Распределение молекул во внешнем поле. §18

Заменив в Барометрической формуле p через nkT получим закон изменения концентрации газа с высотой:

Где n 0 – концентрация газа на высоте h=0

Преобразуем, заменив M/R равным ему отношению m 0 /k

Где m 0 - масса одной молекулы, k – постоянная Больцмана

С уменьшением температуры концентрации газа на высотах отличных от нуля, убывает, обращаясь в ноль при температуре T=0

При абсолютном нуле все молекулы воздуха расположились бы на земной поверхности.

При больших температурах наоборот концентрация слабо уменьшается с высотой.

Распределение молекул газа получается в результате действия двух «конкурирующих» тенденций: 1. притяжение к земле, 2. тепловое движение

На разной высоте молекула обладает разной потенциальной энергией => распределение молекул газа по высоте, является в тоже время распределением их по значениям потенциальной энергии.

Таким образом получаем:

Из этого => что молекулы располагаются с большей концентрацией (плотностью) тела, где их потенциальная энергия меньше, и наоборот, с меньшей плотностью в местах, где их потенциальная энергия больше.

Среднее число столкновений и средняя длина свободного пробега молекул .

Молекулы газа, находясь в состоянии хаотического движения, непрерывно сталкиваются друг с другом. Между двумя последовательными столкновениями молекулы проходят некоторый путь l, который называется длиной свободного пробега. В общем случае длина пути между последовательными столкновениями различна, но так как мы имеем дело с огромным числом молекул и они находятся в беспорядочном движении, то можно говорить о средней длине свободного пробега молекул .

Минимальное расстояние, на которое сближаются при столкновении центры двух молекул, называется эффективным диаметром молекулы d (рис. 68). Он зависит от скорости сталкивающихся молекул, т. е. от температуры газа (несколько уменьшается с ростом температуры).

Так как за 1 с молекула проходит в среднем путь, равный средней арифметической скорости , и если - среднее число столкновений, испытываемых одной молекулой газа за 1 с, то средняя длина свободного пробега

Для определения представим себе молекулу в виде шарика диаметром d, которая движется среди других «застывших» молекул. Эта молекула столкнется только с теми молекулами, центры которых находятся на расстояниях, равных или меньших d, т. е. лежат внутри «ломаного» цилиндра радиусом d (рис. 69).

Среднее число столкновений за 1 с равно числу молекул в объеме «ломаного» цилиндра:

где n - концентрация молекул, V = pd2 - средняя скорость молекулы или путь, пройденным ею за 1 с). Таким образом, среднее число столкновений

Расчеты показывают, что при учете движения других молекул

Распределение Больцмана для частиц во внешнем потенциальном поле

Газ, на который не действует внешнее силовое поле, равно­мерно заполняет объем, в котором он находится, благодаря хаотичности теплового движения молекул. Если на молекулы газа действуют внешние силы, то концентрация газа не будет одинаковой во всех точках объема. Рассмотрим в качестве примера атмосферный газ, находящийся в поле земного тяго­тения. Если бы отсутствовало тепловое движение, то все мо­лекулы атмосферы опустились бы на поверхность Земли под действием сил тяжести и земная атмосфера не могла бы суще­ствовать. Однако этому препятствует хаотическое движение молекул, которое способствует обратному процессу - стремле­нию атмосферного газа рассеяться и заполнить равномерно всю Вселенную. Следовательно, атмосфера Земли может существовать за счет этих двух факторов в некотором равновесном состоянии, при котором ее плотность, концентрация молекул и давление будут зависеть от пространственных ко­ординат.

Найдем закон измене­ния этих величин в зависимости от высоты над поверхностью Земли. Бу­дем считать, что газ на­ходится в состоянии термодинамического равно­весия и его температура всюду одинакова. Выделим некоторый столб газа, имеющий форму цилиндра, площадью поперечного сече­ния s, и направим ось z вдоль столба по направлению от поверхности Земли. Установим начало отсчета координаты z на поверхности Земли (рис. 19.3).

