Обобщение материала на тему механика деформируемых тел. Основные понятия механики деформируемого твердого тела

Cтраница 1


Механика деформируемых тел в зависимости от дополнительных экспериментальных законов распадается на разделы, основные из которых следующие: теория упругости, теория пластичности, механика сыпучих тел.  

Механика деформируемых тел отражена в IV части книги.  

Механика деформируемых тел состоит из следующих основных разделов: а) теория упругости, б) теория пластичности, в) теория ползучести, г) механика сыпучих тел, к которым непосредственно примыкают теория прочности и механика разрушения.  

Механикой пластически деформируемых тел и с 1951 г. регулярно печатал статьи на эту тему в сборниках МВТУ. Ведя исследования по данной проблеме с целью разработки материалов для расширения и углубления учебного курса Теория пластических деформаций и продолжая другие исследования в этой области, А. И. Зимин заложил основы вихревой теории пластически деформируемых тел, доказав, что частицы металла при пластическом течении обязаны совершать вращательные движения. Для общего случая пластического деформирования, - писал А. И. Зимин, - его интенсивность должна определяться совокупностью линейной и угловой интенсивностей.  

Методы механики деформируемого тела, в частности механики контактного взаимодействия и механики разрушения, являются мощным средством аналитического исследования проблем трибологии.  

В механике деформируемых тел (иначе называемой механикой сплошной среды) при макрофизическом изучении свойств тел отвлекаются от молекулярного строения вещества и предполагают, что материя, составляющая тело, непрерывно заполняет некоторую часть пространства.  

К механике деформируемых тел относятся и другие дисциплины, такие, как математическая теория упругости, где рассматриваются, по существу, те же вопросы, что и в сопротивлении материалов. Различие между сопротивлением материалов и математической теорией упругости заключается в первую очередь в подходе к решению задач.  

В механике деформируемых тел среда рассматривается как сплошная с непрерывным распределением вещества. Поэтому напряжения, деформации и перемещения считаются непрерывными и дифференцируемыми функциями координат точек тела. Предполагается, что любые сколь угодно малые частицы твердого тела обладают одинаковыми свойствами. Такое толкование строения и свойств тел, строго говоря, противоречит действительности, так как все существующие в природе тела в микроскопическом смысле являются неоднородными. Под дефектами структуры (неоднородностью) следует понимать поликристаллическое строение материала, местные нарушения постоянства химического состава, наличие инородных примесей, микротрещины и другие дефекты, приводящие к локальным возмущениям поля напряжений. Однако в силу статистических законов относительные перемещения точек реального тела можно считать практически совпадающими с перемещениями соответствующих точек однородной модели.  

В механике деформируемого тела рассматривают физические величины (векторы и тензоры), не зависящие от выбора системы координат, но иногда их удобнее изучать в некоторых специально выбранных системах координат. Векторы и тензоры в каждой из систем координат задаются совокупностью величин, называемых компонентами вектора или тензора. Если эти компоненты заданы в одной системе координат, то они определены и в любой другой системе, ибо определение вектора и тензора включает и закон преобразования их компонент при переходе от одной системы координат (базиса) к другой. Одним из важнейших достоинств векторного исчисления является.  

В механике деформируемого тела рассматривают физические величины (векторы и тензоры), не зависящие от выбора системы координат, но иногда их удобнее изучать в некоторых специально выбранных системах координат. Векторы и тензоры в каждой из систем координат задаются совокупностью Величин, называемых компонентами вектора или тензора. Если эти компоненты заданы в одной системе координат, то они определены и в любой другой системе, ибо определение вектора и тензора включает и закон преобразования их компонент при переходе от одной системы координат (базиса) к другой. Одним из важнейших достоинств векторного исчисления является то, что уравнения, характеризующие состояние механической системы (уравнения равновесия или движения) можно формулировать в инвариантной форме по отношению к координатным системам.  

В механике деформируемого тела под деформацией понимают движение тела, сопровождающееся изменением расстояний между его материальными точками.  

К механике деформируемых тел относятся и другие дисциплины, такие, как математическая теория упругости, рассматривающая, по существу, те же вопросы, что и сопротивление материалов. Различие между сопротивлением материалов и математической теорией упругости заключается в первую очередь в подходе к решению задач.  

В механике деформируемого тела под деформацией понимают движение тела, сопровождаемое изменением расстояний между его материальными точками.  

Решение задач механики деформируемого тела для областей с разрезами (трещинами) связано с известными математическими трудностями вследствие наличия особых (сингулярных) точек. Большинство этих задач эффективно может быть решено только с применением ЭВМ.  

В основе механики деформируемых тел лежит понятие среды, которая сплошь заполняет тот или иной объем. За частицу такой среды можно принимать (в пределах макроскопического рассмотрения) некоторый элемент, заключенный в весьма малом ее объеме.  

ОСНОВНЫЕ ПОНЯТИЯ МЕХАНИКИ

ДЕФОРМИРУЕМОГО ТВЕРДОГО ТЕЛА

В настоящей главе приведены основные понятия, которые ранее изучались в курсах физики, теоретической механики и сопротивления материалов.

