специалисты полагают, что магнитное поле Земли имеет исключительно благотворное влияние на здоровье всех живых существ на планете, другие же придерживаются иного мнения. Обратимся к истории и посмотрим, как формировалось представление о воздействии магнитного поля.

Магнетизм получил свое название от города Магнесиина-Меандре, расположенного на территории современной Турции, где и были впервые обнаружены залежи магнитного железняка - камня, обладающего уникальными свойствами притягивать железо.

Еще до нашей эры люди имели представление об уникальной энергии магнита и магнитного поля: не было ни одной цивилизации, в которой магниты не применялись бы в какой-либо форме для улучшения здоровья человека.

Одним из первых предметов для практического применения магнита стал компас. Были выявлены свойства простого продолговатого кусочка магнитного железа, подвешенного на нитке или прикрепленного к пробке, находящейся в воде. При этом эксперименте выяснилось, что такой предмет всегда располагается особым образом: один его конец показывает на север, а второй - на юг. Компас был изобретен в Китае около 1000 года до н. э., а в Европе стал известен только с XII века. Без такого простейшего, но в то же время уникального навигационного магнитного прибора не было бы великих географических открытий XV-XVII веков.

В Индии существовало поверье, что от положения голов супругов во время зачатия зависит пол будущего ребенка. Если головы расположены на север, то родится девочка, если на юг, то на свет появится мальчик.

Тибетские монахи, зная о влиянии магнита на человека, прикладывали магниты к голове для улучшения концентрации внимания и повышения способности к обучению.

Существует множество других документальных подтверждений использования магнита в Древней Индии и арабских странах.

Интерес к влиянию магнитных полей на человеческий организм появился сразу после открытия этого уникального явления, и люди начали приписывать магниту самые удивительные свойства. Ходило поверье, что мелко истолченный «магнитный камень» является отличным слабительным средством.

Кроме того, описывались такие свойства магнита, как способность вылечивать от водянки и безумия, останавливать различные виды кровотечений. Во многих документах, дошедших до наших дней, рекомендации даются часто противоречивые. Например, по мнению одних лекарей, влияние магнита организм сравнимо с воздействием яда, по мнению других же он должен, наоборот, использоваться в качестве противоядия.

Неодимовый магнит: лечебные свойства и влияние на здоровье человека

Наибольшее влияние на человека приписывают неодимовым магнитам: они имеют химическую формулу NdFeB (неодим - железо - бор).

Одним из преимуществ таких камней считается способность совмещения небольших размеров и сильного воздействия магнитного поля. Например, неодимовый магнит, обладающий силой в 200 гаусс, весит примерно 1 грамм, а обычный железный магнит, имеющий ту же самую силу, весит 10 граммов.

У неодимовых магнитов есть еще одно достоинство: они довольно устойчивы и могут сохранять свои магнитные свойства в течение многих сотен лет. Сила поля таких камней уменьшается примерно на 1% за 100 лет.

Вокруг каждого камня есть магнитное поле, которое характеризуется магнитной индукцией, измеряемой в гаусс. По индукции можно определить силу магнитного поля. Очень часто силу магнитного поля измеряют в теслах (1 Тесла = 10000 гаусс).

Лечебные свойства неодимовых магнитов заключаются в улучшении кровообращения, стабилизации давления, препятствии в возникновении мигреней.

Что дает магнитотерапия и как она действует на организм

История магнитотерапии как метода использования целебных свойств магнитов в лечебных целях началась около 2000 лет назад. В Древнем Китае магнитотерапия упоминается даже в медицинском трактате императора Хуанди. В Древнем Китае принято было считать, что здоровье человека во многом зависит от циркуляции в организме внутренней энергии Ци, образующейся от двух противоположных начал - инь и ян. При нарушении равновесия внутренней энергии возникало заболевание, которое можно было излечить путем прикладывания магнитных камней к определенным точкам тела.

Что касается непосредственно магнитотерапии, то сохранились многие документы периода Древнего Египта, предоставляющие прямые доказательства использования данного метода для восстановления здоровья человека. Одна из легенд того времени рассказывает о неземной красоте и здоровье Клеопатры, которыми она обладала благодаря постоянному ношению магнитной ленты на голове.

Настоящий прорыв в магнитотерапии случился в Древнем Риме. В известной поэме Тита Лукреция Кара «О природе вещей», написанной еще в I веке до н. э., говорится: «Также бывает, что попеременно порода железа может от камня отскакивать или к нему привлекаться».

И Гиппократом, и Аристотелем были описаны уникальные терапевтические свойства магнитной руды, а римским медиком, хирургом и философом Галеном выявлены обезболивающие свойства магнитных предметов.

В конце X века один персидский ученый подробно описал влияние магнита на организм человека: он уверял, что магнитотерапию можно применять при спазме мышц и многочисленных воспалениях. Есть документальные свидетельства, которые описывают использование магнитов для увеличения мышечной силы, прочности костей, уменьшения болей в суставах и улучшения работоспособности мочеполовой системы.

В конце XV - начале XVI веков некоторые европейские ученые начинают изучение магнитотерапии как науки и ее применение в лечебных целях. Даже придворный врач английской королевы Елизаветы I, которая страдала артритом, использовал для лечения магниты.

В 1530 году известный швейцарский доктор Парацельс, изучив, как действует магнитотерапия, опубликовал несколько документов, в которых содержались доказательства эффективности воздействия магнитного поля. Он охарактеризовал магнит словами «король всех тайн» и начал использовать различные полюсы магнита с целью достижения определенных результатов в лечении. Хотя доктору ничего не было известно о китайском представлении об энергии Ци, он точно так же полагал, что природная сила (археус) способна наделять человека энергией.

Парацельс был уверен в том, что влияние магнита на здоровье человека настолько высоко, что придает ему дополнительную энергию. К тому же он отмечал способность археуса стимулировать процесс самоизлечения. Абсолютно все воспаления и многочисленные заболевания, по его мнению, намного лучше поддаются лечению магнитом, чем при использовании обычных медицинских средств. Парацельс на практике применял магниты в борьбе с эпилепсией, кровотечениями и расстройством пищеварения.

Как влияет магнитотерапия на организм и что она лечит

В конце XVIII века магнит начал широко использоваться для избавления от различных заболеваний. Продолжил исследования того, как магнитотерапия влияет на организм, известный австрийский доктор Франц Антон Месмер. Сначала в Вене, а позже и в Париже он довольно успешно лечил с помощью магнита многие заболевания. Он настолько проникся вопросом воздействия магнитного поля на человеческое здоровье, что защитил диссертацию, которая позднее была взята за основу исследований и развития учения о магнитотерапии в западной культуре.

Полагаясь на свой опыт, Месмер сделал два фундаментальных вывода, Первый заключался в том, что тело человека опоясывает магнитное поле, такое влияние он назвал «животным магнетизмом». Сами уникальные магниты, воздействующие на человека, он считал проводниками этого «животного магнетизма». Второй вывод основывался на том, что планеты имеют большое влияние на организм человека.

Великий композитор Моцарт был настолько поражен и восхищен успехами Месмера в медицине, что в своей опере «Cosi fan tutte» («Так поступают все») воспел эту уникальную особенность действия магнита («Это магнит, камень Месмера, из Германии пришедший, во Франции прославившийся »).

Также в Великобритании члены Королевского медицинского общества, в котором проводились исследования в области применения магнитного поля, открыли для себя тот факт, что магниты можно эффективно применять в борьбе со многими заболеваниями нервной системы.

В конце 1770-х годов французский аббат Ленобль рассказал о том, что лечит магнитотерапия, выступая на собрании Королевского медицинского общества. Он доложил о своих наблюдениях в области магнетизма и рекомендовал использование магнитов с учетом места применения. Он же стал инициатором массового создания магнитных браслетов и различного рода украшений из этого материала для выздоровления. В своих трудах он подробно рассматривал успешные результаты лечения зубной боли, артритов и других заболеваний, перенапряжения.

