Основное положение теории промежуточного активированного комплекса. Теория переходного состояния (теория активного комплекса)

История создания. Развитие квантовой механики привело к созданию теории активированного комплекса (переходного состояния), предложенной в 1935 году одновременно Эйрингом, Эвансом и Поляни. Но первые основные идеи теории были сформулированы Р. Марселином в 1915 г. , Marcelin, Ann. Phys. , 3, 158 (1915), погибшем в 1915 г. и не успевшем развить свои взгляды

фазовое пространство Фазовое пространство системы реагирующих веществ, определяемое наборами s координат (q) и s импульсов (р), делится критической поверхностью S# на области конечных и исходных веществ

Критическая поверхность (поверхность потенциальной энергии) Вблизи критической поверхности предполагается выполнение условий: Существует некоторый потенциал (U), зависящий от координат ядер (qi) и отвечающий адиабатическому терму системы (основное электронное состояние). Этот потенциал определяет движение вблизи критической поверхности S#. Функция распределения состояний системы вблизи критической поверхности не зависит от времени, задана значением температуры и при пересечении. S# (термодинамическое равновесие не предполагается) равновесна.

Адиабатическое приближение метод приближённого решения задач квантовой механики, применяемый для описания квантовых систем, в которых можно выделить быструю и медленную подсистемы

Основные принципы адиабатического приближения движение каждого из ядер происходит в потенциальном (электрическом) поле, создаваемом остальными ядрами, и в усредненном поле всех электронов молекул реагирующей системы в целом. Усредненное поле электронов отвечает некоторому усредненному распределению их электрического заряда в пространстве. потенциал (потенциальное поле) определяет для каждой ядерной конфигурации те силы, которые действуют на ядра. потенциал зависит от того, как расположены ядра молекулы в каждый момент времени, и от того, каково состояние (основное или возбужденное) системы электронов в молекуле. потенциальное поле для данной системы ядер зависит от расстояний между отдельными ядрами молекулярной системы и может быть представлено графически как некоторая функция межъядерных расстояний

Координата реакции величина, характеризующая изменение многоатомной системы в процессе ее химического превращения из реагентов в продукты реакции Определение К. р. тесно связано с топографией поверхности потенциальной энергии (ППЭ) U (qi), которая является функциейц N внутренних координат системы qi (i=1, 2, . . . , N), определяющих взаимное расположение атомных ядер, т. е. ядерно-электронную конфигурацию системы

Путь реакции Поверхность потенциальной энергии хим. реакции А+ВС: АВ+С. Крестом обозначена седловая точка, пунктиром - путь реакции - путь с минимальной энергией. Путь состоит из двух ветвей, дно долины, ведущей из минимума, отвечающего реагентам, в точку перевала, дно долины, ведущей из в минимум, отвечающий продуктам. К. р. определяется как длина дуги s(q, q") на кривой пути рции, отсчитанная от начальной точки q" до любой точки q, лежащей на этой кривой.

Поверхность потенциальной энергии Каждая точка на потенциальной поверхности есть не что иное, как энергия молекулярной системы в данном электронном состоянии при отсутствии движения ядер, то есть полная энергия за вычетом кинетической энергии ядер

Сечение поверхности потенциальной энергии Сечение поверхности потенциальной энергии вдоль пути реакции изомеризации Реагентам и продуктам соответствуют минимумы при а=0 и а=1 (два изомера в случае изомеризации). Если долине реагентов или продуктов есть 2 молекулярных фрагмента со свободным относит. движением, минимумы вырождаются в горизонтальные асимптотич. полупрямые (показаны пунктиром).

Основные положения теории активированного комплекса Всякая химическая реакция или любой другой молекулярный процесс, протекающий во времени (диффузия, вязкое течение), состоит в непрерывном изменении расстояний между ядрами атомов. конфигурация ядер, отвечающая начальному состоянию, через некоторую промежуточную конфигурацию - активированный комплекс или переходное состояние - превращается в конечную конфигурацию. исходные вещества находятся в равновесии с активированными комплексами, (скорость образования последних намного больше скорости их распада), распределение молекул реагирующих веществ по энергиям вследствие столкновений соответствует равновесному распределению Максвелла -

Пример образования активированного комплекса при реакции диссоциации HI такой активированный комплекс образуется благодаря перегруппировке связей между атомами водорода и иода