1.1. Предмет механики деформируемого твердого тела

Механика деформируемого твердого тела – это наука о равновесии и движении твердых тел и отдельных их частиц, учитывающая изменения расстояний между отдельными точками тела, которые возникают в результате внешних воздействий на твердое тело. В основу механики деформируемого твердого тела положены законы движения, открытые Ньютоном, поскольку скорости движения реальных твердых тел и отдельных их частиц относительно друг друга существенно меньше скорости света. В отличие от теоретической механики здесь рассматриваются изменения расстояний между отдельными частицами тела. Последнее обстоятельство налагает определенные ограничения на принципы теоретической механики. В частности в механике деформируемого твердого тела недопустим перенос точек приложения внешних сил и моментов.

Анализ поведения деформируемых твердых тел под воздействием внешних сил производится на базе математических моделей, отражающих наиболее существенные свойства деформируемых тел и материалов, из которых они выполнены. При этом для описания свойств материала используются результаты экспериментальных исследований, которые послужили основой для создания моделей материала. В зависимости от модели материала механика деформируемого твердого тела делится на разделы: теорию упругости, теорию пластичности, теорию ползучести, теорию вязкоупругости. В свою очередь механика деформируемого твердого тела входит в состав более общей части механики – механики сплошных сред. Механика сплошных сред, являясь разделом теоретической физики, изучает законы движения твердых, жидких и газообразных сред, а также плазмы и непрерывных физических полей.

Развитие механики деформируемого твердого тела в значительной мере связано с задачами создания надежных сооружений и машин. Надежность сооружения и машины, так же как и надежность всех их элементов обеспечиваются прочностью, жесткостью, устойчивостью и выносливостью в течение всего срока эксплуатации. Под прочностью понимается способность сооружения (машины) и всех его (ее) элементов сохранять свою целостность при внешних воздействиях без разделения на заранее не предусмотренные части. При недостаточной прочности сооружение или отдельные его элементы разрушаются путем разделения единого целого на части. Жесткость сооружения определяется мерой изменения формы и размеров сооружения и его элементов при внешних воздействиях. Если изменения формы и размеров сооружения и его элементов не велики и не мешают нормальной эксплуатации, то такое сооружение считается достаточно жестким. В противном случае жесткость считается недостаточной. Устойчивость сооружения характеризуется способностью сооружения и его элементов сохранять свою форму равновесия при действии случайных не предусмотренных условиями эксплуатации сил (возмущающих сил). Сооружение находится в устойчивом состоянии, если после устранения возмущающих сил оно возвращается к исходной форме равновесия. В противном случае происходит потеря устойчивости исходной формы равновесия, которая, как правило, сопровождается разрушением сооружения. Под выносливостью понимается способность сооружения сопротивляться воздействию переменных во времени сил. Переменные силы вызывают рост микроскопических трещин внутри материала сооружения, которые могут привести к разрушению элементов конструкции и сооружения в целом. Поэтому для предотвращения разрушения приходится ограничивать величины переменных во времени сил. Кроме того, низшие частоты собственных колебаний сооружения и его элементов не должны совпадать (или находиться вблизи) с частотами колебаний внешних сил. В противном случае сооружение или его отдельные элементы входят в резонанс, что может явиться причиной разрушения и вывода из строя сооружения.

Подавляющее большинство исследований в области механики деформируемого твердого тела направлено на создание надежных сооружений и машин. Сюда входят вопросы проектирования сооружений и машин и проблемы технологических процессов обработки материалов. Но сфера применения механики деформируемого твердого тела не ограничивается одними техническими науками. Ее методы широко используются в естественных науках, таких как геофизика, физика твердого тела, геология, биология. Так в геофизике с помощью механики деформируемого твердого тела изучаются процессы распространения сейсмических волн и процессы формирования земной коры, изучаются фундаментальные вопросы строения земной коры и т.д.

1.2. Общие свойства твердых тел

Все твердые тела состоят из реальных материалов, обладающих огромным количеством разнообразных свойств. Из них лишь только некоторые имеют существенное значение для механики деформируемого твердого тела. Поэтому материал наделяется лишь теми свойствами, которые позволяют с наименьшими затратами изучить поведение твердых тел в рамках рассматриваемой науки.

ПРОГРАММА-МИНИМУМ

кандидатского экзамена по специальности

01.02.04 «Механика деформируемого твердого тела»

по физико-математическим наукам

В основу настоящей программы положены следующие дисциплины: механика и термодинамика сплошных сред, теория упругости, теория пластичности, теория вязкоупругости, теория ползучести, механика разрушения, численные методы решения задач механики деформируемого твердого тела.

Программа разработана экспертным советом Высшей аттестационной комиссии Министерства образования Российской Федерации по математике и механике при участии МГУ им. М.В.Ломоносова.

1. Механика и термодинамика сплошных сред

Понятие сплошного тела. Гипотеза сплошности. Физически и геометрически малый элемент. Деформация элемента сплошной среды. Два способа описания деформации сплошного тела. Координаты Эйлера и координаты Лагранжа. Переход от Эйлерова описания к Лагранжеву и обратно.

