Схема солнечной радиации. Воздействие солнечной радиации на человека

Важнейшим источником, от которого поверхность Земли и атмосфера получают тепловую энергию, является Солнце. Оно посылает в мировое пространство колоссальное количество лучистой энергии: тепловой, световой, ультрафиолетовой. Излучаемые Солнцем электромагнитные волны распространяются со скоростью 300 000 км/с.

От величины угла падения солнечных лучей зависит нагревание земной поверхности. Все солнечные лучи приходят на поверхность Земли параллельно друг другу, но так как Земля имеет шарообразную форму, солнечные лучи падают на разные участки ее поверхности под разными углами. Когда Солнце в зените, его лучи падают отвесно и Земля нагревается сильнее.

Вся совокупность лучистой энергии, посылаемой Солнцем, называется солнечной радиацией, обычно она выражается в калориях на единицу поверхности в год.

Солнечная радиация определяет температурный режим воздушной тропосферы Земли.

Необходимо заметить, что общее количество солнечного излучения более чем в два миллиарда раз превышает количество энергии, получаемое Землей.

Радиация, достигающая земной поверхности, состоит из прямой и рассеянной.

Радиация, приходящая на Землю непосредственно от Солнца в виде прямых солнечных лучей при безоблачном небе, называется прямой. Она несет наибольшее количество тепла и света. Если бы у нашей планеты не было атмосферы, земная поверхность получала только прямую радиацию.

Однако, проходя через атмосферу, примерно четвертая часть солнечной радиации рассеивается молекулами газов и примесями, отклоняется от прямого пути. Некоторая их часть достигает поверхности Земли, образуя рассеянную солнечную радиацию. Благодаря рассеянной радиации свет проникает и в те места, куда прямые солнечные лучи (прямая радиация) не проникают. Эта радиация создает дневной свет и придает цвет небу.

Суммарная солнечная радиация

Все солнечные лучи, поступающие на Землю, составляют суммарную солнечную радиацию, т. е. совокупность прямой и рассеянной радиации (рис. 1).

Рис. 1. Суммарная солнечная радиация за год

Распределение солнечной радиации по земной поверхности

Солнечная радиация распределяется по земле неравномерно. Это зависит:

1. от плотности и влажности воздуха — чем они выше, тем меньше радиации получает земная поверхность;

2. от географической широты местности — количество радиации увеличивается от полюсов к экватору. Количество прямой солнечной радиации зависит от длины пути, который проходят солнечные лучи в атмосфере. Когда Солнце находится в зените (угол падения лучей 90°), его лучи попадают на Землю кратчайшим путем и интенсивно отдают свою энергию малой площади. На Земле это происходит в полосе между от 23° с. ш. и 23° ю. ш., т. е. между тропиками. По мере удаления от этой зоны на юг или на север длина пути солнечных лучей увеличивается, т. е. уменьшается угол их падения на земную поверхность. Лучи начинают падать на Землю под меньшим углом, как бы скользя, приближаясь в районе полюсов к касательной линии. В результате тот же поток энергии распределяется на большую площадь, поэтому увеличивается количество отраженной энергии. Таким образом, в районе экватора, где солнечные лучи падают на земную поверхность под углом 90°, количество получаемой земной поверхностью прямой солнечной радиации выше, а по мере передвижения к полюсам это количество резко сокращается. Кроме того, от широты местности зависит и продолжительность дня в разные времена года, что также определяет величину солнечной радиации, поступающей на земную поверхность;

3. от годового и суточного движения Земли — в средних и высоких широтах поступление солнечной радиации сильно изменяется по временам года, что связано с изменением полуденной высоты Солнца и продолжительности дня;

4. от характера земной поверхности — чем светлее поверхность, тем больше солнечных лучей она отражает. Способность поверхности отражать радиацию называется альбедо (от лат. белизна). Особенно сильно отражает радиацию снег (90 %), слабее песок (35 %), еше слабее чернозем (4 %).

Земная поверхность, поглощая солнечную радиацию (поглощенная радиация), нагревается и сама излучает тепло в атмосферу (отраженная радиация). Нижние слои атмосферы в значительной мерс задерживают земное излучение. Поглощенная земной поверхностью радиация расходуется на нагрев почвы, воздуха, воды.

Та часть суммарной радиации, которая остается после отражения и теплового излучения земной поверхности, называется радиационным балансом. Радиационный баланс земной поверхности меняется в течение суток и по сезонам года, однако в среднем за год имеет положительное значение всюду, за исключением ледяных пустынь Гренландии и Антарктиды. Максимальных значений радиационный баланс достигает в низких широтах (между 20° с. ш. и 20° ю. ш.) — свыше 42*10 2 Дж/м 2 , на широте около 60° обоих полушарий он снижается до 8*10 2 -13*10 2 Дж/м 2 .

Солнечные лучи отдают атмосфере до 20 % своей энергии, которая распределяется по всей толще воздуха, и потому вызываемое ими нагревание воздуха относительно невелико. Солнце нагревает поверхность Земли, которая передает тепло атмосферному воздуху за счет конвекции (от лат.convectio - доставка), т. е. вертикального перемещения нагретого у земной поверхности воздуха, на место которого опускается более холодный воздух. Именно так атмосфера получает большую часть тепла — в среднем в три раза больше, чем непосредственно от Солнца.

Присутствие в углекислого газа и водяного пара не позволяет теплу, отраженному от земной поверхности, беспрепятственно уходить в космическое пространство. Они создают парниковый эффект, благодаря которому перепад температуры на Земле в течение суток не превышает 15 °С. При отсутствии в атмосфере углекислого газа земная поверхность остывала бы за ночь на 40-50 °С.

В результате роста масштабов хозяйственной деятельности человека — сжигания угля и нефти на ТЭС, выбросов промышленными предприятиями, увеличения автомобильных выбросов — содержание углекислого газа в атмосфере повышается, что ведет к усилению парникового эффекта и грозит глобальным изменением климата.

Солнечные лучи, пройдя атмосферу, попадают на поверхность Земли и нагревают ее, а та, в свою очередь, отдает тепло атмосфере. Этим объясняется характерная особенность тропосферы: понижение температуры воздуха с высотой. Но бывают случаи, когда высшие слои атмосферы оказываются более теплыми, чем низшие. Такое явление носит название температурной инверсии (от лат. inversio — переворачивание).

Солнечная радиация (солнечное излучение) – это вся совокупность солнечной материи и энергии, поступающей на Землю. Солнечная радиация состоит из следующих двух основных частей: во-первых, тепловой и световой радиации, представляющей собой совокупность электромагнитных волн; во-вторых, корпускулярной радиации.

На Солнце тепловая энергия ядерных реакций переходит в лучистую энергию. При падении солнечных лучей на земную поверхность лучистая энергия снова превращается в тепловую энергию. Солнечная радиация, таким образом, несет свет и тепло.

Интенсивность солнечной радиации. Солнечная постоянная. Солнечная радиация – это важнейший источник тепла для географической оболочки. Вторым источником тепла для географической оболочки является тепло, идущее от внутренних сфер и слоев нашей планеты.

В связи с тем, что в географической оболочке один вид энергии (лучистая энергия ) эквивалентно переходит в другой вид (тепловая энергия ), то лучистую энергию солнечной радиации можно выражать в единицах тепловой энергии – джоулях (Дж).

Интенсивность солнечной радиации необходимо измерять в первую очередь за пределами атмосферы, т. к. при прохождении через воздушную сферу она преобразуется и ослабевает. Интенсивность солнечной радиации выражается солнечной постоянной.