Переходное состояние Переходное состояние (активированный комплекс) можно рассматривать как обыкновенную молекулу, характеризующуюся определенными термодинамическими свойствами, за исключением того, что, кроме обычных трех степеней свободы поступательного движения центра тяжести, оно имеет четвертую степень свободы внутреннего поступательного движения, связанную с движением вдоль пути (координаты) реакции

Особенности переходного состояния переходное состояние не есть некоторое промежуточное соединение, так как ему соответствует максимальная энергия по пути реакции и, следовательно, оно неустойчиво и должно превращаться в продукты реакции Молекулы, достигшие энергетического барьера, превращаются в продукты реакции

Отличия потенциальной энергии переходного состояния от молекулярной системы Типичный вид зависимости потенциальной энергии реакционной системы от координаты реакции. Е 0 – высота потенциального барьера, ΔН – тепловой эффект химической реакции Потенциальная кривая двухатомной молекулы (зависимость энергии системы двух атомов от межъядерного расстояния).

Механизм образования активированного комплекса Рассмотрим в общем виде реакцию А + В ←→ Х** → С + D, где А и В исходные вещества; X** - переходное состояние, или активированный комплекс; С и D - продукты реакции. рассматриваемая реакция состоит из двух последовательных процессов. Первый - это переход A и B в активированное состояние Второй - распад образовавшегося комплекса на продукты С и D.

Графическое изображение переходного состояния Профиль ППЭ вдоль координаты реакции. Скорость суммарной реакции ω определяется наиболее медленным звеном. Здесь таким звеном является переход комплекса Х** через "плато". При этом, имеется в виду не скорость движения переходного состояния в пространстве, а движение точки, отображающей энергию системы Будем называть переходным такое состояние, которое представлено точками, лежащими на вершине потенциального барьера на некотором малом отрезке δ на пути реакции

Скорость реакции распада активированного комплекса скорость реакции определяется числом распадов всех переходных состояний в единице объема в единицу времени: ω = c** /t. Величина t может быть выражена через среднюю скорость движения переходного состояния и вдоль пути реакции на вершине барьера: t = δ/u. (XVI. 28)

Основное уравнение теории АК теория постулирует термодинамическое равновесие между реагентами и АК, характеризуемое константой равновесия. На этом основании константа скорости химической реакции к выражается уравнениями:

энтропия и энтальпия активации энтропия и энтальпия активации, представляют собой изменения энтропии и энтальпии системы при переходе от реагентов к АК

Применение теории Последовательный расчет абсолютных скорости реакции по уравнению (2) заключается в определении геометрических конфигураций реагентов и АК (на этом этапе также определяется высота потенциального барьера) и вычислении для этих конфигураций моментов инерции и колебательных частот, которые необходимы для расчета статистических сумм и окончательного определения энергии активации

Ограниченность теории Теория активированного комплекса теория основана на двух предположениях: гипотеза о термодинамическом равновесии между реагентами и АК. скорость реакции отождествляется со скоростью распада АК. Оба предположения нельзя строго обосновать

Почему? Координату реакции лишь в редких случаях правильно считать прямой линией, Обычно же она - кривая в многомерном пространстве внутренних переменных и является сложной комбинацией элементарных движений, которая неодинакова на различных своих участках.

Пример координата реакции – это непрерывно изменяющаяся комбинация двух валентных колебаний. Простейшая ППЭ для реакции А + ВС -> АВ + С при расположении всех трех атомов А, В и С на одной прямой (угловые движения игнорируются). По координатным осям отложены межатомные расстояния r. BC и r. АВ- Кривые 1 -5 -уровни постоянной энергии Пунктиром обозначена координата реакции, крестом - седловая точка.