Тензор деформации Коши-Грина. Геометрический смысл компонент тензора деформации Грина. Тензор деформации Альманси. Геометрический смысл компонент тензора деформации Альманси. Условия совместности деформаций. Формулировка условий совместности деформаций в цилиндрической и сферической системе координат. Вычисление тензора малых деформаций по заданному полю перемещений. Формулы Чезаро.

Классификация сил в механике сплошных сред: внешние и внутренние силы, массовые и поверхностные силы. Тензоры напряжений Коши, Пиолы и Кирхгофа.

Законы сохранения механики сплошных сред: уравнения баланса массы, импульса, момента импульса, кинетической, потенциальной и полной энергии.

Термодинамические процессы и циклы. Термодинамические параметры состояния. Понятия о работе, теплоте, внутренней энергии, темпер атуре и энтропии. Первый и второй законы термодинамики. Термодинамические потенциалы состояния. Общие формы определяющих соотношений механики сплошных сред.

Физическая размерность. Анализ размерностей и П-теорема. Автомодельные решения. Примеры.

2. Теория упругости

Упругое деформирование твердых тел. Упругий потенциал и энергия деформации. Линейно упругое тело Гука. Понятие об анизотропии упругого тела. Тензор упругих модулей. Частные случаи анизотропии: трансверсально изотропное и ортотропное упругое тело. Упругие модули изотропного тела.

Полная система уравнений теории упругости. Уравнения Ламе в перемещениях. Уравнения Бельтрами-Митчелла в напряжениях. Граничные условия. Постановка краевых задач математической теории упругости. Основные краевые задачи. Принцип Сен-Венана.

Общие теоремы теории упругости: теорема Клапейрона, тождество взаимности, теорема единственности. Основные энергетические функционалы линейной теории упругости. Вариационные принципы теории упругости: принцип минимума полной потенциальной энергии, принцип минимума дополнительной энергии, принцип Рейснера. Теоремы Кастильяно. Теорема Бетти. Примеры.

Действие сосредоточенной силы в неограниченной упругой среде. Тензор Грина. Граничные интегральные представления напряжений и перемещений. Формула Сомильяны. Общие представления решений уравнений теории упругости: представление Кельвина, представление Галеркина и представление Папковича-Нейбера. Нормальная нагрузка на границе полупространства (задача Буссинеска). Касательная нагрузка на границе полупространства (задача Черрути).

Плоское напряженное и плоское деформированное состояние. Плоская задача теории упругости. Метод комплексных потенциалов Колосова-Мусхелишвили. Комплексное представление напряжений и перемещений. Уравнения плоской задачи теории упругости в полярных координатах. Смешанная задача для полуплоскости. Задача Гриффитса.

Антиплоская деформация. Трещина антиплоского сдвига в упругом теле. Кручение и изгиб призматического тела (задача Сен-Венана). Теоремы о циркуляции касательного напряжения при кручении и изгибе. Центр изгиба.

Задача о действии штампа с плоским основанием на полуплоскость. Контактная задача Герца.

Теория тонких упругих пластин и оболочек. Основные гипотезы. Полная система уравнений теории пластин и оболочек. Граничные условия. Постановка задач теории пластин и оболочек. Безмоментная теория. Краевые эффекты. Задача о круглой симметрично загруженной пластине.

Динамические задачи теории упругости. Уравнения движения в форме Ламе. Динамические, геометрические и кинематические условия совместности на волновом фронте. Свободные волны в неограниченной изотропной упругой среде. Общее решение в форме Ламе. Фундаментальное решение динамических уравнений теории упругости для пространства. Плоские гармонические волны. Коэффициенты отражения, прохождения и трансформации. Полное отражение. Поверхностные волны Релея. Волны Лява. Установившиеся колебания упругих тел. Частоты и формы собственных колебаний. Вариационный принцип Релея.

Температурные задачи теории упругости. Уравнения термоупругости.

3. Теория пластичности

Пластическое деформирование твердых тел. Предел текучести. Упрочнение. Остаточные деформации. Идеальная пластичность. Физические механизмы пластического течения. Понятие о дислокациях. Локализация пластических деформаций. Линии Людерса-Чернова.

Идеальное упругопластическое тело. Идеальное жесткопластическое тело. Пространство напряжений. Критерий текучести и поверхность текучести. Критерии Треска и Мизеса. Пространство главных напряжений. Геометрическая интерпретация условий текучести. Условие полной пластичности. Влияние среднего напряжения.

Упрочняющееся упругопластическое тело. Упрочняющееся жесткопластическое тело. Функция нагружения, поверхность нагружения. Параметры упрочнения.

Законы связи между напряженным и деформированным состояниями в теории течения. Принцип Мизеса. Постулат Друккера. Ассоциированный закон пластического течения. Теория скольжения. Краевые задачи теории течения. Теоремы единственности. Вариационные принципы теории течения.

Теория предельного равновесия. Статическая и кинематическая теоремы теории предельного равновесия. Верхние и нижние оценки. Примеры.