Солнечная постоянная – это поток солнечной энергии за 1 минуту на площадь сечением в 1 см 2 , перпендикулярную солнечным лучам и расположенную вне атмосферы. Солнечная постоянная может быть также определена как количество тепла, которое получает в 1 минуту на верхней границе атмосферы 1 см 2 черной поверхности, перпендикулярной солнечным лучам.

Солнечная постоянная равна 1, 98 кал / (см 2 х мин), или 1, 352 кВт/ м 2 х мин .

Поскольку верхняя атмосфера поглощает значительную часть радиации, то важно знать величину ее на верхней границе географической оболочки, т. е. в нижней стратосфере. Солнечная радиация на верхней границе географической оболочки выражается условной солнечной постоянной . Величина условной солнечной постоянной равна 1, 90 – 1, 92 кал / (см 2 х мин), или 1,32 – 1, 34 кВт / (м 2 х мин).

Солнечная постоянная, вопреки своему названию, не остается постоянной. Она изменяется в связи с изменением расстояния от Солнца до Земли в процессе движения Земли по орбите. Как бы ни были малы эти колебания, они всегда сказываются на погоде и климате.

В среднем каждый квадратный километр тропосферы получает в год 10,8 х 10 15 Дж. (2,6 х 10 15 кал). Такое количество тепла может быть получено при сжигании 400 000 т каменного угля. Вся Земля за год получает такое количество тепла, которое определяется величиной 5, 74 х 10 24 Дж. (1, 37 х 10 24 кал).



Распределение солнечной радиации «на верхней границе атмосферы» или при абсолютно прозрачной атмосфере. Знание распределения солнечной радиации до ее вступления в атмосферу, или так называемого солярного (солнечного) климата , важно для определения роли и доли участия самой воздушной оболочки Земли (атмосферы) в распределении тепла по земной поверхности и в формировании ее теплового режима.

Количество солнечного тепла и света, поступающее на единицу площади, определяется, во-первых, углом падения лучей, зависящим от высоты Солнца над горизонтом, во-вторых, продолжительностью дня.

Распределение радиации у верхней границы географической оболочки, обусловленное только астрономическими факторами, более равномерно, чем ее реальное распределение у земной поверхности.

При условии отсутствия атмосферы годовая сумма радиации в экваториальных широтах составляла бы 13 480 МДж/см 2 (322 ккал/см 2), а на полюсах 5 560 МДж/м 2 (133 ккал/см 2). В полярные широты Солнце посылает тепла немного меньше половины (около 42 %) того количества, которое поступает на экватор.

Казалось бы, солнечное облучение Земли симметрично относительно плоскости экватора. Но это происходит только два раза в год, в дни весеннего и осеннего равноденствия. Наклон оси вращения и годовое движение Земли обусловливают ассиметричное ее облучение Солнцем. В январскую часть года больше тепла получает южное полушарие, в июльскую – северное. Именно в этом заключается главная причина сезонной ритмики в географической оболочке.

Разница между экватором и полюсом летнего полушария невелика: на экватор поступает 6 740 МДж/м 2 (161 ккал/см 2), а на полюс около 5 560 МДж/м 2 (133 ккал/см 2 в полугодие). Зато полярные страны зимнего полушария в это же время вовсе лишены солнечного тепла и света.

В день солнцестояния полюс получает тепла даже больше, чем экватор - 46,0 МДж/м 2 (1,1 ккал/см 2) и 33.9 МДж/м 2 (0,81 ккал/см 2).

В целом солярный климат на полюсах в годовом выводе в 2,4 раза холоднее, чем на экваторе. Однако надо иметь в виду, что зимой полюсы вообще не нагреваются Солнцем.

Реальный климат всех широт во многом обязан земным факторам. Важнейшими из этих факторов являются: во-первых, ослабление радиации в атмосфере, во-вторых, разная интенсивность усвоения солнечной радиации земной поверхностью в различных географических условиях.

Изменение солнечной радиации при прохождении через атмосферу. Прямые солнечные лучи, пронизывающие атмосферу при безоблачном небе, называются прямой солнечной радиацией . Максимальная ее величина при высокой прозрачности атмосферы на перпендикулярной лучам поверхности в тропическом поясе равна около 1,05 – 1, 19 кВт/м 2 (1,5 – 1,7 кал/см 2 х мин. В средних широтах напряжение полуденной радиации обычно составляет около 0,70 – 0,98 кВт /м 2 х мин (1,0 – 1,4 кал/см 2 х мин). В горах эта величина существенно увеличивается.

Часть солнечных лучей от соприкосновения с молекулами газов и аэрозолями рассеивается и переходит в рассеянную радиацию . На земную поверхность рассеянная радиация поступает уже не от солнечного диска, а от всего небосвода и создает повсеместную дневную освещенность. От нее в солнечные дни светло и там, куда не проникают прямые лучи, например под пологом леса. Наряду с прямой радиацией рассеянная радиация также служит источником тепла и света.

Абсолютная величина рассеянной радиации тем больше, чем интенсивнее прямая. Относительное значение рассеянной радиации возрастает с уменьшением роли прямой: в средних широтах летом она составляет 41%, а зимой 73% общего прихода радиации. Удельный вес рассеянной радиации в общей величине суммарной радиации зависит и от высоты Солнца. В высоких широтах на рассеянную радиацию приходится около 30%, а в полярных - примерно 70% от всей радиации.

В целом же на рассеянную радиацию приходится около 25 % всего потока солнечных лучей, приходящих на нашу планету.

На земную поверхность, таким образом, поступает прямая и рассеянная радиация. В совокупности прямая и рассеянная радиация образуют суммарную радиацию , которая определяет тепловой режим тропосферы .

Поглощая и рассеивая радиацию, атмосфера значительно ее ослабляет. Величина ослабления зависит от коэффициента прозрачности, показывающего, какая доля радиации доходит до земной поверхности. Если бы тропосфера состояла только из газов, то коэффициент прозрачности был бы равен 0,9, т. е. она пропускала бы около 90% идущей к Земле радиации. Однако в воздухе всегда присутствуют аэрозоли, снижающие коэффициент прозрачности до 0,7 – 0,8. Прозрачность атмосферы изменяется вместе с изменением погоды.

Так как плотность воздуха падает с высотой, то слой газа, пронизываемого лучами, не следует выражать в км толщины атмосферы. В качестве единицы измерения принята оптическая масса, равная мощности слоя воздуха при вертикальном падении лучей.

Ослабление радиации в тропосфере легко наблюдать в течение суток. Когда Солнце находится около горизонта, то его лучи пронизывают несколько оптических масс. Их интенсивность при этом так ослабевает, что на Солнце можно смотреть незащищенным глазом. С поднятием Солнца уменьшается число оптических масс, которые проходят его лучи, что приводит к увеличению радиации.

Степень ослабления солнечной радиации в атмосфере выражается формулой Ламберта :

I i = I 0 p m , где

I i – радиация, достигшая земной поверхности,

I 0 – солнечная постоянная,

p – коэффициент прозрачности,

m – число оптических масс.

Солнечная радиация у земной поверхности. Количество лучистой энергии, приходящее на единицу земной поверхности, зависит, прежде всего, от угла падения солнечных лучей. На одинаковые площади на экваторе, в средних и высоких широтах приходится различное количество радиации.

Солнечная инсоляция (освещение) сильно ослабляется облачностью. Большая облачность экваториальных и умеренных широт и малая облачность тропических широт вносят значительные коррективы в зональное распределение лучистой энергии Солнца.