Для чего нужна магнитотерапия и чем она полезна

После Гражданской войны в США (1861-1865) магнитотерапия стала популярна не меньше, чем в обращались к данному способу лечения из-за того, что условия жизни были далеко Европе. Особенно заметное развитие она приобрела на Среднем Западе. В основном люди не лучшими, не хватало профессиональных врачей, отчего и приходилось заниматься самолечением. В то время производилось и продавалось огромное количество различных магнитных средств, обладающих обезболивающим эффектом. Во многих объявлениях упоминалось об уникальных свойствах магнитных лечебных средств. У женщин наибольшей популярностью пользовались магнитные украшения, а мужчины предпочитали стельки и ремни.

В XIX веке во многих статьях и книгах описывалось, для чего нужна магнитотерапия, и какова её роль в лечении многих заболеваний. Например, в докладе знаменитой французской больницы Сальпетриер говорилось, что магнитные поля обладают свойством повышения «электрического сопротивления в двигательных нервах» и поэтому очень полезны в борьбе с гемипарезом (односторонним параличом).

В XX веке свойства магнита начали широко применяться как в науке (при создании различной техники), так и в обыденной жизни. Постоянные магниты и электромагниты расположены в генераторах, производящих ток, и в электромоторах, которые его потребляют. Многие транспортные средства использовали силу магнетизма: автомобиль, троллейбус, тепловоз, самолет. Магниты являются неотъемлемой частью многих научных приборов.

В Японии влияние магнитов на здоровье стало предметом многочисленных дискуссий и пристальных исследований. Огромную популярность в этой стране приобрели так называемые магнитные кровати, которые используются японцами для снятия стресса и заряжения организма «энергией». По мнению японских специалистов, магниты хорошо помогают при переутомлении, остеохондрозе, мигрени и других заболеваниях.

Запад позаимствовал традиции Японии. Методы по использованию магнитотерапии нашли много приверженцев среди европейских врачей, физиотерапевтов и спортсменов. Кроме того, учитывая, чем полезна магнитотерапия, этот метод получил поддержку у многих американских специалистов в области физиотерапии, например у ведущего невролога Уильяма Фил пота из штата Оклахома. Доктор Фил пот считает, что воздействие отрицательного магнитного поля на тело стимулирует выработку мелатонина - гормона сна - и тем самым делает его более спокойным.

Некоторые американские спортсмены отмечают положительное влияние магнитного поля на поврежденные диски позвоночника после травм, а также значительное уменьшение болей.

Многочисленные медицинские эксперименты, проведенные в университетах США, показали, что появление болезней суставов происходит из-за недостаточного кровообращения и нарушения деятельности нервной системы. Если в клетки не поступают питательные вещества в нужном количестве, то это может привести к развитию хронического заболевания.

Чем помогает магнитотерапия: новые эксперименты

Первым в современной медицине ответ на вопрос «чем помогает магнитотерапия» дал в 1976 году известный японский врач Никагава. Он ввел понятие «синдром дефицита магнитного поля». После проведения ряда исследований были описаны следующие симптомы данного синдрома: общая слабость, повышенная утомляемость, снижение работоспособности, нарушение сна, мигрень, боли в суставах и позвоночнике, изменения в работе пишеварительной и сердечно-сосудистой системы (гипертония или гипотония), изменения на коже, гинекологические дисфункции. Соответственно, применение магнитотерапии позволяет нормализовать все эти состояния.

Безусловно, недостаток магнитного поля не становится единственной причиной перечисленных заболеваний, но он составляет большую часть этиологии данных процессов.

Многие ученые продолжали ставить новые эксперименты с магнитными полями. Пожалуй, самым популярным из них стал эксперимент с ослабленным внешним магнитным полем или его отсутствием. При этом необходимо было доказать негативное влияние такой ситуации на организм человека.

Одним из первых ученых, который поставил подобный эксперимент, был канадский исследователь Ян Крейн. Он рассматривал ряд организмов (бактерий, животных, птиц), которые находились в специальной камере с магнитным полем. Оно было значительно меньше поля Земли. После того как бактерии провели трое суток в таких условиях, их способность к размножению уменьшилась в 15 раз, намного хуже стала проявляться нейромоторная активность у птиц, у мышей стали наблюдаться серьезные изменения в обменных процессах. Если пребывание в условиях ослабленного магнитного поля было более длительным, то в тканях живых организмов возникали необратимые изменения.

Подобный эксперимент был осуществлен и группой российских ученых под руководством Льва Непомнящих: в камеру, закрытую от магнитного поля Земли специальным экраном, были помещены мыши.

Спустя сутки у них стало наблюдаться разложение тканей. Детеныши зверьков появлялись на свет лысыми, и впоследствии у них развились многие заболевания.

На сегодняшний день известно большое количество подобных экспериментов, и везде наблюдаются схожие результаты: снижение или отсутствие естественного магнитного поля способствует серьезному и быстрому ухудшению здоровья у всех подвергавшихся исследованиям организмов. Также сейчас активно применяются многочисленные типы природных магнитов, которые формируются естественным образом из вулканической лавы, содержащей железо и атмосферный азот. Такие магниты были в ходу еще тысячи лет назад.

Наше понимание базовой структуры материи развивалось постепенно. Атомная теория строения вещества показала, что не все в мире устроено так, как кажется на первый взгляд, и что сложности на одном уровне легко объясняются на следующем уровне детализации. На протяжении всего ХХ века, после открытия структуры атома (то есть после появления модели атома Бора), усилия ученых были сосредоточены на разгадке структуры атомного ядра.

Первоначально предполагалось, что в атомном ядре существует только два типа частиц - нейтроны и протоны. Однако, начиная с 1930-х годов, ученые все чаще стали получать экспериментальные результаты, необъяснимые в рамках классической модели Бора. Это навело ученых на мысль, что на самом деле ядро представляет собой динамичную систему разнообразных частиц, чье скоротечное образование, взаимодействие и распад играют ключевую роль в ядерных процессах. К началу 1950-х годов изучение этих элементарных, как их назвали, частиц вышло на передний край физической науки."
elementy.ru/trefil/46
"Общая теория взаимодействий опирается на принцип непрерывности.

Первым шагом в создании общей теории, была материализация абстрактного принципа непрерывности к реально существующему миру, который мы наблюдаем вокруг. В результате такой материализации автор пришёл к выводу о существовании внутренней структуры физического вакуума. Вакуум представляет собой пространство непрерывно заполненное фундаментальными частицами - бионами - различные движения, расположения и объединения которых, способны объяснить все богатство и разнообразие природы и разума.

В результате была создана новая общая теория, которая на основе одного принципа, и следовательно, одинаковых, непротиворечивых и логически связанных наглядных (материальных), а не виртуальных частиц, описывает явления природы и феномены человеческого разума.
Главный тезис – принцип непрерывности.

Принцип непрерывности означает, что ни один реально существующий в природе процесс не может начаться самопроизвольно и закончиться бесследно. Все процессы, которые можно описать математическими формулами, могут быть рассчитаны только с помощью непрерывных зависимостей или функций. Все изменения имеют свои причины, скорость передачи любых взаимодействий обусловлена свойствами той среды, в которой взаимодействуют объекты. Но сами эти объекты в свою очередь изменяют среду, в которой они находятся и осуществляют взаимодействия.
\
Поле – множество элементов, для которых определены арифметические действия. Поле также непрерывно - один элемент поля переходит в другой плавно, границу между ними указать невозможно.

