В чем суть явления термоэлектронной эмиссии. Эмиссия электронов из проводников

В зависимости от того, каким способом сообщена электронам энергия, различают типы электронной эмиссии. Если электроны получают энергию за счет тепловой энергии тела при повышении его температуры, можно говорить о термоэлектронной эмиссии. Для наблюдения термоэлектронной эмиссии можно использовать пустотную лампу, содержащую два электрода: накаливаемый током катод и холодный электрод, собирающий термоэлектроны - анод. Такие лампы носят название вакуумных диодов. Ток в этой цепи появляется только в том случае, если положительный полюс батареи соединен с анодом, а отрицательный-с катодом. Это подтверждает, что катод испускает отрицательные частицы, электроны. Сила термоэлектронного тока в диоде зависит от величины потенциала анода относительного катода. Кривая, изображающая зависимость силы тока в диоде от анодного напряжения, называется вольт-амперной характеристикой. Когда потенциал анода равен нулю, сила тока мала, она определяется лишь самыми быстрыми термоэлектронами, способными достигнуть анода. При увеличения положительного потенциала анода сила тока возрастает и затем достигает насыщения, т.е. почти перестает зависеть от анодного напряжения. При увеличении температуры катода увеличивается и значение тока, при котором достигается насыщение. Одновременно увеличивается и то анодное напряжение, при котором устанавливается ток насыщения. Таким образом, вольт-амперная характеристика диода оказывается нелинейной, т.е. не выполняется закон Ома. Это объясняется тем, что при термоэлектронной эмиссии у поверхности катода создается довольно большая плотность электронов. Они создают общий отрицательный заряд, и электроны, вылетающие с малой скоростью, не могут его проскочить. С увеличением анодного напряжения концентрация электронов в облаке пространственного заряда уменьшается. Поэтому и тормозящее действие пространственного заряда делается меньше, а анодный ток растет быстрее, чем в прямой зависимости от анодного напряжения. По мере роста анодного напряжения все больше электронов, вылетевших из катода, отсасывается к аноду. При определенном значении все вылетевшие из катода за единицу времени электроны достигают анода. Дальнейший рост анодного напряжения не может увеличить силу анодного тока, поскольку достигается насыщение. Максимальный термоэлектронный ток, возможный при данной температуре катода, называется током насыщения. При повышении температуры увеличивается скорость хаотического движения электронов в металле. При этом число электронов, способных покинуть металл, резко возрастает. Плотность тока насыщения, т.е. сила тока насыщения на каждую единицу поверхности катода S, вычисляется по формуле Ричардсона-Дешмена: , где - постоянная эмиссии, k-постоянная Больцмана, =1,38 10-23 Дж/К. Плотность тока насыщения характеризует эмиссионную способность катода, которая зависит от природы катода и его температуры.

ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ -испускание электронов нагретыми телами (эмиттерами) в вакуум или др. среду. Выйти из тела могут только те электроны, энергия к-рых больше энергии покоящегося вне эмиттера электрона (см. Работа выхода ).Число таких электронов (обычно это электроны с энергиями 1 эВ относительно ферми-уровня в эмиттере) в условиях термодинамич. равновесия в соответствии с Ферми-Дирака распределением ничтожно мало при темп-pax T 300 К и экспоненциально растёт с T . Поэтому ток T. э. заметен только для нагретых тел. Вылет электронов приводит к охлаждению эмиттера. При отсутствии "отсасывающего" электрич. поля (или при малой его величине) вылетевшие электроны образуют вблизи поверхности эмиттера отрицательный пространств. , ограничивающий ток T. э.

Основные соотношения . При малых напряжениях V между эмиттером и анодом плотность тока моноэнергетич. электронов описывается известной ф-лой (закон трёх вторых) j ~ V 3/2 (см. Ленгмюра формула); учёт разброса скоростей электронов, преодолевающих созданный пространств. зарядом потенц. барьер, значительно усложняет ф-лу, но характер зависимости j(V )не изменяется; при увеличении V пространств. заряд рассасывается и ток достигает насыщения j 0 , а при дальнейшем росте V ток слабо растёт в соответствии с Шоттки эффектом (рис.)- В сильных (E > 10 6 В/см) электрич. полях к T. э. добавляется автоэлектронная эмиссия (термоавтоэлектронная эмиссия).