Распределение солнечного тепла по земной поверхности изображается на картах суммарной солнечной радиации. Как показывают эти карты, наибольшее количество солнечного тепла – от 7 530 до 9 200 МДж/м 2 (180-220 ккал/см 2) получают тропические широты. Экваториальные широты из-за большой облачности получают тепла несколько меньше: 4 185 – 5 860 МДж/м 2 (100-140 ккал/см 2).

От тропических широт к умеренным радиация уменьшается. На островах Арктики она составляет не более 2 510 МДж/м 2 (60 ккал/см 2) в год. Распределение радиации по земной поверхности имеет зонально-региональный характер. Каждая зона распадается на отдельные районы (регионы), несколько отличающиеся друг от друга.

Сезонные колебания суммарной радиации.

В экваториальных и тропических широтах высота Солнца и угол падения солнечных лучей по месяцам изменяются незначительно. Суммарная радиация во все месяцы характеризуется большими величинами, сезонная смена тепловых условий или отсутствует, или весьма незначительна. В экваториальном поясе слабо намечаются два максимума, соответствующие зенитальному положению Солнца.

В умеренном поясе в годовом ходе радиации резко выражен летний максимум, в котором месячная величина суммарной радиации не меньше тропической. Число теплых месяцев уменьшается с широтой.

В полярных поясах радиационный режим резко изменяется. Здесь в зависимости от широты от нескольких суток до нескольких месяцев прекращается не только нагревание, но и освещение. Летом же освещение здесь непрерывно, что существенно повышает сумму месячной радиации.

Усвоение радиации земной поверхностью. Альбедо . Суммарная радиация, достигшая земной поверхности, частично поглощается почвой и водоемами и переходит в тепло. На океанах и морях суммарная радиация расходуется на испарение. Часть суммарной радиации отражается в атмосферу (отраженная радиация).

Энергетическая освещенность, создаваемая излучением, поступающим на Землю непосредственно от солнечного диска в виде пучка параллельных солнечных лучей, называется прямой солнечной радиацией .
Прямая солнечная радиация, поступающая на верхнюю границу атмосферы, изменяется во времени в небольших пределах, поэтому ее называют солнечной постоянной (S0). При среднем расстоянии от Земли до Солнца 149,5·106 км составляет около 1400 Вт/м кв.
При прохождении потока прямой солнечной радиации через атмосферу происходит его ослабление, вызванное поглощением (около 15%) и рассеянием (около 25%) энергии газами, аэрозолями, облаками.

Согласно закону ослабления Буге прямая солнечная радиация, поступающая на поверхность Земли при отвесном (перпендикулярном) падении лучей,

Формула

где? – коэффициент прозрачности атмосферы; m – число оптических масс атмосферы.

Ослабление солнечного потока в атмосфере зависит от высоты Солнца над горизонтом Земли и прозрачности атмосферы. Чем меньше высота его над горизонтом, тем большее число оптических масс атмосферы проходит солнечный луч. За одну оптическую массу атмосферы принимают массу, которую проходят лучи при положении Солнца в зените (рис. 3.1).

Рисунок 3.1 . Схема пути солнечного луча в атмосфере при разной высоте Солнца (доступно при скачивании полной версии учебника)

Таблица (доступно при скачивании полной версии учебника)

Чем больший путь в атмосфере проходят солнечные лучи, тем сильнее их поглощение и рассеяние и тем больше изменяется их интенсивность.
Коэффициент прозрачности зависит от содержания в атмосфере водяного пара и аэрозолей: чем их больше, тем меньше коэффициент прозрачности при одинаковом числе проходимых оптических масс. В среднем для всего потока радиации в идеально чистой атмосфере? на уровне моря составляет около 0,9, в действительных атмосферных условиях – 0,70-0,85, зимой он несколько больше, чем летом.

Приход прямой радиации на земную поверхность зависит от угла падения солнечных лучей . Поток прямой солнечной радиации, падающей на горизонтальную поверхность, называют инсоляцией :

Формула (доступно при скачивании полной версии учебника)

где h0 – высота солнца

Энергетическая освещенность прямой радиации зависит от высоты Солнца и прозрачности атмосферы и возрастает с увеличением высоты места над уровнем моря. В основных земледельческих районах России летом полуденные значения энергетической освещенности прямой радиации находятся в пределах 700-900 Вт/м кв. На высоте 1 км увеличение составляет 70-140 Вт/м кв. На высоте 4-5 км освещенность прямой радиации превышает 1180 Вт/м кв. Облака нижнего яруса обычно почти полностью не пропускают прямую радиацию.
Приход прямой солнечной радиации зависит от высоты солнца над горизонтом, которая меняется как в течение суток, так и в течение года. Это обуславливает суточный и годовой ход прямой радиации.
Изменение прямой радиации в течение безоблачного дня (суточный ход) выражается одновершинной кривой с максимумом в истинный солнечный полдень. Летом над сушей максимум может наступить до полудня, так как к полудню увеличивается запыленность атмосферы.
Годовой ход прямой радиации наиболее резко выражен на полюсах, так как зимой солнечная радиация здесь вообще отсутствует, а летом ее приход достигает 900 Вт/м кв. В средних широтах максимум прямой радиации иногда наблюдается не летом, а весной, так как в летние месяцы, вследствие увеличения содержания водяного пара и пыли, уменьшается прозрачность атмосферы. Минимум приходится на период, близкий к дню зимнего солнцестояния (декабрь). На экваторе наблюдаются два максимума равные примерно 920 Вт/м кв. в дни весеннего и осеннего равноденствия, и два минимума (около 55- Вт/м кв.) в дни летнего и зимнего солнцестояния.

Скачать полную версию учебника (с рисунками, формулами, картами, схемами и таблицами) одним файлом в формате MS Office Word

  1. Общая характеристика солнечной радиации
  2. Прямая солнечная радиация
  3. Суммарная солнечная радиация
  4. Поглощение солнечной радиации в атмосфере

