Физические величины v. Базовые физические величины в механике, их измерение и единицы

Понятие физической величины - общее в физике и метрологии и применяется для описания материальных систем объектов.

Физическая величина, как указывалось выше, - это характеристика, общая в качественном отношении для множества объектов, процессов, явлений, а в количественном - индивидуальная для каждого из них. Например, все тела обладают собственной массой и температурой, но числовые значения этих параметров для разных тел различны. Количественное содержание этого свойства в объекте является размером физической величины, числовую оценку ее размеров называют значением физической величины .

Физическая величина, выражающая одно и то же в качественном отношении свойство, называется однородной (одноименной ).

Основная задача измерений - получение информации о значениях физической величины в виде некоторого количества принятых для нее единиц.

Значения физических величин подразделяются на истинные и действительные.

Истинное значение - это значение, идеальным образом отражающее качественно и количественно соответствующие свойства объекта.

Действительное значение - это значение, найденное экспериментально и настолько приближенное к истинному, что может быть принято вместо него.

Физические величины классифицируют по ряду признаков. Различают следующие классификации :

1) по отношению к сигналам измерительной информации физические величины бывают: активные - величины, которые без использования вспомогательных источников энергии могут быть преобразованы в сигнал измерительной информации; пассив ные - величины, которые нуждаются в использовании вспомога­тельных источников энергии, посредством которых создается сигнал измерительной информации;

2) по признаку аддитивности физические величины разделяются на: аддитивные , или экстенсивные, которые можно измерять по частям, а также точно воспроизводить с помощью многозначной меры, основанной на суммировании размеров отдельных мер; не аддитивные, или интенсивные, которые непосредственно не измеряются, а преобразуются в измерение величины или измерение путем косвенных измерений. (Аддитивность (лат. additivus - прибавляемый) - свойство величин, состоящее в том, что значение величины, соответствующее целому объекту, равно сумме значений величин, соответствующих его частям).

Эволюция развития систем физических единиц.

    Метрическая система мер - первая система единиц физических величин

была принята в 1791 г. Национальным собранием Франции. Она включала в себя единицы длины, площади, объема, вместимости и веса , в основу которых были положены две единицы - метр и килограмм . Она отличалась от системы единиц, ис­пользуемой сейчас, и еще не была системой единиц в современном понимании.

    Абсолютная система единиц физических величин .

Методику построения системы единиц как совокупности основных и производных единиц разработал и предложил в 1832 г. немецкий математик К. Гаусс, назвав ее абсолютной системой. За основу он взял три независимые друг от друга величины - массу, длину, время .

За основные единицы измерения этих величин он принял миллиграмм, миллиметр, секунду , предполагая, что остальные единицы можно определить с их помощью.

Позднее появился ряд систем единиц физических величин, построенных по принципу, предложенному Гауссом, и базирующихся на метрической системе мер, но различающихся основными единицами.

В соответствии с предложенным принципом Гаусса основными системами единиц физических величин являются:

    Система СГС , в которой основными единицами являются сантиметр как единица длины, грамм как единица массы и секунда как единица времени; была установлена в 1881 г.;

    Система МКГСС . Применение килограмма как единицы веса, а позднее как единицы силы вообще привело в конце XIX в. к формированию системы единиц физических величин с тремя основными единицами: метр - единица длины, килограмм - сила - единица силы, секунда - единица времени;

5. Система МКСА - основными единицами являются метр, килограмм, секунда и ампер. Основы этой системы предложил в 1901 г. итальянский ученый Дж. Джорджи.

Международные отношения в области науки и экономики требовали унификации единиц измерения, создания единой системы единиц физических величин, охватывающей различные отрасли области измерений и сохраняющей принцип когерентности, т.е. равенство единице коэффициента пропорциональности в уравнениях связи между физическими величинами.