Кручение призматического тела за пределом упругости. Предельное равновесие при кручении. Характеристики. Поверхность напряжений как поверхность постоянного ската. Песчаная аналогия. Разрывы напряжений. Песчано-мембранная аналогия Прандтля-Надаи для кручения идеально упругопластических тел.

Пластическое плоское деформированное состояние. Уравнения для напряжений и скоростей. Статически определимые и неопределимые задачи. Характеристики. Свойства линий скольжения. Методы решения основных краевых задач теории плоской пластической деформации. Задача Прандтля о вдавливании штампа. Пластическое плоское напряженное состояние. Уравнения для напряжений и скоростей при условии пластичности Мизеса. Характеристики.

Плоские упругопластические задачи теории идеальной пластичности. Двухосное растяжение толстой и тонкой пластин с круговым отверстием.

Деформационные теории пластичности. Теория Генки. Теория малых упругопластических деформаций А.А. Ильюшина. Теорема о разгрузке. Метод упругих решений. Задача о толстостенной трубе из упрочняющегося материала.

Упругопластические волны в стержне. Ударное нагружение. Волна разгрузки. Остаточные деформации. Критическая скорость удара.

4. Теория вязкоупругости и ползучести

Понятие о ползучести и релаксации. Кривые ползучести и релаксации. Простейшие модели линейно вязкоупругих сред: модель Максвелла, модель Фохта, модель Томсона. Время релаксации. Время запаздывания.

Определяющие соотношения теории вязкоупругости. Ядра ползучести и релаксации. Непрерывные ядра и ядра со слабой особенностью. Термо-динамические ограничения на выбор ядер ползучести и релаксации.

Формулировка краевых задач теории вязкоупругости. Методы решения краевых задач теории вязкоупругости: принцип соответствия Вольтерры, применение интегрального преобразования Лапласа, численные методы. Теорема единственности.

Вариационные принципы в линейной вязкоупругости. Применение вариационного метода к задачам изгиба.

Плоская задача о вдавливании жесткого штампа в вязкоупругую полуплоскость. Контакт вязкоупругих тел: аналог задачи Герца.

Определяющие соотношения нелинейной теории вязкоупругости. Разложение Вольтерры-Фреше. Упрощенные одномерные модели.

Теории старения, течения, упрочнения и наследственности. Ползучесть при сложном напряженном состоянии. Определяющие соотношения.

Установившаяся ползучесть. Уравнения состояния деформируемых тел, находящихся в условиях установившейся ползучести. Постановка краевых задач. Вариационные принципы теории установившейся ползучести: принцип минимума полной мощности, принцип минимума дополнительного рассеяния. Установившаяся ползучесть и длительная прочность стержня.

Неустановившаяся ползучесть. Определяющие уравнения теории неустановившейся ползучести. Вариационные принципы теории течения и теории упрочнения. Неустановившаяся ползучесть стержневой решетки. Устойчивость стержней и пластин из реономных материалов.

5. Механика разрушения

Понятие о разрушении и прочности тел. Общие закономерности и основные типы разрушения. Концентраторы напряжений. Коэффициент концентрации напряжений: растяжение упругой полуплоскости с круговым и эллиптическим отверстиями.

Феноменологические теории прочности. Критерии разрушения: деформационный, энергетический, энтропийный. Критерии длительной и усталостной прочности. Расчет прочности по допускаемым напряжениям. Коэффициент запаса прочности.

Двумерные задачи о трещинах в упругом теле. Метод разложения по собственным функциям в задаче о построении асимптотик полей напряжений и перемещений у вершины трещины в упругом теле. Коэффициент интенсивности напряжений, методы его вычисления и оценки.

Скорость высвобождения энергии при продвижении трещины в упругом теле. Энергетический подход Гриффитса в механике разрушения. Силовой подход в механике разрушения: модели Баренблатта и Ирвина. Эквивалентность подходов в случае хрупкого разрушения. Формула Ирвина.

J - интеграл Эшелби- Черепанова-Райса и его инвариантность. Вычисление потока энергии в вершину трещины.J R -кривая.

Динамическое распространение трещин. Динамический коэффициент интенсивности напряжений. Предельная скорость трещины хрупкого разрушения (теоретическая оценка и экспериментальные данные).

Локализованное пластическое течение у вершины трещины. Оценка линейного размера пластической зоны у вершины трещины по Ирвину. Поле скольжения у вершины трещины нормального отрыва в идеально пластическом теле. Модель трещины Леонова-Панасюка-Дагдейла с узкой зоной локализации пластических деформаций.

Кинетическая концепция прочности твердых тел. Формула Журкова. Кинетическая теория трещин. Рост трещин в условиях ползучести.

Понятие об усталостном разрушении. Малоцикловая и многоцикловая усталость. Основные законы роста усталостных трещин.

Понятие о поврежденности. Типы поврежденности. Математическое представление поврежденности. Параметр поврежденности Качанова-Работнова.

Кинетические уравнения накопления поврежденности. Принцип линейного суммирования повреждений. Накопление повреждений в условиях ползучести.

6. Численные методы решения задач механики
деформируемого твердого тела

Метод конечных разностей. Типичные разностные схемы для параболических, эллиптических и гиперболических уравнений. Метод конечных разностей для дифференциальных уравнений теории упругости.