Лучистая энергия Солнца, или солнечная радиация, является основным источником тепла для поверхности Земли и для ее атмосферы. Радиация, поступающая от звезд и Луны, ничтожно мала по сравнению с солнечной радиацией и существенного вклада в тепловые процессы на Земле не вносит. Так же ничтожно мал поток тепла, направленный к поверхности из глубин планеты. Солнечная радиация распространяется по всем направлениям от источника (Солнца) в виде электромагнитных волн со скоростью, близкой к 300 000 км/сек. В метеорологии рассматривают преимущественно тепловую радиацию, определяемую температурой тела и его излучательной способностью. Тепловая радиация имеет длины волн от сотен микрометров до тысячных долей микрометра. Рентгеновское излучение и гамма-излучение в метеорологии не рассматриваются, так как в нижние слои атмосферы они практически не поступают. Тепловую радиацию принято подразделять на коротковолновую и длинноволновую. Коротковолновой радиацией называют радиацию в диапазоне длин волн от 0,1до 4 мкм, длинноволновой - от 4 до 100 мкм. Солнечная радиация, поступающая к поверхности Земли, на 99% является коротковолновой. Коротковолновую радиацию подразделяют на ультрафиолетовую (УФ), с длинами волн от 0,1 до 0,39 мкм; видимый свет (ВС) - 0,4 - 0,76 мкм; инфракрасную (ИК) - 0,76 - 4 мкм. ВС и ИК радиация дают наибольшую энергию: на ВС приходится 47% лучистой энергии, на ИК - 44%, а на УФ - только 9% лучистой энергии. Такое распределение тепловой радиации соответствует распределению энергии в спектре абсолютно черного тела с температурой в 6000К. Эту температуру считают условно близкой к фактической температуре на поверхности Солнца (в фотосфере, являющейся источником лучистой энергии Солнца). Максимум лучистой энергии при такой температуре излучателя, согласно закону Вина l= 0,2898/Т (см*град). (1) приходится на сине-голубые лучи с длинами около 0,475 мкм (l.- длина волны, Т - абсолютная температура излучателя). Общее количество излучаемой тепловой энергии пропорционально, согласно закону Стефана-Больцмана, четвертой степени абсолютной температуры излучателя: Е = sТ 4 (2) где s = 5,7*10-8 Вт/м 2 *К 4 (постоянная Стефана-Больцмана). Количественной мерой солнечной радиации, поступающей на поверхность, служит энергетическая освещенность, или плотность потока радиации. Энергетическая освещенность - это количество лучистой энергии, поступающей на единицу площади в единицу времени. Она измеряется в Вт/м 2 (или кВт/м 2). Это означает, что на 1 м 2 в секунду поступает 1 Дж (или 1 кДж) лучистой энергии. Энергетическую освещенность солнечной радиации, падающей на площадку единичной площади, перпендикулярную солнечным лучам в единицу времени на верхней границе атмосферы при среднем расстоянии от Земли до Солнца называют солнечной постоянной Sо. При этом под верхней границей атмосферы понимают условие отсутствия воздействия атмосферы на солнечную радиацию. Поэтому величина солнечной постоянной определяется только излучательной способностью Солнца и расстоянием между Землей и Солнцем. Современными исследованиями с помощью спутников и ракет установлено значение Sо, равное 1367 Вт/м 2 с ошибкой ±0,3%, среднее расстояние между Землей и Солнцем в этом случае определено как 149,6*106 км. Если учитывать изменения солнечной постоянной в связи с изменением расстояния между Землей и Солнцем, то при среднегодовом значении 1,37 кВт/м 2 , в январе она будет равна 1,41 кВт/м 2 , а в июне - 1,34 кВт/м 2 , следовательно, северное полушарие за летний день получает на границе атмосферы несколько меньше радиации, чем Южное полушарие за свой летний день. В связи с постоянным изменением солнечной активности солнечная постоянная, возможно, испытывает колебания из года в год. Но эти колебания, если они и существуют, настолько малы, что лежат в пределах точности измерений современных приборов. Но за время существования Земли солнечная постоянная, вероятнее всего, меняла свое значение. Зная солнечную постоянную, можно рассчитать количество солнечной энергии, поступающей на освещенное полушарие на верхней границе атмосферы. Оно равно произведению солнечной постоянной на площадь большого круга Земли. При среднем радиусе земли, равном 6371 км, площадь большого круга составляет p*(6371)2 = 1,275*1014 м 2 , а приходящая на нее лучистая энергия - 1,743*1017 Вт. За год это составит 5,49*1024 Дж. Приход солнечной радиации на горизонтальную поверхность на верхней границе атмосферы называют солярным климатом. Формирование солярного климата определяется двумя факторами - продолжительностью солнечного сияния и высотой Солнца. Количество радиации, приходящейся на границе атмосферы на единицу площади горизонтальной поверхности пропорционально синусу высоты Солнца, которая меняется не только в течение дня, но и зависит от времени года. Как известно, высота Солнца для дней солнцестояния определяется по формуле 900 - (j±23,50), для дней равноденствия - 900 -j, где j - широта места. Таким образом, высота Солнца на экваторе меняется в течение года от 90° до 66,50° , в тропиках - от 90 до 43° , на полярных кругах - от 47 до 0° и на полюсах - от 23,5° до 0° . В соответствии с таким изменением высоты Солнца зимой в каждом полушарии приток солнечной радиации на горизонтальную площадку быстро убывает от экватора к полюсам. Летом картина более сложная: в середине лета максимальные значения приходятся не на экватор, а на полюса, где продолжительность дня составляет 24 часа. В годовом ходе во внетропической зоне наблюдается один максимум (летнее солнцестояние) и один минимум (зимнее солнцестояние). В тропической зоне приток радиации достигает максимума два раза в год (дни равноденствия). Годовые количества солнечной радиации меняются от 133*102 МДж/м 2 (экватор) до 56*102 МДж/м 2 (полюса). Амплитуда годового хода на экваторе небольшая, во внетропической зоне - значительная.

2 Прямая солнечная радиация Прямой солнечной радиацией называют радиацию, приходящую к земной поверхности непосредственно от солнечного диска. Несмотря на то, что солнечная радиация распространяется от Солнца по всем направлениям, к Земле она приходит в виде пучка параллельных лучей, исходящих как бы из бесконечности. Приток прямой солнечной радиации на земную поверхность или на любой уровень в атмосфере характеризуется энергетической освещенностью - количеством лучистой энергии, поступающей за единицу времени на единицу площади. Максимальный приток прямой солнечной радиации будет поступать на площадку, перпендикулярную солнечным лучам. Во всех остальных случаях энергетическая освещенность будет определяться высотой Солнца, или синусом угла, который образует солнечный луч с поверхностью площадки S’=S sin hc (3) В общем случае S (энергетическая освещенность площадки единичной площади, перпендикулярной солнечным лучам) равно So. Поток прямой солнечной радиации, приходящийся на горизонтальную площадку, называется инсоляцией.