электронно-неадиабатические процессы и трансмиссионный множитель Из-за криволинейности координату реакции нельзя считать независимой степенью свободы. Ее взаимод. с другими, поперечными движениями приводит к обмену энергией между ними. В результате, может нарушиться первоначально равновесное распределение энергии по поперечным степеням свободы и система может вернуться в область реагентов даже после того, как она уже прошла через конфигурацию АК в направлении продуктов Эти процессы учитывает трансмиссионный коэффициент для реакций, в которых х значительно отличается от единицы, теория теряет смысл

Туннельный эффект оценка трансмиссионного множителя в рамках модельных динамических вычислений. При этом предполагается, что с поступательным движением системы вдоль координаты реакции взаимодействуют не все, а лишь некоторые из поперечных степеней свободы. Они и учитываются в квантовом динамическом расчете; остальные степени свободы обрабатываются в рамках равновесной теории. При таких вычислениях автоматически определяются также и поправки на квантовое туннелирование. Туннелирование – прохождение между поверхностями потенциальной энергии

Теория переходного состояния (активированного комплекса)

В попытках устранить недостатки теории активных столкновений ученые предложили новую теорию химической кинетики. Это сделали практически одновременно в 1935 году, более чем через полвека после открытий Аррениуса, Г.Эйринг (США) с одной стороны, а также М.Поляни и М.Г.Эванс (Великобритания) - с другой. Они предположили, что химическая реакция между началом и завершением претерпевает некое «переходное состояние», как его назвали Эванс и Поляни, при котором образуется неустойчивый «активированный комплекс» (термин Эйринга). Энергия активации как раз и требуется для достижения этого состояния, при котором вероятность успешного завершения реакции весьма велика. Поэтому энергия активации и может быть меньшей, чем энергия разрыва исходных химических связей.


Суть теории переходного состояния (активированного комплекса):

1) частицы реагентов при взаимодействии теряют свою кинетическую энергию, которая превращается в потенциальную, и для того чтобы реакция свершилась, необходимо преодолеть некий барьер потенциальной энергии;
2) разница между потенциальной энергией частиц и упомянутым энергетическим барьером и есть энергия активации;
3) переходное состояние находится в равновесии с реагентами;
4) в тех реакциях, где энергия активации существенно ниже энергии разрыва химических связей, процессы образования новых связей и разрушения старых связей могут полностью или частично совпадать по времени
.

Время существования активированного комплекса равно периоду колебания одной молекулы (10 -13 с), поэтому он не может быть обнаружен экспериментально и, соответственно, его нельзя выделить и изучить. Следовательно, доказать истинность теории переходного состояния можно только с помощью расчетов. И для этой цели ученые задействовали самую передовую на тот момент методику, которая тогда переживала бурный расцвет - квантовую химию. Выделилось даже целое направление в квантовой химии по расчетам энергии переходного состояния.

Теория активных столкновений >>
Теория переходного состояния (активированного комплекса)

Ф-ция потенциальной энергии атомных ядер U от их внутр. координат, или степеней свободы. В системе из п ядер число внутр. степеней свободы N = 3n - 6 (или 3n - - 5, если все ядра расположены на одной прямой линии). Простейшая двухмерная (N = 2) ППЭ показана на рис. 1. Реагентам и продуктам р-ции на ней соответствуют области относительно небольшой потенциальной энергии (долины), разделенные областью повыш. энергии-потенциальным барьером. Кривая линия, проходящая по дну долин через барьер,-координата реакции . Часто используют одномерные схемы, изображающие сечение ППЭ , развернутое вдоль координаты р-ции (см. рис. 2). На этих схемах вершине потенциального барьера соответствует седло-вая точка, или точка перевала. Эти же понятия переносят на многомерные ППЭ с N > 2. Состояния реагентов и продуктов устойчивы, им соответствуют конфигурации (т.е. фиксированные значения координат ф), к-рые являются минимумами (или долинами) на многомерной ППЭ . Хим. р-ция рассматривается как переход из конфигурации реагентов в конфигурацию продуктов через конфигурацию седловой точки вдоль координаты р-ции. Конфигурации как минимумов, так и седловых точек-стационарные точки ППЭ , т.е. в нихU/q i = 0.

Совр. вывод ур-ния (2), химически менее наглядный, основан на столкновений теории . Скорость р-ции отождествляется со скоростью перехода реагирующих хим. систем через (N - 1)-мерную пов-сть в пространстве конфигураций, разделяющую области реагентов и продуктов. В теории столкновений эта скорость наз. потоком через критич. пов-сть. Ур-ние в форме (2) получается, если провести критич. пов-сть через седловую точку ортогонально координате р-ции и принять, что на критич. пов-сти энергетич. распределение реагентов равновесно. Соответствующая область пространства координат и импульсов (фазового пространства) характеризуется той же статистич. суммой . Это позволяет рассматривать критич. пов-сть как множество конфигураций АК. Т. обр., АК сразу определяется как объект с (N - 1) внутр. степенями свободы и не нужно вводить его протяженность вдоль координаты р-ции.