Выделим на высоте z элементарный слой столба газа тол­щиной dz и воспользуемся тем, что этот слой, как и весь столб, находится в состоянии механического равновесия. Это значит, что равнодействующая всех сил, действующих на слой, равна нулю. Из рис. 19.3 видно, что равнодействующая складыва­ется из трех сил: две силы давления F H и F B , действующие на нижнее и верхнее основание слоя, и сила тяжести dP самого слоя. Обозначим давление газа в точках нижнего основания p , а в точках верхнего основания р+ dp. Тогда

F H = pS ; F B = (p + dp)S; dP = ρgSdz,

где ρ - плотность слоя воздуха.

С учетом направления сил условие равновесия слоя запишется в виде

F B + dP = F H (18.28)

+ dp) S + ρgSdz = pS. (18.29)

Раскрыв в (18.29) скобки, получим дифференциальное уравнение

dp = - ρgdz. (18.30)

Из уравнения Клапейрона - Менделеева следует, что плотность газа связана с давлением формулой

где т а - масса молекулы газа.

Используя (18.31), преобразуем дифференциальное урав­нение (18.30) к виду

. (18.32)

Интегрируя это уравнение по высоте от 0 до z, получаем

, (18.33)

где ln p 0 - постоянная интегрирования.

Потенциируя (18.33), имеем

Из (18.34) видно, что р 0 имеет смысл давления атмосферы на поверхности Земли, где z = 0.

Полученное уравнение определяет зависимость давления атмосферы вблизи Земли от высоты над уровнем моря. Как и следовало ожидать, при увеличении высоты давление уменьшается. В соответствии с формулой (18.34), которая называется барометрической, это уменьшение подчиняется экспоненциальному закону. Измеряя давление по барометру, проградуированному в соответствии с барометрической фор­мулой, можно определить высоту объекта над поверхностью Земли. Такой прибор называется альтиметром и широко при­меняется в авиации.

Используя барометрическую формулу, легко установить закон распределения концентрации молекул по высоте h над поверхностью Земли. С этой целью воспользуемся уравнени­ем состояния идеального газа p= nkT. В этой формуле дав­ление р и концентрация молекул п зависят от высоты, в то время как температура Т постоянная в соответствии с пред­положением, что газ находится в состоянии термодинамиче­ского равновесия. Из уравнения состояния и барометрической формулы для концентрации п на высоте h вытекает:

, (18.35)

где n 0 - концентрация молекул воздуха при h = 0.

Обратив внимание на то, что в показатель экспоненты в правой части (18.35) входит потенциальная энергия моле­кулы в поле силы тяжести W ПОТ = m a gh, перепишем (18.35) в виде

. (18.36)

Оказывается, что выражение (18.36) для распределения молекул имеет общий характер и справедливо для частиц, находящихся во внешнем потенциальном поле любого вида. Это распределение называется распределением Больцмана.

В распределении Больцмана (18.36) под n 0 следует пони­мать концентрацию молекул в точке поля, где их потенциаль­ная энергия равна нулю, W ПОТ = 0, а п представляет собой концентрацию молекул в точке, где их потенциальная энергия равна W ПОТ.

Как известно, плотность газа ρ прямо пропорциональна концентрации молекул п. Поэтому, используя (18.35), нетруд­но показать, что распределение плотности воздуха в атмо­сфере Земли будет описываться выражением:

, (18.37)

где М - молярная масса газа.

Из (18.34), (18.35) и (18.37) следует, что в атмосфере Земли р, п и ρ воздуха уменьшаются единообразно с увели­чением высоты.

Учитывая, что концентрация п по определению равна , где dN - число молекул в элементарном объеме dV , можно представить распределение Больцмана в форме

Пусть ИГ находится во внешнем гравитационном поле (в поле силы тяжести Земли). При нахождении концентрации молекул газа n (x, y, z ) в этом поле будем исходить из предположения, что любой бесконечно малый объем газа находится в состоянии механического равновесия, а температура газа T во всех точках одинакова. Только при выполнении этих условий состояние газа можно считать равновесным, так как иначе в газе возникли бы потоки вещества и теплоты, что сделало бы состояние газа неравновесным.