Выражение для плотности тока насыщения j 0 в силу принципа детального равновесия может быть получено путём расчёта потока электронов из вакуума в эмиттер. В условиях термодинамич. равновесия этот поток должен совпадать с потоком электронов, вылетающих в вакуум. В предположении, что поверхность эмиттера однородна, внеш. поле мало, а коэф. отражения электронов от поверхности эмиттера в вакууме r в области энергий ~ kT вблизи уровня вакуума слабо зависит от энергии и не слишком близок к единице, такой расчёт приводит к ф-ле (ф о рм у л а Р и ч а р д с о н а - Д е ш м а н а)

Здесь A=A 0 (1-) (черта над r означает усреднение по энергиям электронов), A 0 = 4pek 2 m e /h= 120,4 А/см 2. К 2 , F - электрона. Предположение о слабой зависимости r от энергии нарушается лишь в исключительных (но всё же реальных) случаях, когда уровень вакуума попадает внутрь одной из запрещённых зон в электронном спектре твёрдого тела или соответствует к--л. др. особенностям в спектрах объёмных и поверхностных состояний. Работа выхода металлов слабо зависит от темп-ры (вследствие теплового расширения); обычно эта зависимость линейная: F = F 0 + aT , a~10 -4 -10 -5 эВ/град; причём коэф. a может быть как положителен, так и отрицателен. По этой причине, однако, определяемые путём построения графика зависимости j 0 /T 2 от 1/T в полулогарифмич. координатах (метод прямых Ричардсона) величины отличаются от F и А из ф-лы (*). Для большинства чистых металлов найденные т. о. значения А изменяются от 15 до 350 А/см 2. К 2 .

Влияние примесей и дефектов . Поверхностные примеси и дефекты даже при малой их концентрации (10 монослоя) могут оказывать значит. влияние на термоэмиссионные свойства металлов и и приводят к заметному разбросу значений работы выхода (0,1 эВ). К числу таких эмиссионно активных примесей относятся, напр., атомы щелочных и щёлочно-земельных элементов и их окислы. Возникающая при адсорбции атомов и молекул квантовохим. связь индуцирует перераспределение зарядов между адсорбируемыми атомами (а д а т о м а м и) и собственными поверхностными атомами эмиттера. На больших расстояниях от адатома создаваемый этими зарядами потенциал может быть описан в терминах муль-типольного разложения, т. е. в виде суммы дипольного, квадрупольного и т.д. потенциалов. Изменение работы выхода (дипольный скачок потенциала) определяется ди-польными моментами DФ = 4peN s d , где N s - поверхностная концентрация адатомов, d -дипольный момент. При значениях d порядка неск. Д (1 Д=10 -18 ед. СГСЕ) уже малые кол-ва примесей (N 5 10 12 -10 13 см -2), составляющие всего 0,1-0,01 монослойного покрытия, приводят к заметным изменениям работы выхода: DF~10 -2 - 10 -1 эВ. Эмиссионно активные примеси как раз и характеризуются высокими значениями d~ 1-10 Д; рекордные значения d ~ 10 Д соответствуют адсорбции цезия. Изменение работы выхода описывает усреднённое вдоль поверхности изменение потенциала. Микроскопич. структура индуцируемого адатомами вблизи поверхности потенциала сложна. В частности, на нек-рой части поверхности существует потенц. барьер, затрудняющий вылет в вакуум электронов с энергиями, близкими к пороговым. Однако в большинстве случаев d ~ 1 Д и при таких d барьеры туннельно проницаемы - "прозрачны". В этих случаях изменения связаны с квантовомеханич. рассеянием и электронов. Примеси и дефекты могут стимулировать перестройку поверхности, что также влияет на эмиссионные свойства. Кроме адсорбции примесных атомов на поверхности, источниками её загрязнения могут служить процессы сегрегации и поверхностной , весьма эффективные при повыш. темп-pax. Для устранения неконтролируемого влияния загрязняющих примесей и получения воспроизводимых результатов при изучении эмиссионных свойств поверхностей необходимо производить измерения в условиях сверхвысокого вакуума ~10 -9 - 10 -10 мм рт. ст. (поток атомов из газовой среды на поверхность, создающий за 1 с монослойные покрытия, соответствует при комнатной темп-ре давлению ~ 10 -6 мм рт. ст.); при этом необходим контроль за составом и структурой поверхности с помощью совр. методов спектроскопии поверхности. Наилучшие объекты для изучения механизмов эмиссии - отд. грани монокристаллов переходных металлов, допускающие высокую степень очистки и отличающиеся высоким совершенством структуры поверхности.