Применение теории. Согласно теории, механизм р-ции вполне определен конфигурациями реагентов и продуктов (минимумы, или долины, на ППЭ) и соответствующих АК (седловые точки). Теоретич. расчет этих конфигураций методами квантовой химии дал бы исчерпывающую информацию о направлениях и скоростях хим. р-ций. Такие расчеты интенсивно развиваются; для простых хим. систем, содержащих 10-15 атомов , к-рые принадлежат к элементам первых двух периодов таблицы Менделеева, они практически реализуемы и достаточно надежны. Последоват. расчет абс. скорости р-ции по ур-нию (2) заключается в определении геом. конфигураций реагентов и АК (на этом этапе также определяется высота потенциального барьера) и вычислении для этих конфигураций моментов инерции и колебат. частот, к-рые необходимы для расчета статистич. сумм и окончат. определения. В применении к сложным р-циям, представляющим практич. интерес, полная и надежная реализация такой программы трудоемка и зачастую неосуществима. Поэтому молекулярные постоянные, необходимые для вычислений по ур-ниям (2) и (3), часто находят эмпирич. методами. Для устойчивых конфигураций реагентов моменты инерции и колебат. частоты обычно известны из спектроскопич. данных, однако для АК эксперим. определение их невозможно ввиду малого впемени его жизни. Если последоват. квантовохим. расчети недоступен, для оценки этих величин применяют интерполяционные расчетные схемы.

Ограниченность теории и попытки ее совершенствования. Активированного комплекса теория основана на двух предположениях. Первое-гипотеза о термодинамич. равновесии между реагентами и АК. Согласно второму, скорость р-ции отождествляется со скоростью распада АК. Оба предположения нельзя строго обосновать. Это обнаруживается, если рассматривать движение хим. системы вдоль координаты р-ции на всем пути от реагентов к продуктам, а не только вблизи вершины потенциального барьера. Координату р-ции лишь в редких случаях правильно считать прямой линией, как на рис. 2. Обычно же она-кривая в многомерном пространстве внутр. переменных и является сложной комбинацией элементарных движений, к-рая неодинакова на разл. своих участках. Напр., на рис. 1 координата р-ции-это непрерывно изменяющаяся комбинация двух валентных колебаний.

Равновесное распределение энергии в реагентах для термич. р-ций обеспечено практически всегда; оно нарушается только в чрезвычайно быстрых процессах. Проблема в том, сохранится ли оно в АК. Из-за криволинейности координату р-ции нельзя считать независимой степенью свободы. Ее взаимод. с другими, поперечными движениями приводит к обмену энергией между ними. В результате, во-первых, может нарушиться первоначально равновесное распределение энергии по поперечным степеням свободы и, во-вторых, система может вернуться в область реагентов даже после того, как она уже прошла через конфигурацию АК в направлении продуктов. Наконец, необходимо иметь в виду, что, согласно ур-ниям (2), (3) и (5), хим. р-ция рассматривается как классич. переход; игнорируются квантовые особенности, напр. электронно-неадиабатич. процессы и туннельный эффект . В ранних формулировках теории в ур-ния (2), (3) и (5) добавляли т. наз. трансмиссионный множительПредполагалось, что в нем собрано влияние перечисленных выше факторов, не учтенных при выводе этих ур-ний. Т. обр., определение х выходит за рамки активированного комплекса теории; более того, для р-ций, в к-рых х значительно отличается от единицы, теория теряет смысл. Однако для сложных р-ций предположение не противоречит экспе-рим. данным, и именно этим объясняется популярность активированного комплекса теории.

