В чем заключается закон фарадея для электролиза. Законы фарадея

Для описания процессов в физике и химии есть целый ряд законов и соотношений, полученных экспериментальным и расчетным путем. Ни единого исследования нельзя провести без предварительной оценки процессов по теоретическим соотношениям. Законы Фарадея применяются и в физике, и в химии, а в этой статье мы постараемся кратко и понятно рассказать о всех знаменитых открытиях этого великого ученого.

История открытия

Закон Фарадея в электродинамике был открыт двумя ученными: Майклом Фарадеем и Джозефом Генри, но Фарадей опубликовал результаты своих работ раньше – в 1831 году.

В своих демонстрационных экспериментах в августе 1831 г. он использовал железный тор, на противоположные концы которого был намотан провод (по одному проводу на стороны). На концы одного первого провода он подал питание от гальванической батареи, а на выводы второго подключил гальванометр. Конструкция была похожа на современный трансформатор. Периодически включая и выключая напряжение на первом проводе, он наблюдал всплески на гальванометре.

Гальванометр — это высокочувствительный прибор для измерения силы токов малой величины.

Таким образом было изображено влияние магнитного поля, образовавшегося в результате протекания тока в первом проводе, на состояние второго проводника. Это воздействие передавалось от первого ко второму через сердечник – металлический тор. В результате исследований было обнаружено и влияние постоянного магнита, который двигается в катушке, на её обмотку.

Тогда Фарадей объяснял явление электромагнитной индукции с точки зрения силовых линий. Еще одной была установка для генерирования постоянного тока: медный диск вращался вблизи магнита, а скользящий по нему провод был токосъёмником. Это изобретение так и называется — диск Фарадея.

Ученные того периода не признали идеи Фарадея, но Максвелл взял исследования для основы своей магнитной теории. В 1836 г. Майкл Фарадей установил соотношения для электрохимических процессов, которые назвали Законами электролиза Фарадея. Первый описывает соотношения выделенной на электроде массы вещества и протекающего тока, а второй соотношения массы вещества в растворе и выделенного на электроде, для определенного количества электричества.

Электродинамика

Первые работы применяются в физике, конкретно в описании работы электрических машин и аппаратов (трансформаторов, двигателей и пр.). Закон Фарадея гласит:

Для контура индуцированная ЭДС прямо пропорциональна величине скорости магнитного потока, который перемещается через этот контур со знаком минус.

Это можно сказать простыми словами: чем быстрее магнитный поток движется через контур, тем больше на его выводах генерируется ЭДС.

Формула выглядит следующим образом:

Здесь dФ – магнитный поток, а dt – единица времени. Известно, что первая производная по времени – это скорость. Т.е скорость перемещения магнитного потока в данном конкретном случае. Кстати перемещаться может, как и источник магнитного поля (катушка с током – электромагнит, или постоянный магнит), так и контур.

Здесь же поток можно выразить по такой формуле:

B – магнитное поле, а dS – площадь поверхности.

Если рассматривать катушку с плотнонамотанными витками, при этом в количестве витков N, то закон Фарадея выглядит следующим образом:

Магнитный поток в формуле на один виток, измеряется в Веберах. Ток, протекающий в контуре, называется индукционным.

Электромагнитная индукция – явление протекания тока в замкнутом контуре под воздействием внешнего магнитного поля.

В формулах выше вы могли заметить знаки модуля, без них она имеет слегка иной вид, такой как было сказано в первой формулировке, со знаком минус.

Знак минус объясняет правило Ленца. Ток, возникающий в контуре, создает магнитное поле, оно направлено противоположно. Это является следствием закона сохранения энергии.

Направление индукционного тока можно определить по правилу правой руки или , мы его рассматривали на нашем сайте подробно.

Как уже было сказано, благодаря явлению электромагнитной индукции работают электрические машины трансформаторы, генераторы и двигатели. На иллюстрации показано протекание тока в обмотке якоря под воздействием магнитного поля статора. В случае с генератором, при вращении его ротора внешними силами в обмотках ротора возникает ЭДС, ток порождает магнитное поле направленное противоположно (тот самый знак минус в формуле). Чем больше ток, потребляемый нагрузкой генератора, тем больше это магнитное поле, и тем больше затрудняется его вращение.