Потенциал сил изображения (ПСИ), не являющийся элек-тростатич. потенциалом и не удовлетворяющий Пуассона уравнению в вакууме, описывает потенц. энергию взаимодействия электрона с эмиттером. ПСИ даёт заметный вклад в работу выхода (1 эВ) и проявляется обычно на расстояниях от поверхности z100 А. Его особые свойства связаны с "кулоновским" видом зависимости от координат V ~z -1 (вплоть до расстояний от поверхности порядка межатомных). Движение электрона в поле такого потенциала оказывается существенно квантовым. При этом ввиду формальной аналогии анализ решений соответствующего ур-ния Шрёдингера и свойства самих решений близки к случаю обычного 3-мерного кулоновского потенциала. В частности, если электрон не может проникнуть внутрь эмиттера (в силу отсутствия там объёмных состояний с соответствующей энергией), то ПСИ индуцирует поверхностные состояния с кулоновоподобным спектром (состояния ПСИ). Если же электрон может покинуть уровень в результате того или иного процесса, но вероятность этого события мала (как это часто бывает в действительности), то поверхностные состояния становятся резонансными, а уровни энергии приобретают конечную ширину. Электроны, находящиеся в непрерывном спектре, двигаясь над потенц. ямой, "чувствуют" наличие в ней уровня связанного состояния с малой по сравнению с глубиной ямы энергией связи, если их энергия невелика (сравнима с глубиной залегания уровня). В таком случае электрон за счёт эффектов многократного надбарьерного отражения может эффективно захватываться в область действия потенциала и рассеяние приобретает резонансный характер. Это явление приводит к резонансным осцил-ляциям в зависимости коэф. отражения от внеш. поля. Вероятность выхода в вакуум электрона, двигающегося изнутри твёрдого тела к его поверхности, связана с коэф. отражения соотношениями унитарности, являющимися квантовым аналогом принципа детального равновесия и обеспечивающими закон сохранения числа частиц. Поэтому в полевой зависимости тока T. э. также наблюдаются слабые (но всё же заметные) . В пределе слабых полей величина r и зависимость r от энергии существенно обусловлены видом потенциала.

Если потенциал достаточно быстро (быстрее, чем z -2) стремится к своему асимптотич. значению, то r стремится к единице, а вероятность выхода электрона в вакуум обращается в нуль по закону e | 1/2 вблизи порога эмиссии (e | - часть энергии электрона относительно уровня вакуума, соответствующая движению электрона по нормали к поверхности, иначе говоря, нормальная компонента полной энергии электрона). В случае медленноизменяющихся с z потенциалов, к к-рым относится и ПСИ, их наличие не привносит дополнит. особенностей в энергетич. зависимость r вблизи уровня вакуума. Поэтому величина (1-r )из ф-лы (*) в большинстве случаев оказывается не слишком малой. Лишь в случаях, когда эмиссия осуществляется в среду с малой характерной длиной экранирования поля, не превышающей величин <= 100 (обычных для области действия ПСИ), r оказывается близким к единице.