    Система СИ . В 1954 г. комиссия по разработке единой Международной

системы единиц предложила проект системы единиц, который был утвержден в 1960 г . XI Генеральной конференцией по мерам и весам. Международная система единиц (сокращенно СИ) свое название взяла от начальных букв французского наименования Система Интернешнл.

Международная система единиц (СИ) включает в себя семь основных (табл. 1), две дополнительные и ряд внесистемных единиц измерения.

Таблица 1 - Международная система единиц

Физические величины, имеющие официально утвержденный эталон

Единица измерения

Сокращенное обозначение единицы

физической величины

международное

килограмм

Сила электрического тока

Температура

Единица освещенности

Количество вещества

Источник: Тюрин Н.И. Введение в метрологию. М.: Издательство стандартов, 1985.

Основные единицы измерения физических величин в соответствии с решениями Генеральной конференции по мерам и весам определяются следующим образом:

    метр - длина пути, который проходит свет в вакууме за 1/299 792 458 долю секунды;

    килограмм равен массе международного прототипа килограмма;

    секунда равна 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома Сs 133 ;

    ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызывает на каждом участке проводника длиной 1 м силу взаимодействия;

    кандела равна силе света в заданном направлении источника, испускающего ионохранические излучения, энергетическая сила света которого в этом направлении составляет 1 / 683 Вт/ср;

    кельвин равен 1 /273,16 части термодинамической температуры тройной точки воды;

    моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в С 12 массой 0,012 кг 2 .

Дополнительные единицы Международной системы единиц для измерения плоского и телесного углов:

    радиан (рад) - плоский угол между двумя радиусами окружности, дуга между которыми по длине равна радиусу. В градусном исчислении радиан равен 57°17"48" 3 ;

    стерадиан (ср) - телесный угол, вершина которого расположена в центре сферы и который вырезает на поверхности сферы площадь, равную площади квадрата со стороной, по длине равной радиусу сферы.

Дополнительные единицы СИ применяются для образования единиц угловой скорости, углового ускорения и некоторых других величин. Радиан и стерадиан используются для теоретических построений и расчетов, так как большинство важных для практики значений углов в радианах выражаются трансцендентными числами.

Внесистемные единицы:

За логарифмическую единицу принята десятая доля бела - децибел (дБ);

Диоптрия - сила света для оптических приборов;

Реактивная мощность-вар (ВА);

Астрономическая единица (а.е.) - 149,6 млн км;

Световой год - расстояние, которое проходит луч света за 1 год;

Вместимость - литр (л);

Площадь - гектар (га).

Логарифмические единицы подразделяются на абсолютные, которые представляют собой десятичный логарифм отношения физической величины к нормированному значению, и относительные, образующиеся как десятичный логарифм отношения любых двух однородных (одноименных) величин.

К единицам, не входящим в СИ, относятся градус и минута. Остальные единицы являются производными.

Производные единицы СИ образуются с помощью простейших уравнений, которые связывают величины и в которых числовые коэффициенты равны единице. При этом производная единица называется когерентной.

Размерность является качественным отображением измеряемых величин. Значение величины получают в результате ее измерения или вычисления в соответствии с основным уравнением из мерения: Q = q * [ Q ]

где Q - значение величины; q - числовое значение измеряемой величины в условных единицах; [Q] - выбранная для измерения единица.

Если в определяющее уравнение входит числовой коэффициент, то для образования производной единицы в правую часть Уравнения следует подставлять такие числовые значения исходных величин, чтобы числовое значение определяемой производной единицы было равно единице.

(Например, за единицу измерения массы жидкости принят 1мл.,поэтому на упаковке обозначается: 250мл., 750 и т.д., но если за ед. измерения принять 1л., тогда то же кол-во жидкости будет обозначено 0,25л., 075л. соответственно).

Как один из способов образования кратных и дольных единиц используется десятичная кратность между большими и меньшими единицами, принятая в метрической системе мер. В табл. 1.2 приводятся множители и приставки для образования десятичных кратных и дольных единиц и их наименования.