3. Рассеянная солнечная радиация Проходя через атмосферу, прямая солнечная радиация испытывает рассеяние молекулами атмосферных газов и аэрозольных примесей. Прирассеянии частица, находящаяся на пути распространения электромагнитной волны, непрерывно поглощает энергию и переизлучает ее по всем направлениям. В результате поток параллельных солнечных лучей, идущих в определенном направлении, переизлучается по всем направлениям. Рассеяние происходит на всех длинах волн электромагнитного излучения, но его интенсивность определяется соотношением размера рассеивающих частиц и длин волн падающего излучения. В абсолютно чистой атмосфере, где рассеяние производится только молекулами газов, размеры которых меньше длин волн излучения, оно подчиняется закону Рэлея, который гласит, что спектральная плотность энергетической освещенности рассеянной радиации обратно пропорциональна четвертой степени длины волны рассеиваемых лучей Dl=a Sl /l 4 (4) где Sl - спектральная плотность энергетической освещенности прямой радиации с длиной волны l, Dl - спектральная плотность энергетической освещенности рассеянной радиации с той же длиной волны, а - коэффициент пропорциональности. В соответствии с законом Рэлея, в рассеянной радиации преобладают более короткие длины волн, так как красные лучи, будучи в два раза длиннее фиолетовых, рассеиваются в 14 раз меньше. Инфракрасная радиация рассеивается очень незначительно. Считают, что рассеянию подвергается около 26% общего потока солнечной радиации, 2/3 этой радиации приходит к земной поверхности. Так как рассеянная радиация поступает не от солнечного диска, а от всего небосвода, то ее энергетическую освещенность измеряют на горизонтальной поверхности. Единицей измерения энергетической освещенности рассеянной радиации является Вт/м 2 или кВт/м 2 . Если рассеяние происходит на частицах, соизмеримых с длинами волн излучения (аэрозольные примеси, кристаллы льда и капельки воды), то рассеяние не подчиняется закону Рэлея и энергетическая освещенность рассеянной радиации становится обратно пропорциональной не четвертой, аменьшим степеням длин волн - т.е. максимум рассеяния смещается в более длинноволновую часть спектра. При большом содержании в атмосфере крупных частиц рассеяние сменяется диффузным отражением, при котором поток света отражается частицами как зеркалами, без изменения спектрального состава. Поскольку падает белый свет, то и отражается тоже поток белого света. В результате цвет неба становится белесым. С рассеянием связаны два интересных явления - это голубой цвет неба и сумерки. Голубой цвет неба - это цвет самого воздуха, обусловленный рассеянием в нем солнечных лучей. Так как в чистом небе рассеяние подчиняется закону Рэлея, то максимум энергии рассеянной радиации, идущей от небесного свода, приходится на голубой цвет. Голубой цвет воздуха можно видеть, рассматривая отдаленные предметы, которые кажутся окутанными голубоватой дымкой. С высотой, по мере уменьшения плотности воздуха, цвет неба становится темнее и переходит в густо-синий, а в стратосфере - в фиолетовый. Чем больше примесей содержится в атмосфере, тем больше доля длинноволновой радиации в спектре солнечного света, тем белесоватее становится небо. Из-за рассеяния наиболее коротких волн прямая солнечная радиация обедняется волнами этого диапазона, поэтому максимум энергии в прямой радиации смещается в желтую часть и солнечный диск окрашивается в желтый цвет. При низких углах Солнца рассеяние происходит очень интенсивно, смещаясь в длинноволновую часть электромагнитного спектра, особенно при загрязненной атмосфере. Максимум прямой солнечной радиации смещается в красную часть, солнечный диск становится красным, и возникают яркие желто-красные закаты. После захода Солнца темнота наступает не сразу, аналогично утром, на земной поверхности становится светло за некоторое время до появления солнечного диска. Это явление неполной темноты при отсутствии солнечного диска получило название сумерек вечерних и утренних. Причиной этого является освещение Солнцем, находящимся под горизонтом, высоких слоев атмосферы и рассеяние ими солнечного света. Различают астрономические сумерки, которые продолжаются, пока Солнце не опустится ниже горизонта на 180 и при этом станет так темно, что будут различимы самые слабые звезды. Первая часть вечерних астрономических сумерек и последняя часть утренних астрономических сумерек называется гражданскими сумерками, при которых Солнце опускается под горизонт не ниже 80 . Продолжительность астрономических сумерек зависит от широты местности. Над экватором они короткие, до 1 часа, в умеренных широтах составляют 2 часа. В высоких широтах в летний сезон вечерние сумерки сливаются с утренними, образуя белые ночи.

4 Поглощение солнечной радиации в атмосфере. На верхнюю границу атмосферы солнечная радиация приходит в виде прямой радиации. Около 30% этой радиации отражается назад в космическое пространство, 70% - поступает в атмосферу. Проходя через атмосферу, эта радиация испытывает изменения, связанные с ее поглощением и рассеянием. Около 20-23% прямой солнечной радиации поглощается. Поглощение имеет избирательный характер и зависит от длин волн и вещественного состава атмосферы. Азот, основной газ атмосферы, поглощает радиацию только очень малых длин волн в ультрафиолетовой части спектра. Энергия солнечной радиации в этой части спектра очень мала и поглощение радиации азотом практически не отражается на величине общего потока энергии. Кислород поглощает несколько больше в двух узких участках видимой части спектра и в ультрафиолетовой части. Более энергично поглощает радиацию озон. Общее количество поглощенной озоном радиации достигает 3% прямой солнечной радиации. Основная доля поглощенной радиации приходится на ультрафиолетовую часть, на длины волн короче 0,29 мкм. В небольших количествах озон поглощает и радиацию видимого диапазона. Диоксид углерода поглощает радиацию в ИК диапазоне, но ввиду его малого количества, доля этой поглощенной радиации в целом невелика. Основными поглотителями прямой солнечной радиации являются водяной пар, облака и аэрозольные примеси, сосредоточенные в тропосфере. На долю водяного пара и аэрозолей приходится до 15% поглощенной радиации, на долю облаков до 5%. Так как основная доля поглощенной радиации приходится на такие переменные составляющие атмосферы, как водяной пар и аэрозоли, то уровень поглощения солнечной радиации меняется в значительных пределах и зависит от конкретных условий состояния атмосферы (ее влажности и загрязнения). Кроме того, количество поглощенной радиации зависит от высоты Солнца над горизонтом, т.е. от толщины слоя атмосферы, который проходит солнечный луч.