Поле силы тяжести Земли будем считать однородным. Ось OZ направлена вертикально вверх. Тогда концентрация молекул газа будет зависеть только от координаты z (высоты h ): n=n (z )или n =n (h ). На рис. (1) схематически изображен бесконечно малый выделенный объем газа dV=dSdz , находящийся в равновесии.

Снизу на этот выделенный объем газа воздействует давление p , а сверху – соответственно давление p+dp . Разность давлений на нижнее и верхнее основание выделенного объема газа dV=dSdz равна гидростатическому давлению:

где: r= (Mp )/(RT ) – плотность газа, g – ускорение свободного падения, M – молярная масса газа.

Подставим в полученное выражения плотность газа:

Из этого уравнения следует, что

Интегрирование последнего уравнения при условии позволяет определить зависимость давления от высоты:

где p 0 - давление газа на высоте, принятой за начало отсчета.

С учетом формулы для постоянной Больцмана:

и того, что М = m 0 N A и z = h

Барометрическая формула:

Барометрическая формула позволяет рассчитывать зависимость давления атмосферы от высоты в случае, если температура атмосферы постоянна, а гравитационное поле - однородно. Для реальной атмосферы Земли на высотах примерно до 10 км её температура уменьшается в среднем на 6 К на 1 км подъема. Далее до высот порядка 20 км температура остается практически постоянной, а выше - постепенно возрастает до ~ 270 К на высоте около 55 км. На этой высоте давление атмосферы становится уже меньше 0,001 от атмосферного давления на уровне моря.

Несмотря на указанную зависимость температуры атмосферы Земли от высоты, барометрическая формула позволяет достаточно точно определять высоту по результатам измерения давления, что нашло применение в приборах, предназначенных для определения высоты полета самолетов.



Распределение Больцмана было получено в 1866 году Л. Больцманом. Это распределение позволяет рассчитывать концентрацию газа, находящегося в равновесном состоянии во внешнем силовом поле. Причем это поле не должно быть обязательно гравитационным, а может иметь любое происхождение, в частности, быть электростатическим или полем сил инерции.

Анализ распределения Больцмана показывает, что концентрация молекул газа тем выше, чем меньше их потенциальная энергия. Кроме этого, с понижением температуры увеличивается отличие концентраций в точках с различными значениями потенциальной энергии молекул. А при стремлении температуры к абсолютному нулю, молекулы начинают скапливаться в месте, где их потенциальная энергия принимает наименьшее значение. Указанные особенности распределения Больцмана являются следствием теплового движения молекул, так как кинетическая энергия их поступательного движения в среднем равна W к = (3/2 )kT и уменьшается пропорционально уменьшению температуры. А уменьшение кинетической энергии приводит к уменьшению количества молекул, способных преодолеть потенциальный порог, высота которого характеризуется величиной потенциальной энергии высотой W p .

Опыт Перрена.

Распределение Больцмана было использовано французским физиком Жаном Батистом Перреном (1870–1942) при экспериментальном определения постоянной Больцмана k и постоянной Авогадро N A .

В работах, выполненных Перреном в 1908-1911 гг., измерялось распределение концентрации микроскопических частиц во внешнем гравитационном поле. Отметим, что совокупность микрочастиц, находящихся во взвешенном состоянии в жидкости, близка по своей молекулярно-кинетической структуре к идеальному газу и может описываться газовыми законами. Это дает возможность при определении распределения микрочастиц во внешнем силовом поле использовать формулу Больцмана.

Исследуя в микроскоп броуновское движение, Ж. Перрен убедился, что броуновские частицы распределяются по высоте подобно молекулам газа в поле тяготения. Применив к этим частицам больцмановское распределение, можно записать:

где m масса частицы,

m 1 – масса вытесненной ею жидкости;

m=4/3πr 3 ρ, m 1 = 4/3πr 3 ρ 1

(r – радиус частицы, ρ – плотность частицы, ρ 1 – плотность жидкости).