Таблица 2 - Множители и приставки для образования десятичных кратных и дольных единиц и их наименования

Множитель

Приставка

Обозначение приставки

международное

(Эксаба́йт - единица измерения количества информации, равная 1018 или 260 байтам. 1 ЭэВ (эксаэлектронвольт) = 1018 электронвольт = 0.1602 джоуля)

Следует учитывать, что при образовании кратных и дольных единиц площади и объема с помощью приставок может возникнуть двойственность прочтения в зависимости оттого, куда добавляется приставка. Например, 1 м 2 можно использовать как 1 квадратный метр и как 100 квадратных сантиметров, что далеко не одно и то же, потому что 1 квадратный метр это 10 000 квадратных сантиметров.

Согласно международным правилам, кратные и дольные единицы площади и объема следует образовывать, присоединяя приставки к исходным единицам. Степени относятся к тем единицам, которые получены в результате присоединения приставок. Например, 1 км 2 = 1 (км) 2 = (10 3 м) 2 == 10 6 м 2 .

Для обеспечения единства измерений необходима тождественность единиц, в которых проградуированы все средства измерений одной и той же физической величины. Единство измерений достигается хранением, точным воспроизведением установленных единиц физических величин и передачей их размеров всем рабочим средствам измерений с помощью эталонов и образцовых средств измерений.

Эталон - средство измерения, обеспечивающее хранение и воспроизведение узаконенной единицы физической величины, а также передачу ее размера другим средствам измерения.

Создание, хранение и применение эталонов, контроль их состояния подчиняются единым правилам, установленным ГОСТ «ГСИ. Эталоны единиц физических величин. Порядок разработки, утверждения, регистрации, хранения и применения».

По подчиненности эталоны подразделяются на первичные и вторичные и имеют следующую классификацию.

Первичный эталон обеспечивает хранение, воспроизведение единицы и передачу размеров с наивысшей в стране точностью, достижимой в данной области измерений:

- специальные первичные эталоны - предназначены для воспроизведения единицы в условиях, в которых прямая передача размера единицы от первичного эталона с требуемой точностью технически неосуществима, например для малых и больших напряжений, СВЧ и ВЧ. Их утверждают в качестве государственных эталонов. Ввиду особой важности государственных эталонов и для придания им силы закона на каждый государственный эталон утверждается ГОСТ. Создает, утверждает, хранит и применяет государственные эталоны Государственный комитет по стандартам.

Вторичный эталон воспроизводит единицу в особых условиях и заменяет при этих условиях первичный эталон. Он создается и утверждается для обеспечения наименьшего износа государствен­ного эталона. Вторичные эталоны в свою очередь делятся по назначению :

Эталоны-копии - предназначены для передачи размеров единиц рабочим эталонам;

Эталоны сравнения - предназначены для проверки сохранности государственного эталона и для замены его в случае порчи или утраты;

Эталоны-свидетели - применяются для сличения эталонов, которые по тем или иным причинам не могут быть непосредственно сличаемы друг с другом;

Рабочие эталоны - воспроизводят единицу от вторичных эталонов и служат для передачи размера эталону более низкого разряда. Вторичные эталоны создают, утверждают, хранят и применяют министерства и ведомства.

Эталон единицы - одно средство или комплекс средств измерений, обеспечивающих хранение и воспроизведение единицы с целью передачи ее размера нижестоящим по поверочной схеме средствам измерений, выполненных по особой спецификации и официально утвержденных в установленном порядке в качестве эталона.

Воспроизведение единиц в зависимости от технико-экономических требований производится двумя способами :

- централизованным - с помощью единого для всей страны или группы стран государственного эталона. Централизованно воспроизводятся все основные единицы и большая часть производных;

- децентрализованным - применим к производным единицам, размер которых не может передаваться прямым сравнением с эталоном и обеспечивать необходимую точность.