Последоват. неформальное рассмотрение всех указанных эффектов возможно лишь в рамках динамич. расчета (см. Динамика элементарного акта). Предпринимались попытки учесть их по отдельности. Напр., был предложен метод си-стематич. уточнения конфигурации АК, поскольку выбор в кач-ве таковой именно седловой точки основан на интуитивных представлениях и, вообще говоря, не обязателен. Могут существовать и др. конфигурации, для к-рых погрешность вычислений по ф-лам (2) и (3), обусловленная возвращением системы в область реагентов после прохождения этих конфигураций, меньше, чем для конфигурации седловой точки. Используя формулировку активированного комплекса теории в терминах теории столкновений (см. выше), можно утверждать, что обратному потоку (от продуктов к реагентам) через критич. пов-сть соответствует порождающая его и равная ему часть полного прямого потока (от реагентов к продуктам). Чем меньше эта часть, тем точнее вычисление скорости р-ции по активированного комплекса теории. Эти соображения легли в основу т. наз. вариационного определения АК, согласно к-рому критической считается пов-сть, минимизирующая прямой поток. Для нее скорость р-ции, вычисляемая по ур-ниям (2) и (3), минимальна. Как правило, нулевые энергии поперечных колебаний изменяются вдоль координаты р-ции. Это еще одна причина смещения конфигурации АК из седловой точки ППЭ ; она также учитывается вариационной теорией.

Значит. внимание уделялось разработке методов определения вероятностей квантового туннелирования в хим. р-циях. Наконец, стали возможны оценки трансмиссионного множителя в рамках модельных динамич. вычислений. При этом предполагается, что с постулат. движением системы вдоль координаты р-ции взаимодействуют не все, а лишь нек-рые из поперечных степеней свободы. Они и учитываются в квантовом динамич. расчете; остальные степени свободы обрабатываются в рамках равновесной теории. При таких вычислениях автоматически определяются также и поправки на квантовое туннелирование.

Упомянутые усовершенствованные методы расчета абс. скоростей хим. р-ций требуют серьезных вычислит. усилий и лишены универсальности активированного комплекса теории.

===
Исп. литература для статьи «АКТИВИРОВАННОГО КОМПЛЕКСА ТЕОРИЯ» : Глесстон С, Лейдлер К., Эйринг Г., Теория абсолютных скоростей реакций , пер. с англ., М., 1948; Лейдлер К., Кинетика органических реакций , пер. с англ., М., 1966: Термические бимолекулярные реакции в газах , М., 1976. М. В. Базилевский.

Рис. 2. Диаграмма потенциальной энергии вдоль координаты реакции

Рис. 1. Простейшая 2-х мерная поверхность потенциальной энергии для

реакции А + ВС → АВ + С при расположение всех трех атомов на одной прямой

По осям координат – межатомные расстояния r BC и r AB . Кривые 1 – 5 уровни постоянной энергии, штриховая линия – координата реакции, х – седловинная точка.

Чаще используют одномерные схемы, представляющие сечение вдоль координаты реакции (рис. 2). На этих схемах состояния А + ВС и АВ + С являются устойчивыми минимумами, а вершине потенциального барьера соответствует седловинная точка, или точка перевала (х). Высота потенциального барьера определяется конфигурацией частиц, величиной энергии, необходимой для преодоления отталкивания, и некоторыми другими факторами. Каждому расстоянию между реагирующими частицами отвечает точка на поверхности потенциальной энергии.

Химическая реакция рассматривается как переход от конфигурации реагентов к конфигурации продуктов через точку АВС. Эту точку (или некий малый отрезок траектории реакции длиною δ) называют активированным комплексом илипереходным состоянием.

Разность Е о между энергиями начального состояния и активированного комплекса АВС представляет собой энергию активации элементарной реакции А + ВС. Координата реакции – наиболее выгодный путь протекания реакции, требующий наименьших энергетических затрат.

Начиная с работ Г. Эйринга, существует много приближенных расчетных способов нахождения поверхностей потенциальной энергии для адсорбции и катализа, точные подходы требуют сложных квантово-механических вычислений на практике и в расчетах скоростей адсорбции и катализа почти не применяются.

В основе теории активированного комплекса или теории переходного состояния (она же теория абсолютных скоростей), лежат три предположения:

1. Соблюдается максвелл–больцмановское равновесие между активированным комплексом и реагентами, поэтому их концентрацию можно вычислить с помощью функции распределения Максвелла – Больцмана.

2. Скорость реакции отождествляется со скоростью распада активированного комплекса. Реакция протекает с преодолением самого низкого потенциального барьера в точке активированного комплекса или вблизи от него.