5. Видимость, закон ослабления радиации, фактор мутности. Рассеяние света в атмосфере приводит к тому, что отдаленные предметы на расстоянии становятся плохо различимыми не только из-за их уменьшения в размере, а и вследствие мутности атмосферы. Расстояние, на котором в атмосфере перестают различаться очертания предметов, называется дальность видимости, или просто видимость. Дальность видимости чаще всего определяют на глаз по определенным, заранее выбранным объектам (темным на фоне неба), расстояние до которых известно. В очень чистом воздухе дальность видимости может достигать сотен километров. В воздухе, содержащем много аэрозольных примесей, дальность видимости может понижаться до нескольких километров и даже метров. Так, при слабом тумане дальность видимости составляет 500-1000 м, а при сильном тумане или песчаной буре понижается до нескольких метров. Поглощение и рассеяние приводит к существенному ослаблению потока солнечной радиации, проходящего через атмосферу. Радиация ослабляется пропорционально самому потоку (при прочих равных условиях, чем больше поток, тем больше будет потеря энергии) и количеству поглощающих и рассеивающих частиц. Последнее зависит от длины пути луча сквозь атмосферу.. Для атмосферы, не содержащей аэрозольных примесей (идеальной атмосферы) коэффициент прозрачности р составляет 0,90-0,95. В реальной атмосфере его значения колеблются от 0,6 до 0,85 (зимой несколько выше, летом - ниже). С возрастанием содержания водяного пара и примесей коэффициент прозрачности убывает. С увеличением широты местности коэффициент прозрачности увеличивается в связи с убыванием давления водяного пара и меньшей запыленностью атмосферы. Все ослабление радиации в атмосфере можно разделить на две части: ослабление постоянными газами (идеальной атмосферой) и ослабление водяными парами и аэрозольными примесями. Соотношение этих процессов учитывается фактором мутности 6. Географические закономерности распределения прямой и рассеянной радиации . Поток прямой солнечной радиации зависит от высоты Солнца над горизонтом. Поэтому в течение дня поток солнечной радиации сначала быстро, потом медленно нарастает от восхода Солнца до полудня и сначала медленно, потом быстро уменьшается от полудня до захода Солнца. Но прозрачность атмосферы в течение дня меняется, поэтому кривая дневногохода прямой радиации не плавная, а имеет отклонения. Но в среднем за длительный период наблюдений изменения радиации в течение дня приобретают вид плавной кривой. В течение года энергетическая освещенность прямой солнечной радиации для основной части поверхности Земли существенно меняется, что связано с изменениями высоты Солнца. Для северного полушария минимальные значения как прямой радиации на перпендикулярную поверхность, так и инсоляции приходятся на декабрь, максимальные - не на летний период, а на весну, когда воздух менее замутнен продуктами конденсации и мало запылен. Средняя полуденная энергетическая освещенность в Москве в декабре составляет 0,54, апреле 1,05, июне-июле 0,86-0,99 кВт/м 2 . Суточные же значения прямой радиации максимальны летом, при максимальной продолжительности солнечного сияния. Максимальные значения прямой солнечной радиации для некоторых пунктов следующие (кВт/м 2): Бухта Тикси 0,91, Павловск 1,00, Иркутск 1,03, Москва 1,03, Курск 1,05, Тбилиси 1,05, Владивосток 1,02, Ташкент 1,06. Максимальные значения прямой солнечной радиации мало растут с убыванием широты, несмотря на рост высоты Солнца. Это связано с тем, что в южных широтах возрастает влагосодержание и запыленность воздуха. Поэтому на экваторе максимальные значения составляют чуть больше максимумов умеренных широт. Наибольшие на Земле годовые значения прямой солнечной радиации наблюдаются в Сахаре - до 1,10 кВТ/м 2 . Сезонные различия прихода прямой радиации следующие. В летний период наибольшие значения прямой солнечной радиации наблюдаются под 30-400 широты летнего полушария, к экватору и к полярным кругам значения прямой солнечной радиации уменьшаются. К полюсам для летнего полушария уменьшения прямой солнечной радиации небольшие, в зимнем - она становится равной нулю. Весной и осенью максимальные значения прямой солнечной радиации наблюдаются на 10-200 весеннего полушария и20-300 -осеннего. Только зимняя часть приэкваториальной зоны получает максимальные для данного периода значения прямой солнечной радиации. С высотой над уровнем моря максимальные значения радиации возрастают вследствие уменьшения оптической толщины атмосферы: на каждые 100 метров высоты величина радиации в тропосфере возрастает на 0,007-0,14 кВт/м 2 . Максимальные значения радиации, зафиксированные в горах, составляют 1,19 кВт/м 2 . Рассеянная радиация, поступающая на горизонтальную поверхность, также меняется в течение дня: возрастает до полудня и уменьшается после полудня. Величина потока рассеянной радиации в целом зависит от продолжительности дня и высоты Солнца над горизонтом, а также прозрачности атмосферы (уменьшение прозрачности приводит к увеличению рассеяния). Кроме того, рассеянная радиация в очень широких пределах меняется в зависимости от облачности. Отраженная облаками радиация также рассеивается. Рассеивается и отраженная снегом радиация, что увеличивает ее долю зимой. Рассеянная радиация при средней облачности более чем в два раза превосходит ее значения в безоблачный день. В Москве среднее полуденное значение рассеянной радиации летом при ясном небе составляет 0,15, а зимой при низком Солнце - 0,08 кВт/м 2 . При несплошной облачности эти значения составляют летом 0,28, а зимой 0,10 кВт/м 2 . В Арктике при сравнительно тонких облаках и снежном покрове эти значения летом могут достигать 0,70 кВт/м 2 . Очень велики значения рассеянной радиации в Антарктиде. С увеличением высоты рассеянная радиация убывает. Рассеянная радиация может существенно дополнять прямую радиацию, особенно при низком Солнце. Вследствие рассеянного света вся атмосфера днем служит источником освещения: днем светло и там, куда солнечные лучи непосредственно не падают, и тогда, когда Солнце скрыто облаками. Рассеянная радиация увеличивает не только освещенность, но и нагревание земной поверхности. Величины рассеянной радиации в общем меньше, чемпрямой, но порядок величин тот же. В тропических и средних широтах величина рассеянной радиации составляет от половины до двух третей значений прямой радиации. На 50-600 их значения близки, а ближе к полюсам рассеянная радиация преобладает.

7 Суммарная радиация Всю солнечную радиацию, приходящую к земной поверхности, называют суммарной солнечной радиацией При безоблачном небе суммарная солнечная радиация имеет суточный ход с максимумом около полудня и годовой ход с максимумом летом. Частичная облачность, не закрывающая диск Солнца, увеличивает суммарную радиацию по сравнению с безоблачным небом, полная облачность, наоборот, уменьшает ее. В среднем же, облачность уменьшает радиацию. Поэтому летом приход суммарной радиации в дополуденные часы больше, чем в послеполуденные и в первую половину года больше, чем во вторую. Полуденные значения суммарной радиации в летние месяцы под Москвой при безоблачном небе в среднем составляют 0,78, при открытом Солнце и облаках 0,80, при сплошной облачности - 0,26 кВТ/м 2. Распределение значений суммарной радиации по земному шару отклоняется от зонального, что объясняется влиянием прозрачности атмосферы и облачности. Максимальные годовые значения суммарной радиации составляют 84*102 – 92*102 МДж/м 2 и наблюдаются в пустынях Северной Африки. Над областями приэкваториальных лесов с большой облачностью значения суммарной радиации снижены до 42*102 – 50*102 МДж/м 2 . К более высоким широтам обоих полушарий значения суммарной радиации убывают, составляя под 60-й параллелью 25*102 – 33*102 МДж/м 2 . Но затем снова растут - мало над Арктикой и значительно - над Антарктидой, где в центральных частях материка составляют 50*102 – 54*102 МДж/м 2 . Надокеанами в целом значения суммарной радиации ниже, чем над соответствующими широтами суши. В декабре наибольшие значения суммарной радиации отмечаются в пустынях Южного полушария (8*102 – 9*102 МДж/м 2). Над экватором значения суммарной радиации снижаются до 3*102 – 5*102 МДж/м 2 . В Северном полушарии радиация быстро убывает к полярным районам и за полярным кругом равна нулю. В Южном полушарии суммарная радиация убывает к югу до 50-600 ю.ш. (4*102 МДж/м 2), а затем возрастает до 13*102 МДж/м 2 в центре Антарктиды. В июле наибольшие значения суммарной радиации (свыше 9*102 МДж/м 2) наблюдаются над северо-восточной Африкой и Аравийским полуостровом. Над экваториальной областью значения суммарной радиации невысоки и равны декабрьским. К северу от тропика суммарная радиация убывает медленно до 600 с.ш., а затем возрастает до 8*102 МДж/м 2 в Арктике. В южном полушарии суммарная радиация от экватора быстро убывает к югу, достигая нулевых значений у полярного круга.