Стандартом установлен многоступенчатый порядок передачи размеров единицы физической величины от государственного эталона всем рабочим средствам измерения данной физической величины с помощью вторичных эталонов и образцовых средств измерения различных разрядов от наивысшего первого к низшим и от образцовых средств к рабочим.

Передача размера осуществляется различными методами по­верки, преимущественно известными методами измерений. Передача размера ступенчатым способом сопровождается потерей точности, однако многоступенчатость позволяет сохранять этало­ны и передавать размер единицы всем рабочим средствам измерения.

Физическая величина - это свойство, общее в качественном отношении многим объектам (системам, их состояниям и проис­ходящим в них процессам), но в количественном отношении ин­дивидуальное для каждого объекта.

Индивидуальность в количественном отношении следует пони­мать в том смысле, что свойство может быть для одного объек­та в определенное число раз больше или меньше, чем для дру­гого.

Как правило, термин «величина» применяют в отношении свойств или их характеристик, которые можно оценить коли­чественно, т. е. измерить. Существуют такие свойства и характери­стики, которые еще не научились оценивать количественно, но стремятся найти способ их количественной оценки, например за­пах, вкус и т. п. Пока не научимся их измерять, следует называть их не величинами, а свойствами.

В стандарте есть только термин «физическая величина», а сло­во «величина» дано как краткая форма основного термина, кото­рую разрешается применять в случаях, исключающих возможность различного толкования. Другими словами, можно называть физи­ческую величину кратко величиной, если и без прилагательного очевидно, что речь идет о физической величине. В дальнейшем тексте настоящей книги краткая форма термина «величина» при­меняется только в указанном смысле.

В метрологии слову «величина» придано терминологическое значе­ние путем наложения ограничения в виде прилагательного «физи­ческая». Словом «величина» часто пытаются выразить размер дан­ной конкретной физической величины. Говорят: величина давле­ния, величина скорости, величина напряжения. Это неправильно, так как давление, скорость, напряжение в правильном понимании этих слов являются величинами, и говорить о величине величины нельзя. В приведенных выше случаях применение слова «величина» является лишним. Действительно, зачем говорить о большой или малой «величине» давления, когда можно сказать: большое или ма­лое давление и т.п..

Физическая величина отображает свойства объектов, которые можно выражать количественно в принятых единицах. Всякое измерение реали­зует операцию сравнения однородных свойств физических величин по признаку "больше-меньше". В результате сравнения каждому размеру измеряемой величины приписывается положительное действительное число:

х = q [х] , (1.1)

где q- числовое значение величины или результат сравнения; [х] - единица величины.

Единица физической величины - физическая величина, которой по определению придано значение, равное единице. Можно сказать также, что единица физической величины - такое ее значение, ко­торое принимают за основание для сравнения с ним физических величин того же рода при их количественной оценке.

Уравнение (1.1) является основным уравнением измерения. Числовое значение q находят следующим образом

следовательно, оно зависит от принятой единицы измерения .

    1. Системы единиц физических величин

При проведении любых измерений измеряемая величина сравнивается с другой однородной с ней величиной, принятой за единицу. Для построения системы единиц выбирают произвольно несколько физических величин. Они называются основными. Величины, определяемые через основные, называ­ются производными. Совокупность основных и производных величин называ­ется системой физических величин.

В общем виде связь между производной величиной Z и основными мо­жет быть представлена следующим уравнением:

Z = L M T I J ,

где L , М, Т, I ,,J - основные величины;,,,,,- показатели раз­мерности. Эта формула называется формулой размерности. Система величин мо­жет состоять как из размерных, так и безразмерных величин. Размерной называется величина, в размерности которой хотя бы одна из основных величин возведена в степень, не равную нулю. Безразмерной называется величина, в размерность которой ос­новные величины входят в степени, равной нулю. Безразмерная величина одной системы величин может быть размерной величи­ной в другой системе. Система физических величин используется для построения системы единиц физиче­ских величин.