Вариационный принцип минимума полной потенциальной энергии упругого тела. Методы Релея-Ритца, Бубнова-Галеркина и градиентного спуска в задачах минимизации функционала полной потенциальной энергии.

Метод конечных элементов в теории упругости. Пределы применимости метода конечных элементов.

Формула Сомильяны и метод граничных интегральных уравнений (метод граничных элементов).

Метод характеристик в двумерных задачах теории пластичности. Область определенности и область зависимости решения гиперболической краевой задачи.

Метод лучевых разложений для решения гиперболических задач теории пластичности и волновой динамики.

Понятие о вычислительном эксперименте. Использование вычислительного эксперимента для решения задач механики деформируемого твердого тела.

Основная литература

Бреббия К., Уокер С. Применение метода граничных элементов в технике. М.: Мир, 1982.

Годунов С.К., Рябенький В.С. Разностные схемы. М.: Наука, 1977.

Зенкевич О.К. Метод конечных элементов в технике. М.: Мир, 1975.

Качанов Л.М. Основы теории пластичности. М.: Наука, 1969.

Малинин Н.Н. Прикладная теория пластичности и ползучести. М.: Машиностроение, 1975.

Мусхелишвили Н.И. Некоторые основные задачи математической теории упругости. М.: Наука, 1966.

Новацкий В. Теория упругости. М.: Мир, 1975.

Работнов Ю.Н. Ползучесть элементов конструкций. М.: Наука, 1966.

Работнов Ю.Н. Механика деформируемого твердого тела. М.: Наука, 1988.

Седов Л.И. Механика сплошной среды: В 2-х томах. М.: Наука, 1983, 1984.

Дополнительная литература

Ивлев Д.Д. Теория идеальной пластичности. М.: Наука, 1966.

Ильюшин А.А. Механика сплошной среды. М.: Изд-во МГУ, 1990.

Качанов Л.М. Основы механики разрушения. М.: Наука, 1974.

Клюшников В.Д. Математическая теория пластичности. М.: Изд-во МГУ, 1979.

Кристенсен Р. Введение в теорию вязкоупругости. М.: Мир, 1974.

Лурье А.И. Теория упругости. М.: Наука, 1970.

Партон В.З., Морозов Е.М. Механика упругопластического разрушения. М.: Наука, 1985.

Седов Л.И. Методы подобия и размерности в механике. М.: Наука, 1965.

Тимошенко С.П., Гудьер Дж. Теория упругости. М.: Наука, 1975.

Черепанов Г.П. Механика хрупкого разрушения. М.: Наука, 1974.

Даётся краткое изложение всех разделов механики деформируемого тела: теории упругости, вязкоупругости, пластичности и ползучести. Рассмотрены модели тонких тел, теория устойчивости и механика разрушения. Представлен необходимый математический аппарат.
Книга адресована научным работникам, инженерам, аспирантам и студентам университетов.

Линеаризация уравнений.
Термин «деформируемое твёрдое тело» содержит противоречие. Поэтому введено понятие абсолютно твёрдого тела. Но нельзя понять, как тело держит нагрузку, не рассматривая деформацию - от неё возникают внутренние силы.

Конструкционные материалы «справляются с нагрузкой» уже при малых деформациях. Энергию упругой деформации при этом можно считать квадратичной формой. Однако для линейности задачи необходима ещё малость поворотов. В тонких телах (стержни, пластины, оболочки) при малых локальных деформациях изменение формы может быть очень значительным, задача нелинейна из-за больших поворотов.