Такое определение поля, также вытекает из принципа непрерывности. Оно (определение) требует описания элемента, ответственного за все виды полей и взаимодействий.
В общей теории взаимодействий, в отличие от теорий, доминирующих на данный момент, квантовая механика и теория относительности, такой элемент определён явно.
Этим элементом является бион. Всё пространство Вселенной и вакуум, и частицы состоят из бионов. Бион это элементарный диполь, то есть частица, состоящая из двух связанных, одинаковых по величине, но разных по знаку, зарядов. Суммарный заряд биона равен нулю. Подробное устройство биона показано на странице Строение физического вакуума.
\
Границ биона указать невозможно (понятная аналогия с атмосферой Земли, границу которой точно определить не удасться), так как все переходы очень и очень плавные. Поэтому, внутреннего трения между бионами практически нет. Однако влияние такого "трения" становится заметным на больших расстояниях, и наблюдается нами как красное смещение.
Электрическое поле в общей теории взаимодействий.
Существование в какой-либо области пространства электрического поля, будет представлять собой зону согласованно расположенных и определённым образом ориентированных бионов.
b-i-o-n.ru/_mod_files/ce_image...
Магнитное поле в общей теории взаимодействий.
Магнитное поле будет представлять собой определённую динамическую конфигурацию расположения и движения бионов.
b-i-o-n.ru/theory/elim/

Электрическое поле - область пространства, в которой физический вакуум имеет определённое упорядоченное строение. В присутствии электрического поля, вакуум оказывает силовое воздействие на пробный электрический заряд. Такое воздействие обусловлено расположением бионов в данной области пространства.
К сожалению, в тайну того, как устроен электрический заряд, нам пока проникнуть не удалось. В остальном же, получается следующая картина. Любой заряд, пусть для примера он будет отрицательным, создаёт вокруг себя следующую ориентацию бионов - электростатическое поле.
Основная часть энергии принадлежит заряду, имеющему определённые размеры. А энергия электрического поля является энергией упорядоченного расположения бионов (всякий порядок имеет энергетическую основу). Также ясно, как удалённые заряды «чувствуют» друг друга. Этими «чувствительными органами» являются ориентированные определённым образом бионы. Отметим и ещё один важный вывод. Скорость установления электрического поля определяется скоростью поворота бионов, чтобы они стали ориентированы по отношению к заряду так, как показано на рисунке. А это объясняет, почему скорость установления электрического поля равна скорости света: в обоих процессах бионы должны передать вращение друг другу.
Сделав не трудный следующий шаг, можно с уверенностью говорить о том, что магнитное поле представляет собой следующую динамичную конфигурацию бионов.
b-i-o-n.ru/theory/elim

Стоит обязательно отметить, что магнитное поле ничем не проявляет себя до тех пор, пока нет объектов, на которые оно способно воздействовать (стрелка компаса или электрический заряд).
Принцип суперпозиции магнитного поля. Оси вращения бионов занимают промежуточное положение, в зависимости от направления и силы взаимодействующих полей.
Действие магнитного поля на движущийся заряд.
"
Магнитное поле не действует на покоящийся заряд, потому что вращающиеся бионы будут создавать колебания такого заряда, но такие колебания мы не сможем обнаружить ввиду их малости.

Удивительное дело, но ни в одном учебнике я не нашел не то, что ответа, а даже вопроса, который очевидно должен возникать у каждого, кто начинает изучать магнитные явления.
Вот этот вопрос. Почему магнитный момент контура с током не зависит от формы этого контура, а зависит лишь от его площади? Я думаю, что такой вопрос не задаётся именно потому, что ответа на него никто не знает. При опоре же на наши представления ответ очевиден. Магнитное поле контура есть сумма магнитных полей бионов. А число бионов создающих магнитное поле, определяется площадью контура и не зависит от его формы."
Если взглянуть шире, не вдаваясь в теории, магнит работает пульсацией магнитного поля. Благодаря этой пульсации, упорядоченности движения силовых частиц возникает общая сила, воздействующая на объекты окружения. Воздействие переносится магнитным полем, в котором также могут быть выделены частицы, кванты.
Теория бионов выделяет элементарной частицей бион. Вы видите насколько она фундаментальна.
Теория пространства гравитонов выделяет квантом всей вселенной гравитон. И даёт фундаментальные законы, управляющие вселенной.
n-t.ru/tp/ns/tg.htm Теория пространства гравитонов
"Диалектика развития науки состоит в количественном накоплении таких абстрактных понятий («демонов»), описывающих все новые и новые закономерности природы, которое на определенной стадии достигает критического уровня сложности. Разрешение же такого кризиса неизменно требует качественного скачка, глубокого пересмотра базовых понятий, снимающего «демоничность» с накопленных абстракций, раскрывающего их содержательную сущность на языке новой обобщающей теории.
*
ТПГ постулирует физическое (актуальное) существование транзитивного пространства, элементы которого в рамках этой теории называются гравитонами.
*
Т.е. мы предполагаем, что именно физическое пространство гравитонов (ПГ) обеспечивает всеобщую взаимосвязь физических объектов, доступных нашему познанию, и является той минимально необходимой субстанцией, без которой научное познание невозможно в принципе.
*
ТПГ постулирует дискретность и принципиальную неделимость гравитонов, отсутствие у них какой-либо внутренней структуры. Т.е. гравитон в рамках ТПГ выступает в роли абсолютной элементарной частицы, близкой в этом смысле атому Демокрита. В математическом же смысле гравитон является пустым множеством (null-set).
*
Главным и единственным свойством гравитона является его способность к самокопированию, порождающему новый гравитон. Это свойство задает на множестве ПГ отношение строгого несовершенного порядка: gi < gi+1, где gi – гравитон-родитель и gi+1 – дочерний гравитон, являющийся копией родителя. Это отношение интенсионально определяет ПГ как транзитивное и антирефлексивное множество, из чего следует также его асимметричность и антисимметричность.
*
ТПГ постулирует непрерывность и предельную плотность ПГ, заполняющего всю доступную познанию Вселенную таким образом, что любому физическому объекту в этой Вселенной может быть поставлено в соответствие непустое подмножество ПГ, однозначно определяющее положение этого объекта в ПГ, а значит и во Вселенной.
*
ПГ является метрическим пространством. В качестве естественной метрики ПГ может быть выбрано минимальное количество переходов от одного соседнего гравитона к другому, необходимое для замыкания транзитивной цепочки, связывающей пару гравитонов, расстояние между которыми мы при этом определяем.
"
Свойства гравитона, позволяют нам говорить о квантовой природе этого понятия. Гравитон является квантом движения, реализующегося в акте копирования гравитоном самого себя и «рождения» нового гравитона. В математическом смысле этот акт можно поставить в соответствие добавлению единицы к уже имеющемуся натуральному числу.
"
Другим следствием собственного движения ПГ являются резонансные явления, порождающие виртуальные элементарные частицы, в частности фотоны реликтового излучения.
*
Используя базовые понятия ТПГ, мы построили физическую модель пространства, которое не является пассивным вместилищем других физических объектов, но само активно изменяется и движется. К сожалению, никакие мыслимые приборы не дадут нам возможность напрямую исследовать активность ПГ, поскольку гравитоны пронизывают все объекты, взаимодействуя с самыми мельчайшими элементами их внутренней структуры. Тем не менее, мы можем получать содержательную информацию о движении гравитонов, исследуя закономерности и резонансные явления так называемого реликтового излучения, которое в наибольшей мере обусловлено именно активностью ПГ.
*
Природа гравитационного взаимодействия