Термоэлектронная эмиссия из полупроводников . Ф-ла (*) применима и для описания T. э. из полупроводников. Однако влияние темп-ры, электрич. поля, примесей в эмиттере и т. п. на эмиссионный ток и на величины F и А в этом случае существенно иное по сравнению с металлами. Различия обусловлены малой концентрацией электронов проводимости и наличием локализованных поверхностных электронных состояний, влияющих на расположение уровня Ферми на поверхности полупроводника, вплоть до его "закрепления" в нек-рой точке запрещённой зоны (см. Поверхностные состояния, Поверхность) . При этом на поверхности полупроводника и F почти (с точностью до величин ~0,1 эВ) не зависят от в объёме (т.е. от типа и концентрации легирующей примеси). Такое закрепление связано с поверхностными состояниями достаточно большой (>=10 12 см -2) концентрации, индуцированными в основном собств. дефектами кристалла, возникающими при воздействии на полупроводник разл. внеш. факторов, таких, как адсорбция, механич., термич. обработка и др. В этом случае характер T. э. аналогичен T. э. из металлов.

На достаточно чистых и совершенных поверхностях полупроводников плотность собственных (заполненных и пустых) поверхностных состояний в запрещённой зоне невелика и уровень Ферми на поверхности может перемещаться внутри запрещённой зоны, следуя за его положением в объёме. Поэтому при изменении типа и концентрации примесей в объёме полупроводника изменяются F и ток T. э. Кроме того, электрич. поле в таких полупроводниках не экранируется зарядами поверхностных состояний и проникает в эмиттер на значит. глубину, что приводит к изменению F за счёт приповерхностного изгиба зон и к разогреву полем.

Аналогичная ситуация возникает и в том случае, когда внеш. поле превышает величину, достаточную для устранения экранирующего влияния поверхностных состояний. По этим причинам отбор тока эмиссии из полупроводников (в отличие от металлов, где эти эффекты обычно малы) может приводить к значит. нарушению термодинамич. равновесия. Особая ситуация возникает при эмиссии из систем с отрицат. электронным сродством (см. Фотоэлектронная эмиссия) , в к-рых неравновесный характер процессов эмиссии (в т. ч. и T. э.) обусловлен изначальными особенностями приповерхностной энергетич. структуры эмиттеров.

Влияние неоднородностей . Поверхность большинства эмиттеров неоднородна, на ней существуют "пятна" с разной работой выхода. Между ними возникает Df и электрич. поля (поля пятен) величиной ~Df/R (где R - характерный размер неоднородностей). Эти поля создают дополнит. потенц. барьеры для эмитируемых электронов, что приводит к более сильной зависимости тока от анодного напряжения (аномальный эффект Шоттки), а также увеличивает зависимость тока от T . Поскольку размеры неоднородностей обычно не малы, >> 100, а значения разности потенциалов между соседними пятнами ~0,1 - 1 эВ, то типичные величины полей пятен не велики (~10 4 В/см или меньше) и требуют для своего "раскрытия" относительно малых (по сравнению со случаем нормального эффекта Шоттки) внеш. полей, с чем и связана большая величина (аномальность) эффекта в случае неоднородных поверхностей.

Если поверхность сильно неоднородна, так что размеры эмиссионно активных пятен r значительно меньше расстояний между ними, то потенциал f отд. пятна на расстояниях r от него может быть представлен в виде суммы дипольного, квадрупольного и т. д. слагаемых. В частности, зависимость поля пятна от расстояния до поверхности z над центром пятна в этом случае близка к степенной. Последнее обстоятельство (в полной аналогии с нормальным эффектом Шоттки) приводит к степенной или близкой к ней зависимости величины снижения потенц. барьера над центром пятна Df от внеш. поля E (напр., в случае чисто дипольного потенциала f~z -2 и Df~E 2/3). В реальных условиях зависимость потенциала от координат более сложна, однако качественно факторы, определяющие вид полевой зависимости тока в условиях аномального эффекта Шоттки, остаются теми же. Кроме того, всегда существует разброс значений параметров неоднородностей, а в нек-рых случаях (напр., для эмиттеров, приготавливаемых из мелкодисперсных порошков) иерархия размеров может быть весьма богатой (от 100 до 10-100 мкм). При этом с ростом поля происходит поочерёдное раскрытие полей пятен, что значительно расширяет полевой диапазон проявления аномального эффекта Шоттки.