И наоборот — при протекании тока в роторе возникает поле, которое взаимодействует с полем статора и ротор начинает вращаться. При нагрузке на вал ток в статоре и в роторе повышается, при этом нужно обеспечить переключение обмоток, но это уже другая тема, связанная с устройством электрических машин.

В основе работы трансформатора источником движущегося магнитного потока является переменное магнитное поле, возникающее в следствие протекания в первичной обмотке переменного тока.

Если вы желаете более подробно изучить вопрос, рекомендуем просмотреть видео, на котором легко и доступно рассказывается Закон Фарадея для электромагнитной индукции:

Электролиз

Кроме исследований ЭДС и электромагнитной индукции ученный сделал большие открытия и в других дисциплинах, в том числе химии.

При протекании тока через электролит ионы (положительные и отрицательные) начинают устремляться к электродам. Отрицательные движутся к аноду, положительные к катоду. При этом на одном из электродов выделяется определенная масса вещества, которое содержится в электролите.

Фарадей проводил эксперименты, пропуская разный ток через электролит и измеряя массу вещества отложившегося на электродах, вывел закономерности.

m – масса вещества, q – заряд, а k – зависит от состава электролита.

А заряд можно выразить через ток за промежуток времени:

I=q/t , тогда q = i*t

Теперь можно определить массу вещества, которое выделится, зная ток и время, которое он протекал. Это называется Первый закон электролиза Фарадея.

Второй закон:

Масса химического элемента, который осядет на электроде, прямо пропорциональна эквивалентной массе элемента (молярной массе разделенной на число, которое зависит от химической реакции, в которой участвует вещество).

С учетом вышесказанного эти законы объединяются в формулу:

m – масса вещества, которое выделилось в граммах, n – количество переносимых электронов в электродном процессе, F=986485 Кл/моль – число Фарадея, t – время в секундах, M молярная масса вещества г/моль.

В реальности же из-за разных причин, масса выделяемого вещества меньше чем расчетная (при расчетах с учетом протекающего тока). Отношение теоретической и реальной масс называют выходом по току:

B т = 100% * m расч /m теор

Законы Фарадея внесли существенный вклад в развитие современной науки, благодаря его работам мы имеем электродвигатели и генераторы электроэнергии (а также работам его последователей). Работа ЭДС и явления электромагнитной индукции подарили нам большую часть современного электрооборудования, в том числе и громкоговорители и микрофоны, без которых невозможно прослушивание записей и голосовая связь. Процессы электролиза применяются в гальваническом методе покрытия материалов, что несет как декоративную ценность, так и практическую.

Похожие материалы:

Нравится(0 ) Не нравится(0 )

В 1836 году Майкл Фарадей опубликовал выведенные математически количественные характеристики электролиза. Обнаруженные взаимосвязи между количеством прошедшего через электролит электричества и количеством выделившегося при этом вещества впоследствии были названы законами Фарадея для электролиза.

Первый закон

Если пропускать через раствор медного купороса электрический ток в течение определённого количества времени, то на катоде выделяется небольшое количество меди. Однако если пустить ток большей силы, за такое же количество времени на катоде образуется большее количество меди. При увеличении времени и одинаковой силе тока также увеличивается количество меди.

Фарадей установил взаимосвязь массы вещества, силы тока и времени. Математически эта взаимосвязь выражается следующим образом:

  • m - масса вещества;
  • k - электрохимический эквивалент;
  • I - сила тока;
  • t - время.

Электрохимический эквивалент - это масса вещества, образованная при прохождении через электролит тока в 1 А за одну секунду. Выражается как соотношение массы вещества к количеству электричества или г/Кл.

Произведение силы тока и времени выражает количество электричества: q = It. Это электрический заряд, измеряемый в кулонах (один ампер к одной секунде). Электрический заряд отражает способность тела быть источником электромагнитного поля и принимать участие в электромагнитном взаимодействии.

Соответственно, уравнение Фарадея приобретает вид:

Рис. 2. Первый закон Фарадея.

Первый закон электролиза Фарадея: масса вещества, выделившегося при электролизе, прямо пропорциональна количеству электрического тока, пропущенного через электролит.