«То, что гравитация должна быть внутренним, неотъемлемым и существенным атрибутом материи, позволяя тем самым любому телу действовать на другое на расстоянии через вакуум, без какого-либо посредника, с помощью которого и через которого действие и сила могли бы передаваться от одного тела к другому, представляется мне настолько вопиющей нелепостью, что, по моему глубокому убеждению, ни один человек, сколько-нибудь искушенный в философских материях и наделенный способностью мыслить, не согласится с ней». (из письма Ньютона Ричарду Бентли).
**
В рамках ТПГ гравитация лишается своей силовой природы и полностью определяется именно как закономерность движения физических объектов, «связывающих» свободные гравитоны всем объемом своей внутренней структуры, поскольку гравитоны свободно пронизывают любой физический объект, являясь неотъемлемыми элементами его внутреннего устройства. Все физические объекты «поглощают» гравитоны, искажая изотропную пролиферацию ПГ, именно за счет этого достаточно близкие и массивные космические объекты образуют компактные скопления, успевая компенсировать расширение ПГ внутри скопления. Но сами эти скопления, разделенные такими объемами ПГ, пролиферацию которых они неспособны компенсировать, разлетаются тем быстрее, чем больше этот разделяющий их объем ПГ. Т.е. один и тот же механизм обусловливает как эффект «притяжения», так и эффект разлета галактик.
***
Рассмотрим теперь подробнее механизм «поглощения» гравитонов физическими объектами. Интенсивность такого «поглощения» существенным образом зависит от внутренней структуры объектов и определяется наличием в этой структуре специфических конструкций, а также их количеством. Гравитационное «поглощение» свободного гравитона является простейшим и наиболее слабым из таких механизмов, не требующим никаких специальных структур, в акте такого «поглощения» участвует единственный гравитон. Любой другой тип взаимодействия использует соответствующие этому типу частицы взаимодействия, определенные на некотором подмножестве гравитонов, поэтому эффективность такого взаимодействия гораздо выше, в акте взаимодействия «поглощается» множество гравитонов вместе с определенной на них частицей. Отметим также, что при таких взаимодействиях один из объектов должен выступать в той же роли, в которой выступает ПГ при гравитационном взаимодействии, т.е. он должен порождать все новые и новые частицы данного взаимодействия, используя для такой активности те самые специфические структуры, о которых мы сказали выше. Таким образом, общая схема любого взаимодействия остается всегда одна и та же, а мощность взаимодействия определяется «объемом» частиц взаимодействия и активностью порождающего их источника."
Можно понимать магнитное взаимодействие моделью порождения и поглощения элементарных частиц магнитного поля. Причём частицы обладают разной частотой, и поэтому слагается потенциальное поле, состоящее из уровней напряжённости, радуги. По этим уровням "плавают" частицы. Они могут быть поглощены другими частицами, например ионами кристаллической решётки некоторых металлов, но воздействие на них магнитного поля будет продолжаться. Металл притягивается к телу магнита.
Теория Суперструн, несмотря на своё название, слагает ясную картину мира. Лучше: она выделяет в мире множество траекторий взаимодействия.
ergeal.ru/other/superstrings.htm Теория Суперструн (Дмитрий Поляков)
"Итак, струна - это своего рода первичное творение в видимой Вселенной.

Этот объект не материален, тем не менее, его можно представлять себе приближенно в виде некоей натянутой нити, веревки или, например, скрипичной струны, летающей в десятимерном пространстве-времени.

Летая в десятимерии, этот протяженный объект испытывает так же и внутренние вибрации. Из этих-то вибраций (или октав) и происходит вся материя (и, как выяснится далее, не только материя). Т.е. все разнообразие частиц в природе - это просто разные октавы одного итого же примордиального творения - струны. Хороший пример двух таких разных октав, происходящих от единой струны, - гравитация и свет (гравитоны и фотоны). Тут, правда, есть некоторые тонкости - необходимо различать спектры замкнутых и незамкнутых струн, но сейчас эти подробности приходится опускать.

Итак, как же изучать такой объект, как возникают десять измерений и как найти правильную компактификацию десятимерия до нашего четырехмерного мира?

Не имея возможности "поймать" струну, мы идем по ее следам и исследуем ее траекторию. Подобно тому, как траектория точки - кривая линия, траектория одномерного протяженного объекта (струны) это двумерная ПОВЕРХНОСТЬ.

Таким образом, математически теория струн - это динамика двумерных случайных поверхностей, вложенных в пространство высших измерений.

Каждая такая поверхность называется МИРОВЫМ ЛИСТОМ.

Вообще, во Вселенной необычайно важную роль играют всевозможные симметрии.

Из симметрии той или иной физической модели часто можно сделать важнейшие выводы о ее (модели) динамике, эволюции, мутации и т.д.

В Теории Струн такой краеугольной симметрией является т.н. РЕПАРАМЕТРИЗАЦИОННАЯ ИНВАРИАНТНОСТЬ (или "группа диффеоморфизмов"). Инвариантность эта, говоря очень грубо и приблизительно, означает следующее. Представим себе мысленно наблюдателя, "севшего" на один из мировых листов, "заметаемых" струной. В руках у него - гибкая линейка, с помощью которой он исследует геометрические свойства поверхности Мирового Листа. Так вот - геометрические свойства поверхности, очевидно, не зависят от градуировки линейки. Независимость структуры Мирового Листа от масштаба "мысленной линейки" и называется Репараметризационной Инвариантностью (или R-инвариантностью).

При кажущейся простоте этот принцип приводит к крайне важным последствиям. Прежде всего, справедлив ли он на квантовом уровне?
^
Духи - это поля (волны, вибрации, частицы), вероятность наблюдения которых отрицательна.

Для рационалиста это, конечно же, абсурд: ведь классическаявероятность любого события лежит всегда между 0 (когда событие наверняка не произойдет) и 1 (когда, напротив, оно произойдет наверняка).

Вероятность появления Духов, однако, отрицательна. Таково одно из возможных определений Духов. Апофатическое определение. В связи с этим мне вспоминается определение Любви Аввой Дорофеем: "Бог есть центр круга. А люди - радиусы. Возлюбив Бога, люди приближаются к Центру, как радиусы. Возлюбив друг друга, они приближаются к Богу, как к центру".

Итак, подведем первые итоги.

Мы познакомились с Наблюдателем, которого с линейкой сажают на Мировой Лист. И градуировка линейки, на первый взгляд, произвольна, а Мировой Лист к этому Произволу равнодушен.

Это Равнодушие (или симметрия) называется Репараметризационной Инвариантностью (R-инвариантностью, группой диффеоморфизмов).

Необходимость увязать Равнодушие с Неопределенностью приводит к выводу о десятимерности Вселенной.

На самом деле, все обстоит несколькосложнее.

С какой попало линейкой, да на Мировой Лист наблюдателя, конечно же, никто не пустит. Десятимерный мир светел, строг и никакой отсебятины не терпит. За любую отсебятину с Мировым Листом у подонка навсегда отобрали бы линейку и хорошо высекли бы, как протестанта.
^
Но если Наблюдатель не протестант, ему дают Линейку раз и навсегда определенную, выверенную, неизменную на века, и с этой строжайше отобранной Единственной Линейкой допускают на Мировой Лист.

В Теории Суперструн этот ритуал называется "фиксацией калибровки".

В результате фиксации калибровки и возникают Духи Фаддеева-Попова.

Именно эти Духи и вручают Наблюдателю Линейку.

Однако выбор калибровки - это всего лишь чисто экзотерическая, полицейская функция Духов Фаддеева-Попова. Экзотерическая, продвинутая миссия этих Духов состоит в выборе правильной компактификации и, впоследствии, в порождении солитонов и Хаоса в компактифицированном мире.

Как именно это происходит - вопрос очень тонкий и до конца не ясный; я постараюсь описать этот процесс как можно короче и нагляднее, опуская, насколько возможно, технические подробности.

Во всех обзорах по Теории Суперструн имеется т.н. Теорема об Отсутствии Духов. Эта Теорема гласит, что Духи, хотя и определяют выбор калибровки, тем не менее, никак не влияют непосредственно на вибрации струны (вибрации, порождающие материю). Иными словами, согласно теореме, спектр струны не содержит Духов, т.е. Пространство Духов полностью отделено от эманаций материи, а Духи - не более чем артифакт фиксации калибровки. Можно сказать, это Духи - следствие несовершенства наблюдателя, никак не связанное с динамикой струны. Это - классический результат, в ряде случаев более или менее верный. Однако применимость этой теоремы ограничена, т.к. все известные ее доказательства не учитывают одного крайне важного нюанса. Нюанс этот связан с т.н. "нарушением симметрии картин".
Что это такое? Рассмотрим произвольную вибрацию струны: например, эманацию света (фотон). Оказывается, существует несколько различных способов описания этой эманации. А именно, в теории струн эманации описываются с помощью т.н. "вершинных операторов". Каждой эманации соответствует несколько предположительно эквивалентных вершинных операторов. Эти эквивалентные операторы отличаются друг от друга своими "духовыми числами", т.е. структурой Духов Фаддеева-Попова.

Каждое такое эквивалентное описание одной и той же эманации называется Картиной. Существует т.н. "conventional wisdom", настаивающая на равноценности Картин, т.е. вершинных операторов с различными духовыми числами. Это предположение известно как "picture-changing symmetry of vertex operators".

Эта "conventional wisdom" и подразумевается молчаливо при доказательстве Теоремы об Отсутствии. Однако более внимательный анализ показывает, что этой симметрии не существует (точнее, она существует в одних случаях и нарушается в других). Из-за нарушения Симметрии Картин нарушается в ряде случаев и упомянутая выше Теорема. А это значит - Духи играют непосредственную роль в вибрациях струны, пространства материи и Духов не независимы, но тончайшим образом переплетаются.