Если n 1 и n 2 – концентрации частиц на уровнях h 1 и h 2 ,

Значение N A , получаемое из работ Ж. Перрена, соответствовало значениям, полученным в других опытах. Это подтверждает применимость к броуновским частицам распределения Больцмана.

Распределение молекул газа по потенциальной энергии (распределение Больцмана)

Идеальный газ во внешнем силовом поле

В идеальных газах молекулы рассматриваются невзаимодействующими друг с другом посредством межмолекулярных силовых полей, и их потенциальная энергия не фигурирует в газовых законах. Однако во внешних силовых полях эта ситуация меняется - молекулы приобретают потенциальную энергию из-за действия на них внешних сил. Эта потенциальная энергия учитывается в законах термодинамики.

При отсутствии внешних воздействий из-за хаотического теплового движения газ равномерно заполняет предоставленный ему объем. Однако при внешних воздействиях картина меняется, и потенциальная энергия влияет на распределение молекул газа в пространстве заключающего газ объема.

Найдем распределение молекул идеального газа в однородном, консервативном, одномерном внешнем силовом поле (например, поле силы тяжести вблизи поверхности Земли). Ориентируем выделенную ось Z вдоль направления силового воздействия (вертикально вверх, в нашем примере) и будем искать распределение концентрации (и давления) молекул вдоль этого направления.

Выделим в газе две параллельные плоскости (пластины) площадью S каждая, ориентированные перпендикулярно оси Z с дифференциально-малым расстоянием-промежутком d.z между ними (рис. 4.4). Из-за действия на молекулы силы F (вес в гравитационном поле) давление на нижнюю пластину будет больше, чем на верхнюю. Разница давлений dp равна действующим на пластины силам со стороны всех молекул в объеме dV= отнесенным к их площади S:

где F(z) - сила, действующая со стороны силового поля, на одну молекулу, находящуюся на уровне z n(z) - концентрация молекул на уровне Z-

Согласно заданным условиям сила является консервативной; это значит, что силовое поле - потенциальное. Поэтому можно воспользоваться связью между силой F(z) и потенциальной энергией U(z)

в форме (соотношение (1.33) в подразделе 1.3.5). Теперь можем записать

Рис. 4.4.

Так как газ идеальный, его давление связано с концентрацией уравнением (4.25), а температура предполагается одинаковой в каждой точке, поэтому

Заменяя в (4.32) изменение давления на (4.33), получаем k^Tdn = = -ndU. Разделяя переменные, получим . Интегрирование

дает Это уравнение может быть переписано в виде

И далее Предполагая, что на уровне, принятом за нуль отсчета (z = 0) концентрация равна и 0 , получим С = п 0 . Поэтому окончательно

Полученное соотношение связывает между собой концентрацию молекул идеального газа n(z) и его давление p{z) с потенциальной энергией молекул U(z) в силовом поле с температурой Т. Это соотношение называется распределением Больцмана (или законом Больцмана). График закона Больцмана приведен для относительных концентраций n(z)/n 0 на рис. 4.5. Из него видно, что высокая концентрация молекул соответствует значениям координат z, где потенциальная энергия U(z) мала. С повышением потенциальной энергии концентрация молекул падает. При U(z ) = кьТ концентрация молекул в е раз меньше, чем на уровне, где U(z) = 0.

Рис. 4.5. Зависимость относительной концентрации частиц, находящихся в силовом поле, от величины потенциальной энергии U(z)

На рисунке 4.5 представлена совокупность кривых, соответствующих разным температурам газа. При возрастании температуры энергия хаотического движения молекул увеличивается и влияние температуры на концентрацию снижается. Поэтому при высокой температуре концентрация молекул выравнивается, газ равномерно заполняет весь объем. Наоборот, снижение температуры приводит к резкой зависимостью концентрации от потенциальной энергии. Влияние силового поля проявляется более резко.

Так как концентрация и давление пропорциональны друг другу для давления справедливо то, что говорилось ранее о концентрации. В частности, с учетом (4.25) формула (4.34) может быть переписана в виде:

в которой р 0 и p(z) есть давление в точках, где потенциальная энергия равна нулю и U(z), соответственно.