ОГЛАВЛЕНИЕ
Предисловие
1 Математические средства
1.1 Векторы и тензоры
1.2 Линии, поверхности и поля
1.3 О простейших задачах математической физики
1.4 Функции комплексного переменного
1.5 Элементы вариационного исчисления
1.6 Асимптотические методы
2 Общие законы механики
2.1 Система материальных точек
2.2 Абсолютно твёрдое тело
2.3 Относительное движение
2.4 Принцип виртуальной работы
2.5 Уравнения Лагранжа
2.6 Гамильтонова механика
2.7 Статика
2.8 Колебания
2.9 Неголономные системы
3 Основы механики деформируемого тела
3.1 Модель сплошной среды. Дифференцирование
3.2 Деформация и поворот
3.3 Поле скоростей
3.4 Объёмное расширение и баланс массы
3.5 Напряжения и баланс импульса
3.6 Баланс моментов и его следствия
3.7 Виртуальная работа
3.8 Законы термодинамики
3.9 Определяющие уравнения
3.10 Переход к отсчётной конфигурации
3.11 Линеаризация уравнений
4 Классическая линейная упругость
4.1 Полная система уравнений
4.2 Общие теоремы статики
4.3 Уравнения в перемещениях
4.4 Определение перемещений по деформациям. Уравнения совместности
4.5 Сосредоточенная сила в неограниченной среде
4.6 Вариационные принципы
4.7 Антиплоская деформация
4.8 Кручение стержней
4.9 Плоская задача
4.10 Контактные задачи
4.11 Температурные деформации и напряжения
4.12 Моментная среда Коссера
5 Тонкие тела
5.1 Особенности механики тонких тел
5.2 Нелинейная теория стержней
5.3 Линейная теория стержней
5.4 Задача Сен-Венана
5.5 Асимптотическое расщепление трёхмерной задачи
5.6 Изгиб пластин
5.7 Линейная теория оболочек
5.8 Нелинейно-упругие оболочки
5.9 Тонкостенные стержни
6 Динамика упругих тел
6.1 Колебания упругих тел
6.2 Волны в упругой среде
6.3 Динамика стержней
6.4 Метод возмущений для линейных систем
6.5 Нелинейные колебания
6.6 Критические скорости роторов
7 Устойчивость равновесия
7.1 Основы теории устойчивости
7.2 Устойчивость стержней
7.3 Неконсервативные задачи
7.4 Уравнения в вариациях для нелинейных оболочек
7.5 Устойчивость пластин
7.6 Вращение гибкого вала в трубке-оболочке
8 Малые пластические деформации
8.1 Экспериментальные данные
8.2 Определяющие уравнения
8.3 Полый шар под действием внутреннего давления
8.4 Балки и диски
8.5 Кручение
8.6 Плоская деформация
8.7 Изгиб жёстко-пластических пластин
8.8 Вариационные принципы для жёстко-пластического тела
8.9 Теоремы о предельной нагрузке
9 Разрушение
9.1 О критериях прочности
9.2 Напряжённое состояние у фронта трещины
9.3 Силы, действующие на фронт трещины
9.4 Учёт сил сцепления
9.5 J-интеграл и определение КИН
9.6 Рост трещин
9.7 Длительная прочность и накопление повреждений
10 Реология
10.1 Реологические модели
10.2 Линейная вязкоупругость
10.3 Пластические материалы
10.4 Идеальная жидкость
10.5 Вязкая жидкость
10.6 Ползучесть металлов
Список литературы
Предметный указатель.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Механика деформируемого твёрдого тела, Елисеев В.В., 2006 - fileskachat.com, быстрое и бесплатное скачивание.

Задачи науки

Это наука о прочности и податливости (жесткости) элементов инженерных конструкций. Методами механики деформируемого тела ведутся практические расчеты и определяются надежные (прочные, устойчивые) размеры деталей машин и различ­ных строительных сооружений. Вводной, начальной частью механи­ки деформируемого тела является курс, получивший название сопротивление материалов . Основные положения сопротивления материалов опираются на законы общей механики твердого тела и прежде всего на законы статики, знание которых для изучения механики деформируемого тела является совершенно необходимым. К механике деформируемых тел относятся и другие разделы, такие, как теория упругости, теория пластичности, теория ползучести, где рассматриваются те же вопросы, что и в сопротивлении материалов, но в более полной и строгой постановке.

Сопротивление же материалов ставит своей задачей создание практически приемлемых и простых приемов расчета на прочность и жесткость типичных, наиболее часто встречающихся элементов конструкций. При этом широко используются различные приближенные методы. Необходимость довести решение каждой практической задачи до числового результата заставляет прибегать в ряде слу­чаев к упрощающим гипотезам-предположениям, которые оправдыва­ются в дальнейшем путем сопоставления расчетных данных с экспе­риментом.

Общий подход

Многие физические явления удобно рассмат­ривать при помощи схемы, изображенной на рисунке 13:

Через X здесь обозначено некоторое воздействие (управление), подаваемое на вход системы А (машина, испытуемый образец материала и т. п.), а через Y – реакция (отклик) системы на это воздействие. Будем считать, что реакции Y снимаются с вы­хода системы А .

Под управляемой системой А условимся понимать любой объект, способный детерминированно реагировать на некоторое воздействие. Это значит, что все копии системы А при одинаковых условиях, т.е. при одинаковых воздействиях x(t) , ведут себя строго оди­наково, т.е. выдают одинаковые y(t) . Такой подход, конечно, явля­ется лишь некоторым приближением, так как практически невозможно получить ни две совершенно одинаковые системы, ни два одинаковых воздействия. Поэтому, строго говоря, следовало бы рассматривать не детерминированные, а вероятностные системы. Тем не менее, для ряда явлений удобно игнорировать этот очевидный факт и систему считать детерминированной, понимая все количественные соотношения между рассматриваемыми величинами в смысле соотношений между их математическими ожиданиями.

Поведение всякой детерминированной управляемой системы может быть определено некоторым соотношением, связывающим выход с входом, т.е. х с у . Это соотношение будем называть уравнением состояния системы. Символически это записывается так

где буква А , использованная ранее для обозначения системы может быть истолкована как некоторый оператор, позволяющий определить у(t) , если задается х(t) .

Введенное понятие о детерминированной системе с входом и выходом является весьма общим. Вот некоторые примеры таких сис­тем: идеальный газ, характеристики которого связаны уравнением Менделеева-Клапейрона, электрическая схема, подчиняющаяся тому или иному дифференциальному уравнению, лопатка паровой или газовой турбины, деформирующаяся во времени, действующими на нее силами и т. д. Нашей целью не является изучение произвольной управляемой системы, и поэтому в процессе изложения мы будем вводить необходимые дополнительные предположения, которые, ограничивая общность, позволят рассмотреть систему частного ви­да, наиболее подходящую для моделирования поведения деформируемого под нагрузкой тела.