Пересечение этих пространств и играет важнейшую роль в динамической компактификации и формировании Хаоса. "
Другое видение теории Суперструн elementy.ru/trefil/21211
"Различные версии теории струн сегодня рассматриваются в качестве главных претендентов на звание всеобъемлющей универсальной теории, объясняющей природу всего сущего. А это - своего рода Священный Грааль физиков-теоретиков, занимающихся теорией элементарных частиц и космологии. Универсальная теория (она же теория всего сущего) содержит всего несколько уравнений, которые объединяют в себе всю совокупность человеческих знаний о характере взаимодействий и свойствах фундаментальных элементов материи, из которых построена Вселенная. Сегодня теорию струн удалось объединить с концепцией суперсимметрии, в результате чего родилась теория суперструн, и на сегодняшний день это максимум того, что удалось добиться в плане объединения теории всех четырех основных взаимодействий (действующих в природе сил).
*****
Для наглядности взаимодействующие частицы можно считать «кирпичиками» мироздания, а частицы-носители - цементом.
*****
В рамках стандартной модели в роли кирпичиков выступают кварки, а в роли носителей взаимодействия - калибровочные бозоны, которыми эти кварки обмениваются между собой. Теория же суперсимметрии идет еще дальше и утверждает, что и сами кварки и лептоны не фундаментальны: все они состоят из еще более тяжелых и не открытых экспериментально структур (кирпичиков) материи, скрепленных еще более прочным «цементом» сверхэнергетичных частиц-носителей взаимодействий, нежели кварки в составе адронов и бозонов. Естественно, в лабораторных условиях ни одно из предсказаний теории суперсимметрии до сих пор не проверено, однако гипотетические скрытые компоненты материального мира уже имеют названия - например, сэлектрон (суперсимметричный напарник электрона), скварк и т. д. Существование этих частиц, однако, теориями такого рода предсказывается однозначно.
*****
Картину Вселенной, предлагаемую этими теориями, однако, достаточно легко представить себе наглядно. В масштабах порядка 10–35 м, то есть на 20 порядков меньше диаметра того же протона, в состав которого входят три связанных кварка, структура материи отличается от привычной нам даже на уровне элементарных частиц. На столь малых расстояниях (и при столь высоких энергиях взаимодействий, что это и представить немыслимо) материя превращается в серию полевых стоячих волн, подобных тем, что возбуждаются в струнах музыкальных инструментов. Подобно гитарной струне, в такой струне могут возбуждаться, помимо основного тона, множество обертонов или гармоник. Каждой гармонике соответствует собственное энергетическое состояние. Согласно принципу относительности (см. Теория относительности), энергия и масса эквивалентны, а значит, чем выше частота гармонической волновой вибрации струны, тем выше его энергия, и тем выше масса наблюдаемой частицы.

Однако, если стоячую волну в гитарной струне представить себе наглядно достаточно просто, стоячие волны, предлагаемые теорией суперструн наглядному представлению поддаются с трудом - дело в том, что колебания суперструн происходят в пространстве, имеющем 11 измерений. Мы привыкли к четырехмерному пространству, которое содержит три пространственных и одно временное измерение (влево-вправо, вверх-вниз, вперед-назад, прошлое-будущее). В пространстве суперструн всё обстоит гораздо сложнее (см. вставку). Физики-теоретики обходят скользкую проблему «лишних» пространственных измерений, утверждая, что они «скрадываются» (или, научным языком выражаясь, «компактифицируются») и потому не наблюдаются при обычных энергиях.

Совсем уже недавно теория струн получила дальнейшее развитие в виде теории многомерных мембран - по сути, это те же струны, но плоские. Как походя пошутил кто-то из ее авторов, мембраны отличаются от струн примерно тем же, чем лапша отличается от вермишели.

Вот, пожалуй, и всё, что можно вкратце рассказать об одной из теорий, не без основания претендующих на сегодняшний день на звание универсальной теории Великого объединения всех силовых взаимодействий. "
ru.wikipedia.org/wiki/%D0%A2%D... Теория Суперструн.
Универсальная теория, объясняющая все физические взаимодействия: elementy.ru/trefil/21216
"В природе действуют четыре фундаментальные силы, и все физические явления происходят в результате взаимодействий между физическими объектами, которые обусловлены одной или несколькими из этих сил. Четыре вида взаимодействий в порядке убывания их силы это:

* сильное взаимодействие, удерживающее кварки в составе адронов и нуклоны в составе атомного ядра;
* электромагнитное взаимодействие между электрическими зарядами и магнитами;
* слабое взаимодействие, которым обусловлены некоторые типы реакций радиоактивного распада; и
* гравитационное взаимодействие.

В классической механике Ньютона любая сила - это всего лишь сила притяжения или отталкивания, вызывающая изменение характера движения физического тела. В современных квантовых теориях, однако, понятие силы (трактуемое теперь как взаимодействие между элементарными частицами) интерпретируется несколько иначе. Силовое взаимодействие теперь считается результатом обмена частицей-носителем взаимодействия между двумя взаимодействующими частицами. При таком подходе электромагнитное взаимодействие между, например, двумя электронами, обусловлено обменом фотоном между ними, и аналогичным образом обмен другими частицами-посредниками приводит к возникновению трех прочих видов взаимодействий. (Подробнее см. Стандартная модель.)

Более того, характер взаимодействия обусловлен физическими свойствами частиц-носителей. В частности, закон всемирного тяготения Ньютона и закон Кулона имеют одинаковую математическую формулировку именно потому, что в обоих случаях переносчиками взаимодействия являются частицы, лишенные массы покоя. Слабые взаимодействия проявляются лишь на исключительно малых расстояниях (по сути, лишь внутри атомного ядра), поскольку их носители - калибровочные бозоны - являются очень тяжелыми частицами. Сильные взаимодействия также проявляются лишь на микроскопических расстояниях, но по иной причине: здесь всё дело в «пленении кварков» внутри адронов и фермионов (см. Стандартная модель).

Оптимистичные ярлыки «универсальная теория», «теория всего сущего», «теория великого объединения», «окончательная теория» сегодня используются в отношении любой теории, пытающейся объединить все четыре взаимодействия, рассматривая их в качестве различных проявлений некоей единой и великой силы. Если бы это удалось, картина устройства мира упростилась бы до предела. Вся материя состояла бы лишь из кварков и лептонов (см. Стандартная модель), и между всеми этими частицами действовали бы силы единой природы. Уравнения, описывающие базовые взаимодействия между ними, были бы столь короткими и ясными, что уместились бы на почтовой открытке, описывая при этом, по сути, основу всех без исключения процессов, наблюдаемых во Вселенной. По словам нобелевского лауреата, американского физика-теоретика Стивена Вайнберга (Steven Weinberg, 1933–1996) «это была бы глубинная теория, от которой во все стороны стрелами расходилась интерференционная картина устройства мироздания, и более глубоких теоретических основ в дальнейшем не потребовалось бы». Как видно из сплошных сослагательных наклонений в цитате, такой теории до сих пор не существует. Нам остается лишь очертить примерные контуры процесса, который может привести к разработке столь всеобъемлющей теории.
~
Все теории объединения исходят из того, что при достаточно высоких энергиях взаимодействия между частицами (когда они имеют скорость, близкую к предельной скорости света), «лед тает», грань между различными видами взаимодействий стирается, и все силы начинают действовать одинаково. При этом теории предсказывают, что происходит это не одновременно для всех четырех сил, а поэтапно, по мере увеличения энергий взаимодействия.