Единица физической величины представляет собой значение этой вели­чины, принятое за основание для сравнения с ней значений величин того же рода при их количественной оценке. Ей по определению присвоено числовое зна­чение, равное 1.

Единицы основных и производных величин называются соответственно ос­новными и производными единицами, их совокупность называется системой единиц. Выбор единиц в пределах си­стемы в какой-то мере произволен. Однако в качестве основных единиц выбирают такие, которые, во-первых, могут быть воспро­изведены с наивысшей точностью, а во-вторых, удобны в прак­тике измерений или их воспроизведения. Единицы величин, вхо­дящих в систему, называются системными. Кроме системных единиц, применяются и внесистемные единицы. Внесистемные единицы - это единицы, не входящие в систему. Они удобны для отдельных областей науки и техники или регионов и поэтому получили ши­рокое распространение. К внесистемным единицам относятся: единица мощности - лошадиная сила, единица энергии - киловатт-час, единицы времени - час, сутки, единица температуры - градус Цельсия и многие другие . Они возникли в процессе развития техники измерений для удовлетворения практических потребностей или введены для удобства пользования ими при измерениях. С теми же целями применяются кратные и дольные единицы величин.

Кратной единицей называется такая, которая в целое число раз больше системной или внесистемной единицы: килогерц, мегаватт. Дольной единицей называется такая, которая в целое число раз меньше системной или внесистемной единицы: миллиампер, микровольт. Строго говоря, многие внесистемные единицы могут рассматриваться как кратные или дольные еди­ницы.

В науке и технике широко распространены также относитель­ные и логарифмические величины и их единицы, которыми ха­рактеризуются усиление и ослабление электрических сигналов, коэффициенты модуляции, гармоник и т.д. Относительные вели­чины могут выражаться в безразмерных относительных едини­цах, в процентах, в промилле. Логарифмическая величина пред­ставляет собой логарифм (в радиоэлектронике обычно десятич­ный) безразмерного отношения двух одноименных величин. Единицей логарифмической величины является бел (Б), опреде­ляемый соотношением:

N = lg P 1/ / P 2 = 2 lg F 1 / F 2 , (1.2)

где P 1 ,P 2 - одноименные энергетические величины (значения мощности, энергии, потока плотности мощности и т.п.);F 1 , F 2 - одноименные силовые величины (напряжение, сила тока, напряженность электромагнитного поля и т.п.).

Как правило, применяют дольную единицу от бела, называемую децибелом, равным 0,1 Б. В этом случае в формуле (1.2) после знаков равенства добавляется дополнительный множи­тель 10. Например, отношение напряжений U 1 /U 2 = 10 соответ­ствует логарифмической единице 20 дБ.

Имеется тенденция к применению естественных систем единиц, основанных на универсальных физических постоянных (констан­тах), которые могли бы быть приняты в качестве основных еди­ниц: скорость света, постоянная Больцмана, постоянная Планка, заряд электрона и т.п. . Преимуществом такой системы явля­ется постоянство основания системы и высокая стабильность кон­стант. В некоторых эталонах такие постоянные уже используются: эталон единицы частоты и длины, эталон единицы постоян­ного напряжения. Но размеры единиц величин, основанных на константах, на современном уровне развития техники неудобны для практических измерений и не обеспечивают необходимой точ­ности получения всех производных единиц. Однако такие досто­инства естественной системы единиц, как неразрушаемость, не­изменность во времени, независимость от местоположения сти­мулируют работы по изучению возможности их практического применения.