8. Отражение солнечной радиации. Альбедо Земли. При поступлении на поверхность суммарная радиация частично поглощается в верхнем тонком слое почвы или воды и переходит в тепло, а частично отражается. Условия отражения солнечной радиации от земной поверхности характеризуются величиной альбедо, равной отношению отраженной радиации к приходящему потоку (к суммарной радиации). А = Qотр / Q (8) Теоретически значения альбедо могут меняться от 0 (абсолютно черная поверхность) до 1(абсолютно белая поверхность). Имеющиеся материалы наблюдений показывают, что величины альбедо подстилающих поверхностей меняются в широких пределах, причем их изменения охватывают почти полностью возможный интервал значений отражательнойспособности различных поверхностей. В экспериментальных исследованиях найдены значения альбедо почти для всех распространенных естественных подстилающих поверхностей. Эти исследования прежде всего показывают, что условия поглощения солнечной радиации на суше и на водоемах заметно различаются. Наибольшие значения альбедо наблюдаются для чистого и сухого снега (90-95%). Но так как снежный покров редко бывает совершенно чистым, то средние значения альбедо снега в большинстве случаев равны 70- 80%. Для влажного и загрязненного снега эти значения еще ниже - 40-50%. При отсутствии снега наибольшие альбедо на поверхности суши свойственны некоторым пустынным районам, где поверхность покрыта слоем кристаллических солей (дно высохших озер). В этих условиях альбедо имеет значение 50%. Немногим меньше значения альбедо в песчаных пустынях. Альбедо влажной почвы меньше альбедо сухой почвы. Для влажных черноземов значения альбедо составляют предельно малые величины - 5%. Альбедо естественных поверхностей со сплошным растительным покровом изменяется в сравнительно небольших пределах - от 10 до 20-25%. При этом альбедо леса (особенно хвойного) в большинстве случаев меньше, чем альбедо луговой растительности. Условия поглощения радиации на водоемах отличаются от условий поглощения на поверхности суши. Чистая вода сравнительно прозрачна для коротковолновой радиации, вследствие чего солнечные лучи, проникающие в верхние слои, многократно рассеиваются и только после этого в значительной мере поглощаются. Поэтому процесс поглощения солнечной радиации зависит от высоты Солнца. Если оно стоит высоко - значительная часть приходящей радиации проникает в верхние слои воды и, в основном, поглощается. Поэтому альбедо водной поверхности составляет первые единицы процента при высоком Солнце, а при низком Солнце альбедо возрастает до нескольких десятков процентов. Альбедо системы «Земля-атмосфера» имеет более сложную природу. Приходящая в атмосферу солнечная радиация частично отражается врезультате обратного рассеивания атмосферы. При наличии облаков значительная часть радиации отражается от их поверхности. Альбедо облаков зависит от толщины их слоя и составляет в среднем 40-50%. При полном или частичном отсутствии облаков альбедо системы «Земля- атмосфера» существенно зависит от альбедо самой земной поверхности. Характер географического распределения планетарного альбедо по наблюдениям со спутников показывает существенные различия между альбедо высоких и средних широт Северного и Южного полушарий. В тропиках наибольшие значения альбедо наблюдаются над пустынями, в зонах конвективной облачности над Центральной Америкой и над акваториями океанов. В Южном полушарии, в отличие от Северного, наблюдается зональный ход альбедо вследствие более простого распределения суши и моря. Наиболее высокие значения альбедо находятся в полярных широтах. Преобладающая часть радиации, отраженной земной поверхностью и верхней границей облаков, уходит в мировое пространство. Также уходит и треть рассеянной радиации. Отношение уходящей в космос отраженной и рассеянной радиации к общему количеству солнечной радиации, поступающей к атмосфере, носит название планетарного альбедо Земли или альбедо Земли. Его значение оценивают в 30%. Основную часть планетарного альбедо составляет радиация, отраженная облаками. 6.1.8. Собственное излучение. Встречное излучение. Эффективное излучение. Солнечная радиация, поглощаясь верхним слоем Земли, нагревает его, в результате чего почва и поверхностные воды сами излучают длинноволновую радиацию. Эту земную радиацию называют собственным излучением земной поверхности. Интенсивность этого излучения с некоторым допущением подчиняется закону Стефана-Больцмана дляабсолютно черного тела с температурой 150С. Но так как Земля не абсолютно черное тело (ее излучение соответствует излучению серого тела), при расчетах необходимо вводить поправку, равную e=0,95. Таким образом, собственное излучение Земли можно определить по формуле Ез = esТ 4 (9) Определено, что при среднепланетарной температуре Земли 150С собственное излучение Земли Ез = 3.73*102 Вт/м2. Столь большая отдача радиации с земной поверхности приводила бы к очень быстрому ее охлаждению, если бы этому не препятствовал обратный процесс - поглощение солнечной и атмосферной радиации земной поверхностью. Абсолютные температуры на земной поверхности лежат в пределах 190- 350К. При таких температурах собственное излучение имеет длины волн в пределах 4-120 мкм, а максимум энергии приходится на 10-15 мкм. Атмосфера, поглощая как солнечную радиацию, так и собственное излучение земной поверхности, нагревается. Кроме того, атмосфера нагревается нерадиационным путем (путем теплопроводности, при конденсации водяного пара). Нагретая атмосфера становится источником длинноволнового излучения. Большая часть этого излучения атмосферы (70%) направлена к земной поверхности и носит название встречного излучения (Еа). Другая часть излучения атмосферы поглощается вышележащими слоями, но по мере уменьшения содержания водяного пара, количество поглощенной атмосферой радиации уменьшается, и часть ее уходит в мировое пространство. Земная поверхность поглощает встречное излучение почти целиком (95- 99%). Таким образом, встречное излучение является для земной поверхности важным источником тепла в дополнение к поглощенной солнечной радиации. При отсутствии облаков длинноволновое излучение атмосферы определяется наличием водяного пара и диоксида углерода. Влияние атмосферного озона, по сравнению с этими факторами, незначительно. Водяной пар и диоксид углерода поглощают длинноволновое излучение в диапазоне от 4,5 до 80 мкм, но не сплошь, а в определенных узких спектральных областях. Наиболее сильное поглощение излучения водяными парами происходит в области длин волн 5-7,5 мкм, тогда как в области 9,5-12 мкм Рис. 4.1. Окна прозрачности атмосферы в оптическом диапазоне поглощение практически отсутствует. Этот диапазон длин волн называют окном прозрачности атмосферы. Диоксид углерода имеет несколько полос поглощения, из которых наиболее существенна полоса с длинами волн 13-17 мкм, на которые приходится максимум земного излучения. Следует отметить, что содержание углекислого газа сравнительно постоянно, тогда как количество водяного пара меняется очень значительно, в зависимости от метеорологических условий. Поэтому изменение влажности воздуха оказывает значительное влияние на величину излучения атмосферы. Например, наибольшее встречное излучение - 0,35-0,42 кВт/м 2 в среднем годовом у экватора, а к полярным районам оно убывает до 0,21 кВТ/м 2 , на равнинных территориях Еа составляет 0,21-0,28кВТ/м 2 и 0,07-0,14 кВт/м 2 - в горах. Уменьшение встречного излучения в горах объясняется уменьшением содержания водяного пара с высотой. Встречное излучение атмосферы обычно значительно возрастает при наличии облаков. Облака нижнего и среднего ярусов, как правило, являютсядостаточно плотными и излучают как абсолютно черное тело при соответствующей температуре. Высокие облака в связи с их малой плотностью обычно излучают меньше, чем черное тело, поэтому они мало влияют на соотношение собственного и встречного излучений. Поглощение водяным паром и другими газами длинноволнового собственного излучения создает «парниковый эффект», т.е. сохраняет солнечное тепло в земной атмосфере. Рост концентрации этих газов и прежде всего диоксида углерода в результате хозяйственной деятельности человека может привести к увеличению доли остающегося на планете тепла, к увеличению среднепланетарных температур и изменению глобального климата Земли, последствия которого пока трудно предсказуемы. Но следует заметить, что основную роль в поглощении земного излучения и формировании встречного играет водяной пар. Через окно прозрачности часть длинноволнового земного излучения уходит через атмосферу в мировое пространство. Совместно с излучением атмосферы эта радиация называется уходящей радиацией. Если за 100 единиц принять приток солнечной радиации, то уходящая радиация составит 70 единиц. С учетом 30 единиц отраженной и рассеянной радиации (планетарное альбедо Земли) Земля отдает в космическое пространство столько же радиации, сколько и получает, т.е. находится в состоянии лучистого равновесия.