Самый нижний энергетический порог, при котором может произойти первое слияние сил разных типов, крайне высок, однако находится уже в пределах досягаемости самых современных ускорителей. Энергии частиц на ранней стадии Большого взрыва были крайне высоки (см. также Ранняя Вселенная). В первые 10–10 с они обеспечивали объединение слабых ядерных и электромагнитных сил в электрослабое взаимодействие. Лишь начиная с этого момента окончательно разделились все четыре известных нам силы. До этого момента существовали всего три фундаментальные силы: сильного, электрослабого и гравитационного взаимодействий.
~
Следующее объединение происходит при энергиях далеко за пределами достижимых в условиях земных лабораторий - они существовали во Вселенной в первые 10e(–35) c ее существования. Начиная с этих энергий электрослабое взаимодействие объединяется с сильным. Теории, описывающие процесс такого объединения, называются теориями большого объединения (ТБО). Проверить их на экспериментальных установках невозможно, но они хорошо прогнозируют течение целого ряда процессов, протекающих при более низких энергиях, и это служит косвенным подтверждением их истинности. Однако на уровне ТБО наши возможности в плане проверки универсальных теорий исчерпываются. Далее начинается область теорий суперобъединения (ТСО) или всеобщих теорий - и при одном упоминании о них в глазах у физиков-теоретиков загорается блеск. Непротиворечивая ТСО позволила бы объединить гравитацию с единым сильно-электрослабым взаимодействием, и строение Вселенной получило бы простейшее из возможных объяснений."
Отмечается поиск человека законов и формул, объясняющих все физические явления. Этот поиск объемлет микроуровневые процессы и макроуровневые. Они отличаются силой или энергией, которой происходит обмен.
Взаимодействие на уровне магнитного поля описывается электромагнетизмом.

"Электромагнетизм*

Начало учению об электромагнитных явлениях положено открытием Эрстеда. В 1820 г. Эрстед показал, что проволока, по которой течет электрический ток, вызывает отклонение магнитной стрелки. Он подробно исследовал это отклонение с качественной стороны, но не дал общего правила, по которому можно было бы определять направление отклонения в каждом отдельном случае. Вслед за Эрстедом открытия пошли одно за другим. Ампер (1820) опубликовал свои работы о действии тока на ток или тока на магнит. Амперу принадлежит общее правило для действия тока на магнитную стрелку: если вообразить себя расположенным в проводнике лицом к магнитной стрелке и притом так, чтобы ток имел направление от ног к голове, то северный полюс отклоняется влево. Далее мы увидим, что Ампер свел явления электромагнитные к явлениям электродинамическим (1823). К 1820 г. относятся также работы Араго, который заметил, что проволока, по которой течет электрический ток, притягивает к себе железные опилки. Он же намагнитил впервые железные и стальные проволоки, помещая их внутрь катушки медных проволок, по которым проходил ток. Ему же удалось намагнитить иглу, поместив ее в катушку и разрядив лейденскую банку через катушку. Независимо от Араго намагничивание стали и железа током было открыто Дэви.

Первые количественные определения действия тока на магнит точно так же относятся к 1820 г. и принадлежат Био и Савару.
Если укрепить маленькую магнитную стрелку sn вблизи длинного вертикального проводника AB и астазировать земное поле магнитом NS (фиг. 1), то можно обнаружить следующее:

1. При прохождении тока через проводник магнитная стрелка устанавливается своей длиной под прямым углом к перпендикуляру, опущенному из центра стрелки на проводник.

2. Сила, действующая на тот или другой полюс n и s перпендикулярна к плоскости, проведенной через проводник и данный полюс

3. Сила, с которой действует на магнитную стрелку данный ток, проходящий по очень длинному прямолинейному проводнику, обратно пропорциональна расстоянию от проводника до магнитной стрелки.

Все эти наблюдения и другие могут быть выведены из следующего элементарного количественного закона, известного под именем закона Лапласа-Био-Савара:

dF = k(imSin θ ds)/r2, (1),

где dF - действие элемента тока на магнитный полюс; i - сила тока; m - количество магнетизма, θ - угол, составляемый направлением тока в элементе с линией, соединяющей полюс с элементом тока; ds - длина элемента тока; r -расстояние рассматриваемого элемента от полюса; k - коэффициент пропорциональности.

На основании закона действие равно противодействию, Ампер заключил, что магнитный полюс должен действовать на элемент тока с такой же силой

dФ = k(imSin θ ds)/r2, (2)

прямо противоположной по направлению силе dF, точно также действующей по направлению, составляющему прямой угол с плоскостью, проходящей через полюс и данный элемент. Хотя выражения (1) и (2) хорошо согласуются с опытами, тем не менее на них приходится смотреть не как на закон природы, а как на удобное средство описывать количественную сторону процессов. Главная причина этого в том, что мы не знаем никаких токов, кроме замкнутых, и, следовательно, допущение элемента тока в сущности неправильно. Далее, если мы прибавим к выражениям (1) и (2) какие-нибудь функции, ограниченные только условием, что интеграл их по замкнутому контуру равен нулю, то согласие с опытами будет не менее полное.

Все факты вышеуказанные приводят к выводу, что электрический ток вызывает вокруг себя магнитное поле. Для магнитной силы этого поля должны быть справедливы все законы, справедливые для магнитного поля вообще. В частности, вполне уместно введением понятия о силовых линиях магнитного поля, вызываемого электрическим током. Направление силовых линий в этом случае может быть обнаружено обычным способом при посредстве железных опилок. Если пропустить вертикальную проволоку с током через горизонтальный лист картона и насыпать на картон опилок, то при легком постукивании опилки расположатся концентрическими кругами, если только проводник достаточно длинен.
Так как силовые линии вокруг проволоки замыкаются и так как силовая линия определяет путь, по которому двигалась бы единица магнетизма в данном поле, то ясно, что можно вызвать вращение магнитного полюса вокруг тока. Первый прибор, в котором подобное вращение было осуществлено, был построен Фарадеем. Очевидно, что по силе магнитного поля можно судить о силе тока. К этому вопросу мы сейчас и подойдем.

Рассматривая магнитный потенциал очень длинного прямолинейного тока, мы легко можем доказать, что этот потенциал многозначен. В данной точке он может иметь бесконечно большое число различных значений, разнящихся одно от другого на 4 kmi π , где k - коэффициент, остальные буквы известны. Этим и объясняется возможность непрерывного вращения магнитного полюса вокруг тока. 4 kmi π и есть работа, совершаемая при одном обороте полюса; она берется за счет энергии источника тока. Особый интерес представляет случай замкнутого тока. Замкнутый ток мы можем себе представить в виде петли, сделанной на проволоке, по которой течет ток. Петля имеет произвольную форму. Два конца петли свернуты в жгут (шнур) и идут к далеко поставленному элементу.


Сложно найти такую сферу, в которой бы не нашлось применения магнитам. Развивающие игрушки, полезные аксессуары и сложное промышленное оборудование - это лишь малая доля от поистине огромного количества вариантов их использования. При этом мало кто знает, как устроены магниты и в чем секрет их силы притяжения. Чтобы ответить на эти вопросы, нужно погрузиться в основы физики, но не переживайте – погружение будет недолгим и неглубоким. Зато после знакомства с теорией вы узнаете, из чего состоит магнит, и природа его магнитной силы станет для вас намного понятнее.


Электрон – самый маленький и самый простой магнит


Любое вещество состоит из атомов, а атомы в свою очередь состоят из ядра, вокруг которого вращаются положительно и отрицательно заряженные частицы – протоны и электроны. Предмет нашего интереса представляют собой именно электроны. Их движение и создает электрический ток в проводниках. Кроме того, каждый электрон является миниатюрным источником магнитного поля и, по сути, простейшим магнитом. Вот только в составе большинства материалов направление движения этих частиц является хаотичным. Как результат – их заряды уравновешивают друг друга. А когда направление вращения большого количества электронов на своих орбитах совпадает, то возникает постоянная магнитная сила.


Устройство магнита


Итак, с электронами разобрались. И теперь мы вплотную приближаемся к ответу на вопрос, как устроены магниты. Чтобы материал мог притягивать железный кусок породы, направление электронов в его структуре должно совпадать. В этом случае атомы формируют собой упорядоченные области, которые называются домены. У каждого домена есть пара полюсов: северный и южный. Через них проходит постоянная линия движения магнитных сил. Они входят в южный полюс и выходят из северного. Такое устройство означает, что северный полюс всегда будет притягивать южный полюс другого магнита, тогда как одноименные полюса будут отталкиваться.