Подборка по базе: 416_3- Контр. и самост. раб. по физике. 8кл. к уч. Перышкина_201 .

1. 5. Закон Больцмана о распределении частиц во внешнем потенциальном поле. @


Если воспользоваться выражением р = nkT, то можно привести барометрическую формулу к виду:
з

десь n – концентрация молекул на высоте h, n 0 – то же у поверхности Земли. Так как М = m 0 N A , где m 0 – масса одной молекулы , а R = k N A , то мы получим П = m 0 gh – это потенциальная энергия одной молекулы в поле тяготения. Поскольку kT‹ε пост ›, то концентрация молекул на определенной высоте зависит от соотношения П и ‹ε пост ›
Полученное выражение называется распределением Больцмана для внешнего потенциального поля. Из него следует, что при постоянной температуре плотность газа (с которой связана концентрация) больше там, где меньше потенциальная энергия его молекул.
1. 6. Распределение Максвелла молекул идеального газа по скоростям. @
При выводе основного уравнения молекулярно-кинетической теории отмечалось, что молекулы имеют различные скорости. В результате многократных соударений скорость каждой молекулы меняется со временем по модулю и по направлению. Из-за хаотичности теплового движения молекул все направления являются равновероятными, а средняя квадратичная скорость остается постоянной. Мы можем записать

П
остоянство ‹υ кв › объясняется тем, что в газе устанавливается стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется определенному статистическому закону. Этот закон теоретически был выведен Д.К.Максвеллом. Он рассчитал функцию f(), называемую функцией распределения молекул по скоростям. Если разбить диапазон всех возможных скоростей молекул на малые интервалы, равные d, то на каждый интервал скорости будет приходиться некоторое число молекул dN(), имеющих скорость, заключенную в этом интервале (Рис.1.4.).

Функция f(v) определяет относительное число молекул, скорости которых лежат в интервале от  до + d. Это число - dN()/N= f()d. Применяя методы теории вероятностей, Максвелл нашел вид для функции f()



Данное выражение - это закон о распределении молекул идеального газа по скоростям. Конкретный вид функции зависит от рода газа, массы его молекул и температуры (рис.1.5). Функция f()=0 при =0 и достигает максимума при некотором значении  в, а затем асимптотически стремится к нулю. Кривая несимметрична относительно максимума. Относительное число молекул dN()/N, скорости которых лежат в интервале d и равное f()d, находится как площадь заштрихованной полоски основанием dv и высотой f(), показанной на рис.1.4. Вся площадь, ограниченная кривой f() и осью абсцисс равна единице, потому что, если просуммировать все доли молекул, имеющих всевозможные значения скорости , то получается единица. Как показано на рис.1.5, с ростом температуры кривая распределения смещается вправо, т.е. растет число быстрых молекул, но площадь под кривой остается постоянной, т.к. N = const.

Скорость  в, при которой функция f() достигает максимума, называется наиболее вероятной скоростью. Из условия равенства нулю первой производной функции f(v) ′ = 0 следует, что

Н

а рисунке 1.4. отмечена еще одна характеристика – средняя арифметическая скорость молекулы. Она определяется по формуле:


Опыт, проведенный немецким физиком О.Штерном, экспериментально подтвердил справедливость распределения Максвелла (рисунок 1.5.). Прибор Штерна состоит из двух коаксиальных цилиндров. Вдоль оси внутреннего цилиндра со щелью проходит платиновая проволока, покрытая слоем серебра. Если пропустить по проволоке ток,она нагревается и серебро испаряется. Атомы серебра, вылетая через щель, попадают на внутреннюю поверхность второго цилиндра. Если прибор будет вращаться, то атомы серебра осядут не против щели, а сместятся от точки О на некоторое расстояние. Исследование количество осадка позволяет оценить распределение молекул по скоростям. Оказалось, что распределение соответствует максвелловскому.
2. ОСНОВЫ ТЕРМОДИНАМИКИ

2.1. Внутренняя энергия. @
Важной характеристикой любой термодинамической системы является ее внутренняя энергия – энергия хаотического теплового движения частиц системы - молекул, атомов и энергия их взаимодействия. К внутренней энергии не относится кинетическая энергия движения системы как целого и потенциальная энергия системы во внешних полях. Внутренняя энергия системы в определенном состоянии не зависит от того , как система пришла в это состояние (т.е. от пути перехода), а определяется только значениями термодинамических параметров в этих состояниях. В термодинамике имеются и другие функции, удовлетворяющие этим условиям, их называют функциями состояния системы. Таким образом, внутренняя энергия – это функция состояния.