Виды термоэмиттеров . К числу наиб. известных эфф. эмиттеров относятся окислы щёлочно-земельных, редкоземельных и др. элементов, обычно используемые в виде смесей с различными (в зависимости от назначения катода) добавками (см. Термоэлектронный катод) . Самым популярным является катод на основе смеси окислов Ba, Ca и Sr - оксидный катод. Будучи соединениями с ярко выраженной ионной связью, окислы обладают относительно малым (<= 1 эВ) электронным сродством, широкой (порядка неск. эВ) запрещённой зоной и являются изоляторами при комнатных темп-pax. Для реализации высоких эмиссионных свойств используется процесс термообработки, во время к-рого происходят очистка поверхности, образование донорных центров, формирование структуры эмиттера и оптим. состава его поверхности. Доноры, к-рые в такого рода соединениях имеют, как правило, вакансионную природу, возникают в результате конкуренции между процессами и адсорбции атомов (происходящими при повыш. темп-pax в условиях относительно невысокого вакуума) с последующей диффузией вакансий в объём эмиттера, а также и в др. процессах. Возникающая нестехиометрия состава катода, особенно состава его приповерхностной области, значительна, но всё же не настолько, чтобы образовывались сплошные тонкослойные покрытия поверхности атомами металлов. Важную роль в формировании и работе катода играют процессы поверхностной диффузии атомов (в т. ч. и диффузия по границам зёрен). Они имеют обычно активац. характер; при этом энергия активации поверхностной диффузии (=< 1 эВ) заметно меньше, чем энергия активации объёмного процесса. Поэтому во мн. случаях поверхностная диффузия более эффективна. На контакте полупроводникового эмиссионного слоя с металлом подложки (керном) существует барьер контактной разности потенциалов - , к-рый "включён" в запирающем направлении и при отборе тока эмиссии препятствует транспорту электронов из металла в эмиссионный слой. Кроме того, из-за хим. реакций, протекающих в этой области при повыш. темп-pax (особенно при наличии в металле нежелат. примесей), возможно образование диэлектрич. прослойки между металлом и эмиссионным слоем, значительно ухудшающей свойства катода и приводящей к быстрой его деградации. Поэтому одна из задач, возникающая при создании эмиттера,- формирование хорошего контакта эмиссионного слоя с керном, сохраняющего свои свойства при работе катода. В отличие от технологий мн. др. приборов, в к-рых для создания омического контакта предпринимаются спец. меры, в оксидном катоде формирование контакта происходит в процессе термообработки заодно с др. процессами и не требует дополнит. операций. Иногда в материал контакта вводятся спец. активные присадки, способствующие образованию донорных центров в процессе термообработки. Эфф. термокатоды отличаются от др. эмиттеров прежде всего низкими значениями работы выхода. Достигнутые значения этой величины группируются ок. ~ 1 эВ, а дальнейшие усилия в направлении уменьшения работы выхода наталкиваются на серьёзные трудности. В связи с этим возникает вопрос о существовании факторов, препятствующих снижению работы выхода до величин, значительно меньших 1 эВ. К числу таких факторов могло бы относиться существование незаполненных поверхностных состояний (в частности, состояний ПСИ), накопление заряда на к-рых ограничивает возможность уменьшения Ф. Среди термокатодов др. типов можно назвать металлич. катоды (особенно вольфрамовые) и катоды из полуметаллов, напр. из гексаборида лантана, используемые для создания электронных пучков с повышенной плотностью тока.

Термоэлектронные катоды применяют во многих электровакуумных и газоразрядных приборах, в науч. и технол. установках.

Лит.: Fоменко В. С., Эмиссионные евойства материалов, 4 изд., К., 1981; Добрецов Л. H., Гомоюнова M. В., Эмиссионная электроника, M., 1966; Термоэлектронные катоды, M.- Л., 1966. С. Г. Дмитриев .

Термоэлектронная эмиссия

Термоэлектро́нная эми́ссия (эффект Ричардсона , эффект Эдисона ) - явление испускания электронов нагретыми телами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергии) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла . С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода , растет, и явление термоэлектронной эмиссии становится заметным.