3. Преодоление потенциального барьера вблизи активированного комплекса описывается как поступательное движение системы вдоль координаты реакции. Движение системы (протекание реакции) вдоль координаты реакции возможно только в направлении образования продуктов реакции. Это значит, что активированный комплекс, если уж он образовался, не может превращаться обратно в исходные вещества.


Это свойство принципиально отличает активированный комплекс, описывающий элементарный акт реакции, от свойств промежуточных продуктов, описывающих путь химического превращения и обнаруживаемых физическими методами исследования. Уже само образование активированного комплекса достаточно для осуществления реакции.

Активированные комплексы – это те же частицы или комплексы частиц, отличающиеся только конфигурацией с повышенным запасом энергии и неустойчивые в направлении координаты реакции, их среднее время жизни

τ # = 2πh/kT, (1)

где h и k – постоянные Планка и Больцмана соответственно.

При обычных для химических реакций температурах τ # ≈ -13 с, т. е. близко в времени одного колебания. Такие времена были до сих пор недоступны экспериментально, положение изменилось с появлением фемтосекундной спектроскопии (фемто – 10 -15), в которой для идентификации частиц применяли лазеры с импульсами продолжительностью до 10 -14 с, т. е. меньше времени одного колебания. В 1999 г. за создание фемтосекундной спектроскопии работы А. Зивейла были отмечены Нобелевской премией.

Таким образом, появилась экспериментальная возможность глубже понять структуру активированного комплекса.

Теория столкновений непригодна для сложных молекул потому, что она предполагает существование молекул в виде идеальных упругих сферических частиц. Однако для сложных молекул, помимо поступательной энергии, должны быть учтены другие виды молекулярной энергии, например, вращательная и колебательная. По теории столкновений невозможно существование реакций, в которых должны столкнуться три и более молекулы. Кроме того, реакции разложения типа АВ = А + В трудно объяснить этой теорией.

Для преодоления указанных затруднений Х. Эйринг в 1935г. предложил теорию активированного комплекса. Всякая химическая реакция или любой другой молекулярный процесс, протекающий во времени(диффузия, вязкое течение и т.д.), состоит в непрерывном изменении расстояний между ядрами атомов. При этом конфигурация ядер, отвечающая начальному состоянию, через некоторую промежуточную конфигурацию – активированный комплекс или переходное состояние – превращается в конечную конфигурацию. Предполагается, что активированный комплекс образуется как промежуточное состояние во всех химических реакциях . Он рассматривается, как молекула, которая существует лишь временно и разрушается при определенной скорости. Этот комплекс образуется из таких взаимодействующих молекул, энергия которых достаточна для того, чтобы они смогли близко подойти друг к другу по схеме: реагенты активированный комплекс продукты. Активированный комплекс имеет промежуточную структуру между реагентами и продуктами. Энергия активации реакции есть дополнительная энергия, которую должны приобрести реагирующие молекулы, чтобы образовать активированный комплекс, необходимый для протекания реакции.

Энергия активации всегда представляет поглощенную энергию, независимо от того, является ли общее изменение ее для реакции положительным (эндотермическая реакция) или отрицательным (экзотермическая реакция). Это схематично показано на рис. 6.

Ход реакции
превращение
активация
E
-DH (+DH)

Рисунок 6. Энергетическая схема образования активированного комплекса.

Активация – сообщение молекулам такого количества энергии, что при их эффективном превращении происходит образование веществ в активированном состоянии.

Превращение – образование из веществ, находящихся в активированном состоянии, продуктов реакции.

Если система не может перейти через этот энергетический барьер в ней не могут произойти химические превращения. Значит эта система химически неактивна и нуждается в некоторой дополнительной энергии для активации. Количество этой дополнительной энергии зависит от того, какой энергией уже обладает система.

Энергия исходной системы не может быть меньше ее нулевой энергии (т.е. при 0 0 К). Для активации любой системы достаточно сообщить ей дополнительную энергию. Эта энергия называется истинной энергией активации.

Истинной энергией активации элементарного химического акта называется минимальная энергия, которой должна обладать исходная система сверх совей нулевой энергии (т.е. при 0 0 К), чтобы в ней могли произойти химические превращения. Разность истинной энергии активации обратной и прямой реакций равна тепловому эффекту реакции при абсолютном нуле.