Для дальнейших рассуждений нам понадобится понятие числа степеней свободы – это число независимых переменных (координат), полностью определяющих положение системы в пространстве. Например, молекулу одноатомного газа можно рассматривать как материальную точку, обладающую тремя степенями свободы поступательного движения (координаты x,y,z) (рис.2.1. а). Молекула двухатомного газа, рассматриваемая в классической механике как совокупность двух материальных точек, жестко связанных между собой, имеет уже 5 степеней свободы. У нее имеется 3 степени свободы поступательного движения центра масс и 2 степени вращательного, связанного с поворотами на углы  и  (рис. 2.1. б). Эти углы полярный угол θ и азимутальный угол φ, определяют ориентацию оси молекулы. В данном случае, на первый взгляд кажется, что необходимо также задавать угол поворота ψ молекулы относительно собственной оси. Но вращение двухатомной молекулы вокруг своей собственной оси ничего не меняет в положении молекулы, так как структуры у материальных точек атомов нет и, поэтому, этот угол не нужен для задания положения такой молекулы в пространстве. Трехатомные молекулы (рис. 2.1.в), в которых атомы связаны жестко между собой, имеют 6 степеней свободы, так как здесь уже необходим дополнительный угол ψ.

Если расстояния между атомами меняются , т.е. атомы в молекуле колеблются, то для задания этих расстояний необходимы дополнительные координаты - колебательные степени свободы и общее число степеней свободы будет больше 6. Для много-атомных молекул число степеней может быть намного больше 6.

Р

Рис.2.1. Степени свободы: а) одноатомной молекулы;б) двухатомной молекулы;в) трех- и многоатомной молекулы.

анее мы получили формулу для средней кинетической энергии поступательного движения одно-атомной молекулы идеального газа следующее выражение: ‹ε 0 › = 3kT/2. Но у одно-атомной молекулы имеется 3 степени свободы поступательного движения и ни одна не имеет преимущества перед другими. Поэтому на каждую степень в среднем должна приходиться одинаковая энергия, равная 1/3 общей: ‹ε 1 › = kT/2. Так как, очевидно, что все степени свободы равноценны, то в классической статистической физике существует закон Больцмана о равномерном распределении энергии по степеням свободы. Он формулируется так: для статистической системы, находящейся в состоянии термодинамического равновесия, на каждую поступательную и вращательную степени свободы приходится в среднем кинетическая энергия, равная кТ/2, а на каждую колебательную степень свободы – кТ. Колебательная степень свободы обладает вдвое большей энергией, так как на нее приходится не только кинетическая, но и потенциальная энергия взаимодействия. Таким образом, средняя энергия любой молекулы ‹ε› = ikT/2, где i - это сумма поступательных, вращательных и удвоенного числа колебательных степеней свободы.

Из этого закона получаем, что внутренняя энергия U М одного моля идеального газа равна U М =ikTN A /2 = iRT/2, а внутренняя энергия U газа массы m равна U = ikTN/2 = iRTm/2M (здесь мы учитываем, что потенциальная энергия взаимодействия молекул равна 0, общее число молекул в одном моле равно N A , N= mN A /M и kN A =R).
2.2. Первое начало термодинамики. @

Обмен энергией между термодинамической системой и внешней средой может осуществляться двумя качественно различными способами: путем совершения работы и путем теплообмена.