Исследование закономерностей термоэлектронной эмиссии можно провести с помощью простейшей двухэлектродной лампы - вакуумного диода , представляющего собой откачанный баллон, содержащий два электрода: катод К и анод А. В простейшем случае катодом служит нить из тугоплавкого металла (например, вольфрама), накаливаемая электрическим током. Анод чаще всего имеет форму металлического цилиндра, окружающего катод. Если диод включить в цепь, то при накаливании катода и подаче на анод положительного напряжения (относительно катода) в анодной цепи диода возникает ток. Если поменять полярность батареи, то ток прекращается, как бы сильно катод ни накаливали. Следовательно, катод испускает отрицательные частицы - электроны.

Если поддерживать температуру накаленного катода постоянной и снять зависимость анодного тока от анодного напряжения - вольт-амперную характеристику, то оказывается, что она не является линейной, то есть для вакуумного диода закон Ома не выполняется. Зависимость термоэлектронного тока от анодного напряжения в области малых положительных значений описывается законом трех вторых (установлен русским физиком С. А. Богуславским (1883- 1923) и американским физиком И. Ленгмюром (1881 - 1957)): , где В - коэффициент, зависящий от формы и размеров электродов, а также их взаимного расположения.

При увеличении анодного напряжения ток возрастает до некоторого максимального значения, называемого током насыщения. Это означает, что почти все электроны, покидающие катод, достигают анода, поэтому дальнейшее увеличение напряженности поля не может привести к увеличению термоэлектронного тока. Следовательно, плотность тока насыщения характеризует эмиссионную способность материала катода. Плотность тока насыщения определяется формулой Ричардсона - Дешмана, выведенной теоретически на основе квантовой статистики: , где А - работа выхода электронов из катода, Т - термодинамическая температура, С - постоянная, теоретически одинаковая для всех металлов (это не подтверждается экспериментом, что, по-видимому, объясняется поверхностными эффектами). Уменьшение работы выхода приводит к резкому увеличению плотности тока насыщения. Поэтому применяются оксидные катоды (например, никель, покрытый оксидом щелочноземельного металла), работа выхода которых равна 1 −1,5 эВ.

На явлении термоэлектронной эмиссии основана работа многих вакуумных электронных приборов .

Литература

  • Курс физики Трофимова Т.И.

Wikimedia Foundation . 2010 .

  • Куриа-Муриа
  • Приливная электростанция

Смотреть что такое "Термоэлектронная эмиссия" в других словарях:

    ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ - испускание электронов нагретыми телами (эмиттерами) в вакуум или др. среду. Выйти из тела могут только те электроны, энергия к рых больше энергии покоящегося вне эмиттера электрона (см. Работа выхода). Число таких электронов (обычно это электроны … Физическая энциклопедия

    ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ - испускание эл нов нагретыми телами (эмиттерами) в вакуум или др. среду. Выйти из тела могут только те эл ны, энергия к рых больше энергии эл на, покоящегося вне тела (см. РАБОТА ВЫХОДА). Число таких эл нов в условиях термодинамич. равновесия, в… … Физическая энциклопедия

    ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ - испускание электронов нагретыми твердыми телами или жидкостями (эмиттерами). Термоэлектронную эмиссию можно рассматривать как испарение электронов из эмиттера. В большинстве случаев термоэлектронная эмиссия наблюдается при температурах… … Большой Энциклопедический словарь

    термоэлектронная эмиссия - термоэлектронная эмиссия; отрасл. термоионная эмиссия Электронная эмиссия, обусловленная исключительно тепловым состоянием (температурой) твердого или жидкого тела, испускающего электроны … Политехнический терминологический толковый словарь

    термоэлектронная эмиссия - Электронная эмиссия, обусловленная только температурой электрода. [ГОСТ 13820 77] Тематики электровакуумные приборы … Справочник технического переводчика

    ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ - ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ, «испарение» ЭЛЕКТРОНОВ с поверхности вещества при его нагреве … Научно-технический энциклопедический словарь

    ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ - испускание электронов нагретыми телами (эмиттерами) в вакуум или др. среду. Явление наблюдается при температурах, значительно превышающих комнатную; в этом случае часть электронов тела приобретает энергию, превышающую (млн. равную) работу выхода… … Большая политехническая энциклопедия

    термоэлектронная эмиссия - испускание электронов нагретыми твёрдыми телами или жидкостями (эмиттерами). Термоэлектронную эмиссию можно рассматривать как испарение электронов при их тепловом возбуждении. В большинстве случаев термоэлектронная эмиссия наблюдается при… … Энциклопедический словарь

    Термоэлектронная эмиссия - Ричардсона эффект, испускание электронов нагретыми телами (твёрдыми, реже жидкостями) в вакуум или в различные среды. Впервые исследована О. У. Ричардсоном в 1900 1901. Т. э. можно рассматривать как процесс испарения электронов в… … Большая советская энциклопедия

    ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ - испускание электронов нагретой поверхностью. Еще до 1750 было известно, что вблизи нагретых твердых тел воздух теряет свое обычное свойство плохого проводника электричества. Однако причина этого явления оставалась неясной до 1880 х годов. В ряде… … Энциклопедия Кольера

    термоэлектронная эмиссия - termoelektroninė emisija statusas T sritis chemija apibrėžtis Elektronų spinduliavimas iš įkaitusių kietųjų kūnų arba skysčių. atitikmenys: angl. thermoelectronic emission rus. термоэлектронная эмиссия … Chemijos terminų aiškinamasis žodynas


При вычислении плотности термоэлектронного тока будем пользоваться моделью электронного газа и применим к нему статистику Ферми-Дирака. Очевидно, что плотность термоэлектронного тока определяется плотностью облака электронов вблизи поверхности кристалла, которая описывается формулой (1). Перейдем в этой формуле от распределения электронов по энергиям к распределению электронов по импульсам. При этом учтем, что разрешенные значения волнового вектора электрона k вk -пространстве распределены равномерно так, что на каждое значениеk приходится объем 8p 3 (для объема кристалла, равного единице). Учитывая, что импульс электронаp k получим, что число квантовых состояний в элементе объема пространства импульсовdp x dp y dp z будет равно

(2)

Двойка в числителе формулы (2) учитывает два возможных значения спина электрона.

Направим ось z прямоугольной системы координат нормально к поверхности катода (рис. 7). Выделим на поверхности кристалла площадку единичной площади и построим на ней, как на основании, прямоугольный параллелепипед с боковым ребромv z = p z / m n (m n – эффективная масса электрона). Электроны дают клад в плотность тока насыщения компонентойv z скорости по осиz . Вклад в плотность тока от одного электрона равен

(3)

где е – заряд электрона.

Число электронов в параллелепипеде, скорости которых заключены в рассматриваемом интервале:

Чтобы при эмиссии электронов кристаллическая решетка не разрушалась, из кристалла должна выходить ничтожная часть электронов. Для этого, как показывает формула (4), должно выполняться условие Е-Е F >> k Т . Для таких электронов в знаменателе формулы (4) единицей можно пренебречь. Тогда эта формула преобразуется к виду

(5)

Найдем теперь число электронов dN в рассматриваемом объеме,z -составляющая импульса которых заключена междур z ир z + dp z . Для этого предыдущее выражение надо проинтегрировать пор x ир y в пределах от –∞ до +∞. При интегрировании следует учесть, что

,

и воспользоваться табличным интегралом

, .

В результате получим

. (6)

Теперь, учитывая (3), найдем плотность термоэлектронного тока, создаваемого всеми электронами параллелепипеда. Для этого выражение (6) надо проинтегрировать для всех электронов, кинетическая энергия которых на уровне Ферми E E F + W 0 .Только такие электроны могут выходить из кристалла и только они играют роль в вычислении термотока. Составляющая импульса таких электронов вдоль осиZ должна удовлетворять условию

.

Следовательно, плотность тока насыщения

Интегрирование производится для всех значений . Введем новую переменную интегрирования

Тогда p z dp z = m n du и

. (8)

В результате получим

, (9)

, (10)

где постоянная

.