Анализ всякой управляемой системы может быть в принципе осуществлен двумя способами. Первый из них микроскопический , основан на детальном изучении устройства системы и функционирова­ния всех образующих ее элементов. Если все это удается выполнить, то появляется возможность написать уравнение состояния всей системы, так как известно поведение каждого ее элемента и способы их взаимодействия. Так, например, кинетическая теория газов позволяет написать уравнение Менделеева-Клапейрона; знание устройства электрической цепи и всех ее характеристик дает возможность написать ее уравнения на основе законов электротех­ники (закона Ома, Кирхгофа и т. п.). Таким образом, микроскопи­ческий подход к анализу управляемой системы основан на рас­смотрении элементарных процессов, из которых складывается дан­ное явление, и в принципе способен дать прямое исчерпывающее описание рассматриваемой системы.

Однако микроподход не всегда может быть осуществлен ввиду сложного или еще не исследованного строения системы. Например, в настоящее время не представляется возможным написать урав­нение состояния деформируемого тела, как бы тщательно оно не было изучено. То же относится и к более сложным явлениям, протекающим в живом организме. В подобных случаях применяется так называемый макроскопический феноменологический (функциональный) подход, при котором не интересуются детальным устройством системы (например, микроскопическим строением деформиру­емого тела) и ее элементов, а изучают функционирование системы в целом, которое рассматривается как связь между входом и выходом. Вообще говоря, эта связь может быть произвольной. Одна­ко для каждого конкретного класса систем на эту связь наклады­ваются ограничения общего характера, а проведение некоторого минимума экспериментов может оказаться достаточным, чтобы выяснить эту связь с необходимыми подробностями.

Использование макроскопического подхода является, как уже отмечалось, во многих случаях вынужденным. Тем не менее, даже создание последовательной микротеории явления не может полностью обесценить соответствующую макротеорию, так как последняя основана на эксперименте и потому более надежна. Микротеория же при построении модели системы всегда вынуждена идти на некоторые упрощающие предположения, приводящие к различного рода неточностям. Например, все «микроскопические» уравнения состоя­ния идеального газа (уравнения Менделеева-Клапейрона, Ван-дер-Ваальса и др.) имеют неустранимые расхождения с эксперимен­тальными данными о реальных газах. Соответствующие же «макро­скопические» уравнения, основанные на этих экспериментальных данных, могут описать поведение реального газа как угодно точ­но. Более того, микроподход является таковым лишь на опреде­ленном уровне – уровне рассматриваемой системы. На уровне же элементарных частей системы он все же является макроподходом, так что микроанализ системы может рассматриваться как синтез ее составных частей, проанализированных макроскопически.

Поскольку в настоящее время микроподход еще не в силах привести к уравнению состояния деформируемого тела, естест­венно решать эту задачу макроскопически. Такой точки зрения и будем придерживаться в дальнейшем.

Перемещения и деформации

Реальное твердое тело, лишен­ное всех степеней свободы (возможности перемещаться в прост­ранстве) и находящееся под действием внешних сил, деформируется . Под деформацией понимаем изменение формы и размеров те­ла, связанное с перемещением отдельных точек и элементов тела. В сопротивлении материалов рассматриваются только такие пере­мещения.

Различают линейные и угловые перемещения отдельных точек и элементов тела. Этим перемещениям соответствуют линейные и уг­ловые деформации (относительное удлинение и относительный сдвиг).

Деформации делятся на упругие , исчезающие после снятия нагрузки, и остаточные .

Гипотезы о деформируемом теле. Упругие деформации обыч­но (во всяком случае, в конструкционных материалах, таких, как металлы, бетон, дерево и др.) незначительны, поэтому принимаются следующие упрощающие положения:

1. Принцип начальных размеров. В соответствии с ним принима­ется, что уравнения равновесия для деформируемого тела могут быть составлены без учета изменения формы и размеров тела, т.е. как для абсолютно твердого тела.

2. Принцип независимости действия сил. В соответствии с ним, если к телу приложена система сил (несколько сил), то действие каждой из них можно рассматривать независимо от действия остальных сил.

Напряжения

Под действием внешних сил в теле возникают внутренние силы, являющиеся распределенными по сечениям тела. Для определения меры внутренних сил в каждой точке вводится понятие напряжения . Напряжение определяется как внутренняя сила, приходящаяся на единицу площади сечения тела. Пусть упруго-деформированное тело находится в состоянии равновесия под действием некоторой системы внешних сил (рис.1). Через точку (например, k ), в которой хотим определить напряжение, мыс­ленно проводится произвольное сечение и отбрасывается часть тела (II) .Чтобы оставшаяся часть тела находилась в равновесии, взамен отброшенной части должны быть приложены внутренние силы. Взаимодействие двух частей тела происходит во всех точ­ках проведенного сечения, а потому внутренние силы действуют по всей площади сечения. В окрестности исследуемой точки выде­лим площадку . Равнодействующую внутренних сил на этой пло­щадке обозначим dF . Тогда напряжение в окрестности точки будет (по определению)

Н/м 2 .