Изменение энергии системы, происходящее под действием сил измеряется работой. Если термодинамическая система совершает работу против внешних сил, то работа считается положительной (А>0). Если работу над системой совершают внешние силы , то она считается отрицательной (А
Изменение энергии системы, происходящее в результате теплообмена, определяется количеством переданной или отнятой теплоты Q. При теплообмене тела систем должны находится в тепловом контакте, т.е. молекулы этих систем должны иметь возможность сталкиваться при своем движении и обмениваться своей кинетической энергией. Если энергия (теплота) передается системе, то Q>0, если она от системы отнимается, то Q
ΔU = Q – A или Q = ΔU + A

В дифференциальной форме (для малых изменений величин) это запишется следующим образом:

δQ = dU + δA ,

где δQ - бесконечно малое количество теплоты, dU – бесконечно малое изменение внутренней энергии, δA – элементарная работа. Это уравнение выражает первое начало термодинамики: теплота, подводимая к системе, расходуется на изменение ее внутренней энергии и на совершение работы против внешних сил. Знак δ в δQ и δА означают, что данные элементарные приращения не являются полными дифференциалами и, следовательно, А и Q не являются функциями состояния.

Пусть газ заключен в цилиндрический сосуд, закрытый легко скользящим поршнем площадью S. Найдем работу газа при расширении его объема δA = Fdl = pSdl = pdV , где F – сила, с которой газ действует на поршень, dl – перемещение поршня. Если зависимость р(V) изобразить графически , то общая работа при изменении объема от V 1 доV 2 равна площади фигуры, ограниченной кривой р(V), осью абсцисс и прямыми V= V 1 и V= V 2 (рис.2.2.). Графически можно изображать лишь равновесные процессы, и все количественные выводы термодинамики строго применимы только к равновесным процессам. При достаточно медленном протекании реальные процессы можно приближенно считать равновесными. Первое начало термодинамики выполняется во всех процессах, связанных с обменом энергией и совершением работы.
2. 3. Теплоемкость. @

Одним из основных свойств тел, которое широко используется в термодинамике, является теплоемкость. Теплоемкостью тела называется физическая величина, численно равная отношению теплоты δQ, сообщаемой телу, к изменению температуры тела в рассматриваемом термодинамическом процессе. Теплоемкость тела зависит от его химического состава, массы и термодинамического состояния, а также от вида процесса, в котором поступает теплота. Тепловые свойства однородных тел характеризуются понятиями удельной и молярной теплоемкостей.

Удельная теплоемкость вещества – величина, численно равная количеству теплоты, необходимому для нагревания единицы массы вещества на 1 Кельвин при данном процессе , единица измерения – Дж/(кг∙К)

М



олярная теплоемкость – величина, равная количеству теплоты, необходимому для нагревания одного моля вещества на 1К, т.е. С =сМ, где М – молярная масса вещества. Теплоемкости одного и того же вещества при разных термодинамических процессах нагревания различаются.

Найдем молярную теплоемкость системы в изобарном процессе, для этого возьмем один моль газа и сообщим ему количество теплоты δQ М. Согласно определению молярной теплоемкости и первому началу термодинамики можем

записать (здесь δА М - работа одного моля газа)


Если газ нагревается при постоянном объеме, то dV=0 и δА М =0. Сообщаемая газу теплота идет только на увеличение его внутренней энергии и теплоемкость для изохорного процесса


Откуда следует, что

И

з уравнения Менделеева – Клапейрона для изобарного процесса можно получить pdV М = RdT. Таким образом, pdV М /dT = R. Из этой формулы следует физический смысл газовой постоянной: она численно равна работе (δА М = pdV М), совершаемой одним молем идеального газа, при его изобарном нагревании на 1 К. После замены получаем:

Э

то выражение называется уравнением Майера, оно показывает, что молярная теплоемкость при постоянном давлении С р всегда больше, чем теплоемкость при постоянном объеме C v на величину, равную молярной газовой постоянной. Это объясняется тем, что при постоянном объеме все подводимое тепло идет только на увеличение внутренней энергии, т.е. повышение Т, а при постоянном давлении кроме этого требуется еще дополнительное количество теплоты на совершение работы газом против внешних сил при его расширении.