Равенство (10) называется формулой Ричардсона-Дешмана. Измеряя плотность термоэлектронного тока насыщения, можно по этой формуле вычислить постоянную А и работу выхода W 0 . Для экспериментальных расчетов формулу Ричардсона-Дешмана удобно представить в виде

В этом случае на графике зависимость ln (j s / T 2 ) от 1выражается прямой линией. По пересечению прямой с осью ординат вычисляютln А , а по углу наклона прямой определяют работу выхода (рис. 8).

ИЗУЧЕНИЕ ЯВЛЕНИЯ ТЕРМОЭЛЕКТРОННОЙ ЭМИССИИ

Цель работы: изучить явление термоэлектронной эмиссии, экспериментально исследовать на основании этого явления физические постоянные и провести компьютерную обработку полученных результатов.

ЭЛЕМЕНТЫ ТЕОРИИ

Термоэлектронная эмиссия.

Явление термоэлектронной эмиссии заключается в испускании электронов с поверхности нагретого твердого тела. Это явление в простейшем случае проявляется в том, что в электрической цепи с двумя телами (электродами), разделёнными вакуумным зазором, обнаруживается электрический ток.

Современные представления о природе термоэлектронной эмиссии в металлах основываются на следующих предположениях. Распределение электронов по энергетическим уровням в металле подчиняется статистике Ферми-Дирака, согласно которой вероятность квантового состояния с энергией для электронов определяется функцией Ферми-Дирака:

(1)

где - энергия Ферми, которая выступает в качестве характеристики всей системы электронов; Дж/К - постоянная Больцмана, - температура в градусах Кельвина.

Графики функции Ферми-Дирака качественно для нескольких температур представлены на рис. 1. Как видно из рисунка, при имеет вид разрывной функции. Для всех энергий , , т.е. все квантовые состояния с такими энергиями заняты электронами. При функция становится непрерывной и тем более размытой, чем выше температура.

Рис. 1. Функция Ферми-Дирака для металлов.

Для металлов порядка нескольких электрон-вольт (эВ). В связи с этим, для комнатных температур и даже более высоких (вплоть до температуры плавления) распределение электронов существенно не отличается от распределения для . В то же время, если обозначить через - минимальное значение энергии электрона, способного покинуть объём металла, то в состояниях с энергией при будет находиться некоторая часть электронов, концентрация которых увеличивается с ростом температуры (заштрихованная часть на рис. 1).

Минимальная работа, которую должен совершить электрон переходя из объёма металла в вакуум равна . Эту величину называют работой выхода электрона из металла в вакуум.

Термоэлектронную эмиссию удобно изучать и наблюдать с помощью вакуумного диода, который имеет два электрода (накаленный катод, служащий для эмиссии электронов, и анод, принимающий эти электроны), расположенные в стеклянном, металлическом или керамическом баллоне.

Рассмотрим физические процессы, протекающие в диоде с катодом косвенного накала и плоскими электродами, включенного по схеме (рис. 2). Напряжение (плюс на аноде) создает между анодом и катодом электрическое поле, которое при напряжении накала будет однородным. Когда , катод испускает термоэлектроны, которые в пространстве между анодом и катодом создают отрицательный объёмный заряд, препятствующий движению электронов к аноду и имеющий наибольшую плотность вблизи катода. Распределение электрического поля становится неоднородным.



Рис.2 Схема для изучения явления термоэлектронной эмиссии.

Выделяют два режима работы диода:

1. Режим насыщения (). Все электроны, вылетевшие из катода, под действием ускоряющего поля между анодом и катодом долетают до анода. Тогда эмиссионный ток равен анодному току и будет максимальным для данной температуры катода (Этот ток называется током насыщения).

2. Режим объёмного заряда (). Вблизи катода имеется объёмный заряд, образующий тормозящее для термоэлектрона поле. Электроны с малой энергией не преодолевают этого поля и возвращаются на катод. И только электроны с большой энергией долетают до анода. И поэтому в этом режиме.