Как магнит притягивает металлы


Магнитная сила действует не на все вещества. Только некоторые материалы можно притягивать: железо, никель, кобальт и редкоземельные металлы. Железный кусок породы не является природным магнитом, но при воздействии магнитного поля его структура перестраивается в домены с северными и южными полюсами. Таким образом, сталь может намагничиваться и сохранять свою измененную структуру на протяжении длительного времени.



Как делают магниты


Мы уже разобрались, из чего состоит магнит. Он представляет собой материал, в котором направленность доменов совпадает. Для придания породе таких свойств может использоваться сильное магнитное поле или электрический ток. В настоящий момент люди научились изготавливать очень мощные магниты, сила притяжения которых в десятки раз превышает собственный вес и сохраняется на протяжении сотен лет. Речь идет о редкоземельных супермагнитах на основе неодимового сплава. Такие изделия весом в 2-3 кг могут удерживать объекты весом в 300 кг и более. Из чего состоит неодимовый магнит и чем же обусловлены такие удивительные свойства?



Простая сталь не подойдет для того, чтобы успешно изготавливать изделия с мощнейшей силой притяжения. Для этого нужен особый состав, который позволит максимально эффективно упорядочить домены и сохранить стойкость новой структуры. Чтобы понять, из чего состоит неодимовый магнит, представьте себе металлический порошок неодима, железа и бора, который с помощью промышленных установок будет намагничиваться сильным полем и спекаться в жесткую структуру. Чтобы защитить этот материал, его покрывают прочной оцинкованной оболочкой. Такая технология производства позволяет получить изделия различных размеров и форм. В ассортименте интернет-магазина «Мир магнитов» вы найдете огромное разнообразие магнитных товаров для работы, развлечений и быта.

Каждый держал в руках магнит и забавлялся им в детстве. Магниты могут быть самыми разными по форме, размерам, но все магниты имеют общее свойство - они притягивают железо. Похоже, что они и сами сделаны из железа, во всяком случае, из какого-то металла точно. Есть, однако, и «черные магниты» или «камни», они тоже сильно притягивают железки, и особенно друг друга.

Но на металл они не похожи, легко бьются, как стеклянные. В хозяйстве магнитам находится множество полезных дел, например, удобно с их помощью «пришпиливать» бумажные листы к железным поверхностям. Магнитом удобно собирать потерянные иголки, так что, как мы видим, это совсем небесполезная вещь.

Наука 2.0 - Большой скачок - Магниты

Магнит в прошлом

Ещё древние китайцы более 2000 лет назад знали о магнитах, по крайней мере то, что это явление можно использовать для выбора направления при путешествиях. То есть придумали компас. Философы в древней Греции, люди любопытные, собирая различные удивительные факты, столкнулись с магнитами в окрестностях города Магнесса в Малой Азии. Там и обнаружили странные камни, которые могли притягивать железо. По тем временам, это было не менее удивительным, чем могли бы стать в наше время инопланетяне.

Еще более удивительным казалось, что магниты притягивают далеко не все металлы, а только железо, и само железо способно становиться магнитом, хотя и не таким сильным. Можно сказать, что магнит притягивал не только железо, но и любопытство ученых, и сильно двигал вперед такую науку, как физика. Фалес из Милета писал о «душе магнита», а римлянин Тит Лукреций Кар – о «бушующем движении железных опилок и колец», в своем сочинении «О природе вещей». Уже он мог заметить наличие двух полюсов у магнита, которые потом, когда компасом начали пользоваться моряки, получили названия в честь сторон света.

Что такое магнит. Простыми словами. Магнитное поле

За магнит взялись всерьез

Природу магнитов долгое время не могли объяснить. С помощью магнитов открывали новые континенты (моряки до сих пор относятся к компасу с огромным уважением), но о самой природе магнетизма по прежнему никто ничего не знал. Работы велись только по усовершенствованию компаса, чем занимался еще географ и мореплаватель Христофор Колумб.

В 1820 году датский ученый Ганс Христиан Эрстед сделал важнейшее открытие. Он установил действие провода с электрическим током на магнитную стрелку, и как ученый, выяснил опытами как это происходит в разных условиях. В том же году французский физик Анри Ампер выступил с гипотезой об элементарных круговых токах, протекающих в молекулах магнитного вещества. В 1831-ом году англичанин Майкл Фарадей с помощью катушки из изолированного провода и магнита проводит опыты, показывающие, что механическую работу можно превратить в электрический ток. Он же устанавливает закон электромагнитной индукции и вводит в обращение понятие «магнитное поле».

Закон Фарадея устанавливает правило: для замкнутого контура электродвижущая сила равна скорости изменения магнитного потока, проходящего через этот контур. На этом принципе работают все электрические машины - генераторы, электродвигатели, трансформаторы.

В 1873 году шотландский ученый Джеймс К. Максвелл сводит магнитные и электрические явления в одну теорию, классическую электродинамику.

Вещества, способные намагничиваться, получили название ферромагнетиков. Это название связывает магниты с железом, но кроме него, способность к намагничиванию обнаруживается еще у никеля, кобальта, и некоторых других металлов. Поскольку магнитное поле уже перешло в область практического использования, то и магнитные материалы стали предметом большого внимания.

Начались эксперименты со сплавами из магнитных металлов и различными добавками в них. Стоили получаемые материалы очень дорого, и если бы Вернеру Сименсу не пришла в голову идея заменить магнит сталью, намагничиваемой сравнительно небольшим током, то мир так бы и не увидел электрического трамвая и компании Siemens. Сименс занимался еще телеграфными аппаратами, но тут у него было много конкурентов, а электрический трамвай дал фирме много денег, и в конечном счете, потянул за собой все остальное.

Электромагнитная индукция

Основные величины, связанные с магнитами в технике

Мы будем интересоваться в основном магнитами, то есть ферромагнетиками, и оставим немного в стороне остальную, очень обширную область магнитных (лучше сказать, электромагнитных, в память о Максвелле) явлений. Единицами измерений у нас будут те, которые приняты в СИ (килограмм, метр, секунда, ампер) и их производные:

l Напряженность поля , H, А/м (ампер на метр).

Эта величина характеризует напряженность поля между параллельными проводниками, расстояние между которыми 1 м, и протекающий по ним ток 1 А. Напряженность поля является векторной величиной.

l Магнитная индукция , B, Тесла, плотность магнитного потока (Вебер/м.кв.)

Эта отношение тока через проводник к длине окружности, на том радиусе, на котором нас интересует величина индукции. Окружность лежит в плоскости, которую провод пересекает перпендикулярно. Сюда входит еще множитель, называемый магнитной проницаемостью. Это векторная величина. Если мысленно смотреть в торец провода и считать, что ток течет в направлении от нас, то магнитные силовые окружности «вращаются» по часовой стрелке, а вектор индукции приложен к касательной и совпадает с ними по направлению.

l Магнитная проницаемость , μ (относительная величина)

Если принять магнитную проницаемость вакуума за 1, то для остальных материалов мы получим соответствующие величины. Так, например, для воздуха мы получим величину, практически такую же как и для вакуума. Для железа мы получим существенно большие величины, так что можно образно (и весьма точно) говорить, что железо «втягивает» в себя силовые магнитные линии. Если напряженность поля в катушке без сердечника будет равняться H, то с сердечником мы получаем μH.

l Коэрцитивная сила , А/м.

Коэрцитивная сила показывает, насколько магнитный материал сопротивляется размагничиванию и перемагничиванию. Если ток в катушке совсем убрать, то в сердечнике будет остаточная индукция. Чтобы сделать ее равной нулю, нужно создать поле некоторой напряженности, но обратной, то есть пустить ток в обратном направлении. Эта напряженность и называется коэрцитивной силой.

Поскольку магниты на практике всегда используются в какой-то связи с электричеством, то не стоит удивляться тому, что для описания их свойств используется такая электрическая величина, как ампер.

Из сказанного следует возможность, например, гвоздю, на который подействовали магнитом, самому стать магнитом, хотя и более слабым. На практике выходит, что даже дети, забавляющиеся магнитами, об этом знают.