9. Радиационный баланс земной поверхности Радиационным балансом земной поверхности называют разницу между приходом радиации на земную поверхность (в виде поглощенной радиации) и ее расходом в результате теплового излучения (эффективное излучение). Радиационный баланс меняется от ночных отрицательных значений к дневным положительным в летнее время при высоте Солнца 10-15 градусов и наоборот, от положительных к отрицательным - перед заходом при тех же высотах Солнца. Зимой переход значений радиационного баланса через ноль происходит при больших углах Солнца (20-25 градусов). В ночное время при отсутствии суммарной радиации радиационный баланс отрицателен и равен эффективному излучению. Распределение радиационного баланса по земному шару достаточно равномерно. Годовые значения радиационного баланса положительны повсюду, кроме Антарктиды и Гренландии. Положительные годовые значения радиационного баланса означают, что избыток поглощенной радиации уравновешивается нерадиационной передачей тепла от земной поверхности к атмосфере. Это означает, что для земной поверхности радиационного равновесия нет (приход радиации больше, чем ее отдача), но существует тепловое равновесие, обеспечивающее стабильность тепловых характеристик атмосферы. Наибольшие годовые значения радиационного баланса наблюдаются в экваториальной зоне между 200 северной и южной широты. Здесь он составляет более 40*102 МДж/м 2 . К более высоким широтам значения радиационного баланса убывают и около 60-й параллели составляют от 8*102 до 13*102 МДж/м 2 . Далее к полюсам радиационный баланс еще более уменьшается и составляет в Антарктиде – 2*102 – 4*102 МДж/м 2 . Над океанами радиационный баланс больше, чем над сушей в тех же широтах. Существенные отклонения от зональных значений имеются и в пустынях, где баланс ниже широтного значения из-за большого эффективного излучения. В декабре радиационный баланс отрицателен на значительной части Северного полушария севернее 40-параллели. В Арктике он достигает значений 2*102 МДж/м 2 и ниже. К югу от 40-й параллели он возрастает до Южного тропика (4*102 – 6*102 МДж/м 2), а затем понижается к Южному полюсу, составляя на побережье Антарктиды 2*102 МДж/м 2 В июне радиационный баланс максимален над Северным тропиком (5*102 – 6*102 МДж/м 2). К северу он понижается, оставаясь положительнымдо Северного полюса, а к югу уменьшается, становясь отрицательным у берегов Антарктиды (-0,4 -0,8*102 МЖд/м 2).

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-30

Энергия, излучаемая Солнцем, носит название солнечной радиации. Поступая на Землю, солнечная радиация в большей своей части превращается в тепло.

Солнечная радиация является практически единственным источником энергии для Земли и атмосферы. По сравнению с солнечной энергией значение других источников энергии для Земли ничтожно мало. Например, температура Земли в среднем с глубиной возрастает (примерно 1 о С на каждые 35 м). Благодаря этому поверхность Земли получает некоторое количество тепла из внутренних частей. Подсчитано, что в среднем 1см 2 земной поверхности получает из внутренних частей Земли около 220 Дж в год. Это количество в 5000 раз меньше тепла, получаемого от Солнца. Некоторое количество тепла Земля получает от звезд и планет, но и она во много раз (приблизительно в 30 млн.) меньше тепла, поступающего от Солнца.

Количество энергии, посылаемой Солнцем на Землю, огромно. Так, мощность потока солнечной радиации, поступающей на площадь в 10 км 2, составляет в летний безоблачный (с учетом ослабления атмосферы) 7-9 кВт. Это больше, чем мощность Красноярской ГЭС. Количество лучистой энергии, поступающей от Солнца за 1 секунду на площадь 15Ч15 км (это меньше площади Ленинграда) в околополуденные часы летом, превышает мощность всех электростанций распавшегося СССР (166 млн кВт) .

Рисунок 1 - Солнце - источник радиации

Виды солнечной радиации

В атмосфере солнечная радиация на пути к поверхности земли частично поглощается, а частично рассеивается и отражается от облаков и земной поверхности. В атмосфере наблюдается три вида солнечной радиации: прямая, рассеянная и суммарная.

Прямая солнечная радиация - радиация, приходящая к земной поверхности непосредственно от диска Солнца. Солнечная радиация распространяется от Солнца по всем направлениям. Но расстояние от Земли до Солнца так велико, что прямая радиация падает на любую поверхность на Земле в виде пучка параллельных лучей, исходящего как бы из бесконечности. Даже весь земной шар в целом так мал в сравнении с расстоянием до Солнца, что всю солнечную радиацию, падающую на него, без заметной погрешности можно считать пучком параллельных лучей.

На верхнюю границу атмосферы приходит только прямая радиация. Около 30 % падающей на Землю радиации отражается в космическое пространство. Кислород, азот, озон, диоксид углерода, водяные пары (облака) и аэрозольные частицы поглощают 23 % прямой солнечной радиации в атмосфере. Озон поглощает ультрафиолетовую и видимую радиацию. Несмотря на то, что его содержание в воздухе очень мало, он поглощает всю ультрафиолетовую часть радиации (это примерно 3 %). Таким образом, у земной поверхности ее вообще не наблюдается, что очень важно для жизни на Земле.

Прямая солнечная радиация на пути сквозь атмосферу также рассеивается. Частица (капля, кристалл или молекула) воздуха, находящаяся на пути электромагнитной волны, непрерывно «извлекает» энергию из падающей волны и переизлучает ее по всем направлениям, становясь излучателем энергии.

Около 25 % энергии общего потока солнечной радиации проходя через атмосферу, рассеивается молекулами атмосферных газов и аэрозолем и превращается в атмосфере в рассеянную солнечную радиацию. Таким образом рассеянная солнечная радиация - солнечная радиация, претерпевшая рассеяние в атмосфере. Рассеянная радиация приходит к земной поверхности не от солнечного диска, а от всего небесного свода. Рассеянная радиация отлична от прямой по спектральному составу, так как лучи различных длин волн рассеиваются в разной степени.

Так как первоисточником рассеянной радиации является прямая солнечная радиация, поток рассеянной зависит от тех же факторов, которые влияют на поток прямой радиации. В частности, поток рассеянной радиации возрастает по мере увеличение высоты Солнца и наоборот. Он возрастает также с увеличением в атмосфере количества рассеивающих частиц, т.е. со снижением прозрачности атмосферы, и уменьшается с высотой над уровнем моря в связи с уменьшение количества рассеивающих частиц в вышележащих слоях атмосферы. Очень большое влияние на рассеянную радиацию оказывают облачность и снежный покров, которые за счет рассеяния и отражения падающей на них прямой и рассеянной радиации и повторного рассеяния их в атмосфере могут в несколько раз увеличить рассеянную солнечную радиацию.

Рассеянная радиация существенно дополняет прямую солнечную радиацию и значительно увеличивает поступление солнечной энергии на земную поверхность. Особенно велика ее роль в зимнее время в высоких широтах и в других районах с повышенной облачностью, где доля рассеянной радиации может превышать долю прямой. Например, в годовой сумме солнечной энергии на долю рассеянной радиации приходится в Архангельске - 56 %, в Санкт-Петербурге - 51 %.

Суммарная солнечная радиация - это сумма потоков прямой и рассеянной радиаций, поступающих на горизонтальную поверхность. До восхода и после захода Солнца, а также днем при сплошной облачности суммарная радиация полностью, а при малых высотах Солнца преимущественно состоит из рассеянной радиации. При безоблачном или малооблачном небе с увеличением высоты Солнца доля прямой радиации в составе суммарной быстро возрастает и в дневные часы поток ее многократно превышает поток рассеянной радиации. Облачность в среднем ослабляет суммарную радиацию (на 20-30 %), однако при частичной облачности, не закрывающей солнечного диска, поток ее может быть больше, чем при безоблачном небе. Существенно увеличивает поток суммарной радиации снежный покров за счет увеличения потока рассеянной радиации.

Суммарная радиация, падая на земную поверхность, большей частью поглощается верхним слоем почвы или более толстым слоем воды (поглощенная радиация) и переходит в тепло, а частично отражается (отраженная радиация) .