Второй закон

Фарадей, пропуская электрический ток одинаковой силы через различные электролиты, заметил, что массы веществ на электродах неодинаковы. Взвесив выделившиеся вещества, Фарадей сделал вывод, что вес зависит от химической природы вещества. Например, на каждый грамм выделенного водорода приходилось 107,9 г серебра, 31,8 г меди, 29,35 г никеля.

На основе полученных данных Фарадей вывел второй закон электролиза: для определённого количества электричества масса химического элемента, образовавшегося на электроде, прямо пропорциональна эквивалентной массе элемента. Она равна массе одного эквивалента - количеству вещества, реагирующему или замещающему 1 моль атомов водорода в химических реакциях:

  • μ - молярная масса вещества;
  • z - число электронов на один ион (валентное число ионов).

Для выделения одного моля эквивалента затрачивается одинаковое количество электричества - 96485 Кл/моль. Это число называется числом Фарадея и обозначается буквой F.

Согласно второму закону, электрохимический эквивалент прямо пропорционален эквивалентной массе вещества:

k = (1/F) μ eq или k = (1/zF)μ.

Рис. 3. Второй закон Фарадея.

Два закона Фарадея можно привести к общей формуле: m = (q / F) ∙ (μ/z).

Что мы узнали?

Фарадей, проводя реакцию электролиза разных веществ, вывел два закона. Согласно первому закону, масса вещества, осевшего на электрод, прямо пропорциональная количеству электричества, пропущенного через электролит: m = kq. Второй закон отражает взаимосвязь электрохимического эквивалента и эквивалентной массы вещества: k = (1/F) μ eq . Электрохимический эквивалент - количество выделившегося вещества при прохождении единицы электричества. Эквивалентная масса - количество вещества, реагирующее с 1 молем водорода.

Как уже известно, при электролизе на электродах происходит выделение вещества. Попробуем выяснить, от чего будет зависеть масса это вещества. Масса выделившегося вещества m будет равна произведению массы одного иона m0i на число ионов Ni, которые достигли электрода за промежуток времени равный ∆t: m = m0i*Ni. Масса иона m0i будет вычисляться по следующей формуле:

  • m0i = M/Na,

где М - молярная масса вещества, а Na - постоянная Авогадро.

Число ионов, которые достигнут электрода, вычисляется по следующей формуле:

  • Ni = ∆q/q0i,

где ∆q = I*∆t - заряд, прошедший через электролит за время, равное ∆t, q0i - заряд иона.

Для того, чтобы определить заряд иона, используется следующая формула:

  • q0i = n*e,

где n - валентность, e - элементарный заряд.

Собирая воедино все представленные формулы, получаем формулу для вычисления массы выделившегося на электроде вещества:

  • m = (M*I*∆t)/(n*e*Na).

Теперь обозначим через k коэффициент пропорциональности между массой вещества и зарядом ∆q.

  • k = M/(e*n*Na).

Этот коэффициент k будет зависеть от природы вещества. Тогда формулу массы вещества можно переписать в следующем виде:

  • m = k*I*∆t.

Второй закон Фарадея

Масса вещества, выделившегося на электроде за время, равное ∆t, при прохождении электрического тока пропорциональна силе тока и времени. Коэффициент k называют электрохимическим эквивалентом данного вещества. Единицей измерения служит кг/Кл. Разберемся с физическим смыслом электрохимического эквивалента. Так как:

  • M/Na = m0i,
  • e*n = qi,

то формулу электрохимического эквивалента можно переписать в следующем виде:

  • k = m0i/q0i.

Таким образом, k - отношение массы иона к заряду этого иона.

Для того, чтобы удостовериться в справедливости закона Фарадея, можно провести опыт. Лабораторная установка, необходимая для него, показана на следующем рисунке.

Все три емкости заполнены одинаковым электролитическим раствором. Через них будут протекать различные электрические токи, причем I1 = I2+I3. После включения установки в цепь подождем некоторое время. Потом отключим её и измерим массы веществ, выделившихся на электродах в каждом из сосудов m1, m2, m3. Можно будет убедиться, что массы веществ будут пропорциональны силам тока, которые проходили через соответствующий сосуд.