К магнитам в технике предъявляют разные требования, в зависимости от того, куда идут эти материалы. Ферромагнитные материалы делятся на «мягкие» и «жесткие». Первые идут на изготовление сердечников для приборов, где магнитный поток постоянный или переменный. Хорошего самостоятельного магнита из мягких материалов не сделаешь. Они слишком легко размагничиваются и здесь это как раз их ценное свойство, поскольку реле должно «отпустить» если ток выключен, а электрический мотор не должен греться - на перемагничивание расходуется лишняя энергия, которая выделяется в форме тепла.

КАК ВЫГЛЯДИТ МАГНИТНОЕ ПОЛЕ НА САМОМ ДЕЛЕ? Игорь Белецкий

Постоянные магниты, то есть те, которые магнитами и называют, требуют для своего изготовления жестких материалов. Жесткость имеется в виду магнитная, то есть большая остаточная индукция и большая коэрцитивная сила, поскольку, как мы видели, эти величины тесно связаны между собой. На такие магниты идут углеродистые, вольфрамовые, хромистые и кобальтовые стали. Их коэрцитивная сила достигает значений около 6500 А/м.

Есть особые сплавы, которые называются альни, альниси, альнико и множество других, как можно догадаться в них входят алюминий, никель, кремний, кобальт в разных сочетаниях, которые обладают большей коэрцитивной силой - до 20000…60000 А/м. Такой магнит не так-то просто оторвать от железа.

Есть магниты, специально предназначенные для работы на повышенной частоте. Это многим известный «круглый магнит». Его «добывают» из негодного динамика из колонки музыкального центра, или автомагнитолы или даже телевизора прошлых лет. Этот магнит изготовлен путем спекания окислов железа и специальных добавок. Такой материал называется ферритом, но не каждый феррит специально так намагничивается. А в динамиках его применяют из соображений уменьшения бесполезных потерь.

Магниты. Discovery. Как это работает?

Что происходит внутри магнита?

Благодаря тому, что атомы вещества являются своеобразными «сгустками» электричества, они могут создавать свое магнитное поле, но только у некоторых металлов, имеющих сходное атомное строение, эта способность выражена очень сильно. И железо, и кобальт, и никель стоят в периодической системе Менделеева рядом, и имеют похожие строения электронных оболочек, которое превращает атомы этих элементов в микроскопические магниты.

Поскольку металлы можно назвать застывшей смесью различных кристаллов очень маленького размера, то понятно, что магнитных свойств у таких сплавов может быть очень много. Многие группы атомов могут «разворачивать» свои собственные магниты под влиянием соседей и внешних полей. Такие «сообщества» называются магнитными доменами, и образуют весьма причудливые структуры, которые до сих пор с интересом изучаются физиками. Это имеет большое практическое значение.

Как уже говорилось, магниты могут иметь почти атомные размеры, поэтому наименьший размер магнитного домена ограничивается размером кристалла, в который встроены атомы магнитного металла. Этим объясняется, например, почти фантастическая плотность записи на современные жесткие диски компьютеров, которая, видимо, еще будет расти, пока у дисков не появятся конкуренты посерьезнее.

Гравитация, магнетизм и электричество

Где применяются магниты?

Сердечники которых являются магнитами из магнитов, хотя обычно их называют просто сердечниками, магниты находят еще множество применений. Есть канцелярские магниты, магниты для защелкивания мебельных дверей, магниты в шахматах для путешественников. Это известные всем магниты.

К более редким видам относятся магниты для ускорителей заряженных частиц, это очень внушительные сооружения, которые могут весить десятки тонн и больше. Хотя сейчас экспериментальная физика поросла травой, за исключением той части, которая тут же приносит сверхприбыли на рынке, а сама почти ничего не стоит.

Еще один любопытный магнит установлен в медицинском навороченном приборе, который называется магнитно-резонансным томографом. (Вообще-то метод называется ЯМР, ядерный магнитный резонанс, но чтобы не пугать народ, который в массе не силен в физике, его переименовали.) Для прибора требуется помещение наблюдаемого объекта (пациента) в сильное магнитное поле, и соответствующий магнит имеет устрашающие размеры и форму дьявольского гроба.

Человека кладут на кушетку, и прокатывают через тоннель в этом магните, пока датчики сканируют место, интересующее врачей. В общем, ничего страшного, но у некоторых клаустрофобия доходит до степени паники. Такие охотно дадут себя резать живьем, но не согласятся на обследование МРТ. Впрочем, кто знает, как человек чувствует себя в необычно сильном магнитном поле с индукцией до 3 Тесла, после того, как заплатил за это хорошие деньги.

Чтобы получить такое сильное поле, часто используют сверхпроводимость, охлаждая катушку магнита жидким водородом. Это дает возможность «накачивать» поле без опасений, что нагрев проводов сильным током ограничит возможности магнита. Это совсем недешевая установка. Но магниты из специальных сплавов, которые не требуют подмагничивания током, стоят значительно дороже.

Наша Земля тоже является большим, хотя и не очень сильным магнитом. Он помогает не только владельцам магнитного компаса, но и спасает нас от гибели. Без него мы были бы убиты солнечной радиацией. Картина магнитного поля Земли, смоделированная компьютерами по данным наблюдений из космоса выглядит очень внушительно.

Вот небольшой ответ на вопрос, о том, что такое магнит в физике и технике.

Резкое усиление внешнего магнитного поля - например, при магнитной буре - отрицательно сказывается на самочувствии. Но гораздо хуже, как показывают испытания, хронический дефицит магнитного поля.


Впервые этот синдром исследовал японский ученый Накагава. Главными его проявлениями являются слабость, утомляемость, сниженная работоспособность, нарушения сна, головные боли, боль в и позвоночнике, патология сердечно-сосудистой системы, гипертония, нарушения пищеварения, гинекологические дисфункции и др.


Так, у первых после возвращения на Землю обнаружили остеопороз . Как только на космических начали применять искусственные магнитные поля, то подобные явления практически исчезли.

Намного истории

Магниты в лечебных целях использовались в Китае еще в ХХ веке до н.э. Авиценна лечил магнитом заболевания печени и селезенки. Парацельс использовал магниты при кровотечениях и переломах. Говорят, что Клеопатра для сохранения молодости носила магнитный браслет. Также магнитную терапию применяли личный врач королевы Елизаветы І Уильям Джилберт и известный врач 18 века Франц Месмер для лечения хронических болей, колик, подагры, психических расстройств.

Современный подход

В России магнитотерапевтические методы лечения признаны медицинскими. Магнитотерапия сегодня - это область медицины, которая использует влияние магнитного поля для лечения болезней. В медицинских заведениях есть множество приборов с магнитными свойствами. В зависимости от целей и задач на человека в лечебных целях воздействуют разными магнитными полями: постоянным, переменным, пульсирующим, вращающимся.

Спектр применения

Магнитное поле влияет на процессы торможения в спинном и головном мозге. Проходят головные боли и депрессия, улучшается поступление кислорода к тканям, функционирование всех органов.


Наиболее чувствительны к магнитному полю кровь, нервная и эндокринная системы, сердце и сосуды. Магнитотерпапия улучшает эластичность сосудов, увеличивает скорость кровотока и расширяет систему капилляров. Происходит нормализация сна и самочувствия в целом.


С помощью магнитотерапии лечат заболевания опорно-двигательного аппарата (в частности, артриты). Наблюдается более быстрое купирование воспалительного и болевого синдрома, уменьшение отека, восстановление подвижности. Этот метод может применяться и . Магнитотерапия активно используется для заживления ран. Также помогает при мигрени, головной боли, быстрой утомляемости, депрессии.

Масс-маркет

Магнитная бижутерия совмещает в себе красоту и здоровье. Она оказывает постоянный терапевтический эффект на организм в целом.


На теле человека есть зоны, где действие магнитов наиболее эффективно - это запястья, шея, ступни.


Популярностью также пользуется заряженная магнитами структурированная вода. Она оздаравливает организм, выводит токсины, . Самостоятельно ее можно приготовить с помощью магнитной палочки.

Противопоказания

Самолечение магнитами может вызвать негативные реакции в организме. Следите за своим самочувствием и обязательно советуйтесь с врачом, тем более что лечение магнитами подходит не всем. Ведь у каждого человека организм индивидуален.