Напряжение имеет размерность силы, деленной на площадь, Н/м 2 .

В данной точке тела напряжение имеет множество значений, в зависимости от направления сечений, которых через точку можно провести множество. Следовательно, говоря о напряжении, необходимо указать сечение.

В общем случае напряжение направлено под некоторым углом к сечению. Это полное напряжение можно разложить на две составляющие:

1. Перпендикулярную плоскости сечения – нормальное напряжение s .

2. Лежащую в плоскости сечения – касательное напряжение t .

Определение напряжений. Задача решается в три этапа.

1. Через рассматриваемую точку проводится сечение, в котором хотят определить напряжение. Одна часть тела отбрасывается и ее действие заменяется внутренними силами. Если все тело находится в равновесии, то и оставшаяся часть также должна нахо­диться в равновесии. Поэтому для сил, действующих на рассматриваемую часть тела, можно составить уравнения равновесия. В эти уравнения войдут как внешние, так и неизвестные внутренние си­лы (напряжения). Поэтому запишем их в виде

Первые слагаемые есть суммы проекций и суммы моментов всех внешних сил, действующих на оставшуюся после сечения часть те­ла, а вторые – суммы проекций и моментов всех внутренних сил, дейст­вующих в проведенном сечении. Как уже отмечено, в эти уравне­ния входят неизвестные внутренние силы (напряжения). Однако для их определения уравнений статики недостаточно , так как в противном случае пропадает разница между абсолютно твердым и деформируемым телом. Таким образом, задача определения напряжений является статически неопределимой .

2. Для составления дополнительных уравнений рассматриваются перемещения и деформации тела, в результате чего получают закон распределения напряжений по сечению.

3. Решая совместно уравнения статики и уравнения деформа­ций можно определить напряжения.

Силовые факторы. Условимся суммы проекций и суммы моментов внешних или внутренних сил называть силовыми факторами . Следовательно, силовые факторы в рассматриваемом сечении определяются как суммы проекций и суммы моментов всех внешних сил, расположенных по одну сторону этого сечения. Точно так же силовые факторы можно определить и по внутренним силам, действующим в рассматриваемом сечении. Силовые факторы, определенные по внешним и внутренним силам равны по величине и противоположны по знаку. Обычно в задачах бывают известны внешние силы, через которые и определяются силовые факторы, а по ним уже определяются напряжения.

Модель деформируемого тела

В сопротивлении материалов рассматривается модель деформируемого тела. Предполагается, что тело является деформируемым, сплошным и изотропным. В соп­ротивлении материалов рассматриваются преимущественно тела, имеющие форму стержней (иногда пластин и оболочек). Это объясняется тем, что во многих практических задачах схема конст­рукции приводится к прямолинейному стержню или к системе та­ких стержней (фермы, рамы).

Основные виды деформированного состояния стержней. Стержень (брус) – тело, у которого два размера малы по срав­нению с третьим (рис.15).

Рассмотрим стержень, находящийся в равновесии под действием приложенных к нему сил, как угодно расположенных в пространстве (рис.16).

Проводим сечение 1-1 и отбрасываем одну часть стержня. Рассмотрим равновесие оставшейся части. Воспользуемся пря­моугольной системой координат, за начало которой примем центр тяжести поперечного сечения. Ось X направим вдоль стержня в сторону внешней нормали к сечению, оси Y и Z – главные центральные оси сечения. Используя уравнения статики найдем силовые факторы

три силы

три момента или три пары сил

Таким образом, в общем случае в поперечном сечении стержня возникают шесть силовых факторов. В зависимости от характера внешних сил, действующих на стержень, возможны различные виды деформации стержня. Основными видами деформаций стержня яв­ляются растяжение , сжатие , сдвиг , кручение , изгиб . Соответственно им простейшие схемы нагружения выглядят следующим образом.

Растяжение-сжатие. Силы приложены вдоль оси стержня. Отбросив правую часть стержня, выделим силовые факторы по левым внешним силам (рис.17)

Имеем один ненулевой фактор – продольную силу F .

Строим диаграмму силовых факторов (эпюру).

Кручение стержня. В плоскостях торцевых сечений стерж­ня приложены две равные и противоположные пары сил с моментом М кр , называемым крутящим моментом (рис.18).

Как видно, в поперечном сечении скручиваемого стержня действует только один силовой фактор – момент Т = F h .

Поперечный изгиб. Он вызывается силами (сосредоточен­ными и распределенными), перпендикулярными оси балки и расположенными в плоскости, проходящей через ось балки, а также парами сил, действующими в одной из главных плоскостей стержня.

Балки имеют опоры, т.е. являются несвободными телами, типичной опорой является шарнирно-подвижная опора (рис.19).

Иногда используется балка с одним заделанным и другим свободным концом – консольная балка (рис.20).

Рассмотрим определение силовых факторов на примере рис.21a. Сначала необходимо найти реакции опор R A и .