Из формулы

  • m = (M*I*∆t)/(n*e*Na)

можно выразить значение заряда электрона

  • e = (M*I*∆t)/(n*m*Na).

Электролиз - это физико-химический процесс, осуществляемый в растворах различных веществ при помощи электродов (катода и анода). Существует множество веществ, которые химически разлагаются на составляющие при прохождении через их раствор или расплав электрического тока. Они называются электролитами. К ним относятся многие кислоты, соли и основания. Различают сильные и слабые электролиты, но это деление условно. В некоторых случаях слабые электролиты проявляют свойства сильных и наоборот.

При пропускании тока через раствор или расплав электролита на электродах оседают различные металлы (в случае кислот просто выделяется водород). Используя это свойство, можно подсчитать массу выделившегося вещества. Для подобных экспериментов используют раствор медного купороса. На угольном катоде при пропускании тока можно легко увидеть красный медный осадок. Разница между значениями его масс до и после эксперимента и будет массой осевшей меди. Она зависит от количества электричества, прошедшего через раствор.

Первый закон Фарадея можно сформулировать так: масса вещества m, выделившегося на катоде прямо пропорциональна количеству электричества (электрическому заряду q), прошедшему через раствор или расплав электролита. Этот закон выражается формулой: m=KI=Kqt, где K - коэффициент пропорциональности. Его называют электрохимическим эквивалентом вещества. Для каждого вещества он принимает различные значения. Он численно равен массе вещества, выделившегося на электроде за 1 секунду при силе тока 1 ампер.

Второй закон Фарадея

В специальных таблицах можно посмотреть значения электрохимического для различных веществ. Вы заметите, что эти значения существенно отличаются. Объяснение такому различию дал Фарадей. Оказалось, что электрохимический эквивалент вещества прямо пропорционален его химическому эквиваленту. Это утверждение носит название второго закона Фарадея. Его истинность была подтверждена экспериментально.

Формула, выражающая второй закон Фарадея, выглядит так: K=M/F*n, где M - молярная масса, n - валентность. Отношение молярной массы к валентности называется химическим эквивалентом.

Величина 1/F имеет одно и то же значение для всех веществ. F называется постоянной Фарадея. Она равна 96,484 Кл/моль. Эта величина показывает количество электричества, которое нужно пропустить через раствор или расплав электролита, чтобы на катоде осел один моль вещества. 1/F показывает сколько моль вещества осядет на катоде при прохождении заряда в 1 Кл.

Между массой превращенного при электролизе ве­щества и количеством прошедшего через электролит элек­тричества существует связь, которая находит отражение в двух законах Фарадея.

I закон Фарадея . Для любого данного электрод­ного процесса масса превращенного вещества прямо про­порциональна количеству электричества, прошедшего че­рез электролит:

m = kQ, (2.10)

где m - масса превращенного вещества, г; Q - количест­во электричества (Кл), равное произведению силы тока (I , А) на время (t , с); k - электрохимический эквивалент ве­щества, выражающий число граммов его, превращенное одним кулоном электричества.

II закон Фарадея . При пропускании равного количества электричества через растворы разных элек­тролитов масса каждого из веществ, претерпеваю­щих превращение, пропорциональна его химическому эквиваленту т 1: т 2: m 3 ... = m э1: m э2: m э3 …(где m э -эквивалентная масса вещества). Если масса одного из пре­вращенных веществ при прохождении определенного количества электричества оказалась равной его эквивалентной массе (т 1 =m э1), то и для других веществ окажутся справедливыми равенства m 2 = m э2 , m 3 = m э3 и т. д.

Таким образом, для превращения одной экви­валентной массы любого вещества требуется одно и то же коли­чество электричества, называемое постоянной Фарадея F (96494 Кл/моль). Постоянная Фарадея – это заряд, который несет на себе один моль электронов или один моль однозарядных ионов (т.е. 6,02·1023 электронов или однозарядных ионов).

Второй закон Фарадея можно также записать в следующей редакции: для разряда одного моль ионов на электроде через раствор необходимо пропустить столько фарадеев электричества, сколько элементарных зарядов имеет данный ион.