Впервые совокупность основных и производных единиц, образующих систему, предложил в 1832 г. К. Ф. Гаусс. В качестве основных единиц в этой системе приняты три произвольные еди­ницы-длина, масса и время, соответственно равные милли­метру, миллиграмму и секунде. Позднее были предложены и дру­гие системы единиц физических величин, базирующихся на мет­рической системе мер и различающихся основными единицами. Но все они, удовлетворяя одних специалистов, вызывали возра­жения других. Это требовало создания новой системы единиц. В какой-то мере удалось разрешить существовавшие противоре­чия после принятия в 1960 г. XI Генеральной конференцией по мерам и весам Международной системы единиц, названной сокращенно СИ (SI). В России она вна­чале была принята как предпочтительная (1961 г.), а затем по­сле введения в действие ГОСТ 8.417-81 «ГСИ. Единицы фи­зических величин» - и как обязательная во всех областях науки, техники, народного хо­зяйства, а также во всех учебных заведениях.

В качестве основных в Международной системе единиц (СИ) выбраны семь следующих единиц: метр, килограмм, секунда, ампер, Кельвин, кандела, моль.

Международная система единиц включает в себя две дополни­тельные единицы - для измерения плоского и телесного углов. Эти единицы не могут быть введены в разряд основных, так как они определяются отношением двух величин. В то же время они не яв­ляются производными единицами, так как не зависят от выбора основных единиц.

Радиан (рад) - угол между двумя радиусами окружнос­ти, дуга между которыми по длине равна радиусу.

Стерадиан (ср) - телесный угол, вершина которого расположена в центре сферы и который вырезает на поверхности. сферы площадь, равную площади квадрата со стороной, по длине равной радиусу сферы .

В соответствии с Законом об обеспечении единства измерений в Российской Федерации в установленном порядке допускаются к применению единицы ве­личин Международной системы единиц, принятой Генеральной конференцией по мерам и весам, ре­комендованные Международной организацией за­конодательной метрологии.

Наименования, обозначения и правила написа­ния единиц величин, а также правила их приме­нения на территории Российской Федерации уста­навливает правительство Российской Федерации, за исключением случаев, предусмотренных акта­ми законодательства Российской Федерации.

Правительством Российской Федерации могут быть допущены к применению наравне с едини­цами величин Международной системы единиц внесистемные единицы величин.

Измерения основаны на сравнении одинаковых свойств материаль­ных объектов. Для свойств, при количественном сравнении которых при­меняются физические методы, в метрологии установлено единое обоб­щенное понятие - физическая величина. Физическая величина- свойство, общее в качественном отношении многим физическим объектам, но в количественном отношении индивидуальное для каждого объекта, напри­мер, длина, масса, электропроводность и теплоемкость тел, давление газа в сосуде и т. п. Но запах не является физической величиной, так как он устанавливается с помощью субъективных ощущений.

Мерой для количественного сравнения одинаковых свойств объек­тов служит единица физической величины - физическая величина, которой по соглашению присвоено числовое значение, равное 1. Единицам физи­ческих величин присваивается полное и сокращенное символьное обозна­чение - размерность. Например, масса - килограмм (кг), время - се­кунда (с), длина - метр (м), сила - Ньютон (Н).

Значение физической величины - оценка физической величины в виде некоторого числа принятых для нее единиц - характеризует количествен­ную индивидуальность объектов. Например, диаметр отверстия - 0,5 мм, радиус земного шара - 6378 км, скорость бегуна - 8 м/с, скорость све­та - 3 10 5 м/с.

Измерением называется нахождение значения физической величины с помощью специальных технических средств. Например, измерение ди­аметра вала штангенциркулем или микрометром, температуры жидкости - термометром, давления газа - манометром или вакуумметром. Значение физической величины х^, полученное при измерении, определяют по формуле х^ = аи, где а- числовое значение (размер) физической величины; и - единица физической величины.

Так как значения физических величин находят опытным путем, они содержат погрешность измерений. В связи с этим различают истинное и действительное значения физических величин. Истинное значение - зна­чение физической величины, которое идеальным образом отражает в качественном и количественном отношениях соответствующее свойство объекта. Оно является пределом, к которому приближается значение физической величины с повышением точности измерений.