На основании II закона Фарадея мож­но написать

k = m э /F. (2.11)

Из соотношений (2.10) и (2.11) вытекает объе­диненное уравнение законов Фарадея:

m = (m э /F )Q = ( m э /F )It. (2.12)

Им широко пользуются для различных расчетов в электрохимии. В частности, на законах Фарадея осно­ван самый точный способ измерения количества электри­чества, прошедшего через цепь. Он заключается в опре­делении массы вещества, выделившегося при электролизе на электроде. Для этого служат приборы, называемые кулонометрами. В лабораторной практике используется медный кулонометр, в котором электролизу подвергается подкисленный раствор CuSO 4 с медными электродами. Важно, чтобы в кулонометре на электроде происходила только одна электрохимическая реакция, и полученный продукт был доступен точному количественному опреде­лению. Например, все количество электричества, прохо­дящее через медный кулонометр, расходуется на пере­нос меди с анода на катод, где масса ее определяется гравиметрическим методом.

В исследовательских целях пользуются серебряным кулонометром или газовым, в котором измеряют объем смеси (2Н 2 + О 2), полученной электролизом водного рас­твора КОН.

Использование кулонометров дает возможность определить долю полезно затраченного тока (т.е. тока, израсходованного на получение полезного продукта), которая характеризуется выходом по току. Выход по току - это отношение фактически полученного при электролизе вещества к теоретически рассчитанному. Обычно выход по току ηвыражается в процентах. Тогда:

η = (m практ /m теорет)100%. (2.13)

Можно иначе подойти к расчету η. Если по фактиче­ски выделенной массе вещества определить на основе (2.12) количество полезно затраченного электричест­ва Q ’ то η выразится как отношение полезного электри­чества к его общему количеству, прошедшему через цепь:

η = (Q ’/Q )100%. (2.14)

Законы Фарадея утвердили представление об атоми­стической природе электричества. Эти представления легли в основу расчета важнейшей константы - постоян­ной Авогадро. Связь между постоянной Фарадея F, Аво-гадро N а и зарядом электрона е следует из соотношения:

F/e = N A (2.15)

Применение электролиза. Электролиз с растворимым анодом применяется для очистки металлов (электрорафинирование ). При электрорафинировании меди в электролизер помещают в качестве анода пластины из очищаемой меди (катод - пластины из электролитически ранее очищенной меди). На аноде и катоде проходят процессы соот­ветственно:

Сu (загрязненная) – 2ē = Сu 2+ ,

Сu 2+ + 2ē = Сu (чистая).

При электрорафинировании меди загрязнения из более благо­родных металлов типа Ag или Аu в раствор не переходят и соби­раются на дне электролизера. Загрязнения из менее благородных металлов типа Pb, Fe, Zn, как и сама медь, переходят в раствор, но на катоде не осаждаются и поэтому не загрязняют осажда­ющуюся на нем медь. В качестве растворимых анодов могут быть кроме меди никель, кадмий, алюминий и другие металлы.

Электролиз с растворимым анодом используется в гальвано­технике для покрытий одних металлов тонкими слоями других (гальваностегия ). При этом покрываемые металлом изделия являются при элек­тролизе катодом, а в качестве анода используется металл покры­тия. Технологически это очень удобно, так как концентрации ионов (солей) в электролизном растворе не изменяются. Электрохимически наносят покрытия декоративные, коррозионностойкие, упрочняющие поверхность (хромирование). При помощи покрытий восстанавливают размеры деталей (ремонт). Чтобы покрытие прочно удерживалось, поверхность металла перед нанесением покрытия тщательно очищают (шлифуют, полируют) и обезжиривают (обрабатывают горячим раствором соды, протирают мелом в смеси со щелочью и т.д.). Для удаления оксидов поверхность металла протравливают 15…20% раствором серной кислоты 10…15 мин. Для окончательного удаления пленки оксида деталь очищают декапированием , подключая перед гальванизацией на короткое время к аноду. Наилучшее сцепление покрытия с поверхностью металла наблюдается для мелкокристаллических покрытий. Нужной структуры покрытия добиваются, изменяя состав электролита и режим электролиза:---------