Действительное значение - значение физической величины, найден­ное экспериментальным путем и настолько приближающееся к истинно­му значению, что для определенной цели может быть использовано вме­сто него. Это значение изменяется в зависимости от требуемой точнос­ти измерений. При технических измерениях значение физической вели­чины, найденное с допустимой погрешностью, принимается за действи­тельное значение.

Погрешность измерения есть отклонение результата измерений от истинного значения измеряемой величины. Абсолютной погрешностью называют погрешность измерения, выраженную в единицах измеряемой величины: Ах = х^- х, где х- истинное значение измеряемой величи­ны. Относительная погрешность - отношение абсолютной погрешности измерения к истинному значению физической величины: 6=Ах/х. Отно­сительная погрешность может быть выражена также в процентах.

Поскольку истинное значение измерения остается неизвестным, на практике можно найти лишь приближенную оценку погрешности изме­рения. При этом вместо истинного значения принимают действительное значение физической величины, полученное при измерениях той же ве­личины с более высокой точностью. Например, погрешность измерения линейных размеров штангенциркулем составляет ±0,1 мм, а микромет­ром - ± 0,004 мм.

Точность измерений может быть выражена количественно как обрат­ная величина модуля относительной погрешности. Например, если по­грешность измерения ±0,01, то точность измерения равна 100.

Физической величиной называется физическое свойство материального объекта, процесса, физического явления, охарактеризованное количественно.

Значение физической величины выражается одним или несколькими числами, характеризующими эту физическую величину, с указанием единицы измерения.

Размером физической величины являются значения чисел, фигурирующих в значении физической величины.

Единицы измерения физических величин.

Единицей измерения физической величины является величина фиксированного размера, которой присвоено числовое значение, равное единице. Применяется для количественного выражения однородных с ней физических величин. Системой единиц физических величин называют совокупность основных и производных единиц, основанную на некоторой системе величин.

Широкое распространение получило всего лишь некоторое количество систем единиц. В большинстве случаев во многих странах пользуются метрической системой.

Основные единицы.

Измерить физическую величину - значит сравнить ее с другой такой же физической величиной, принятой за единицу.

Длину предмета сравнивают с единицей длины, массу тела - с единицей веса и т.д. Но если один исследователь измерит длину в саженях, а другой в футах, им будет трудно сравнить эти две величины. Поэтому все физические величины во всем мире принято измерять в одних и тех же единицах. В 1963 году была принята Международная система единиц СИ (System international - SI).

Для каждой физической величины в системе единиц должна быть предусмотрена соответствующая единица измерения. Эталоном единицы измерения является ее физическая реализация.

Эталоном длины является метр - расстояние между двумя штрихами, нанесенными на стержне особой формы, изготовленном из сплава платины и иридия.

Эталоном времени служит продолжительность какого-либо правильно повторяющегося процесса, в качестве которого выбрано движение Земли вокруг Солнца: один оборот Земля совершает за год. Но за единицу времени принимают не год, а секунду .

За единицу скорости принимают скорость такого равномерного прямолинейного движения, при котором тело за 1 с совершает перемещение в 1 м.

Отдельная единица измерения используется для площади, объема, длины и т. д. Каждая единица определяется при выборе того или иного эталона. Но система единиц значительно удобнее, если в ней в качестве основных выбрано всего несколько единиц, а остальные определяются через основные. Например, если единицей длины является метр, то единицей площади будет квадратный метр, объема - кубический метр, скорости - метр в секунду и т. д.

Основными единицами физических величин в Международной системе единиц (СИ) являются: метр (м), килограмм (кг), секунда (с), ампер (А), кельвин (К), кандела (кд) и моль (моль).

Основные единицы СИ

Величина

Единица

Обозначение

Наименование

русское

международное

Сила электрического тока

Термодинамическая температура

Сила света

Количество вещества

Существуют также производные единицы СИ, у которых есть собственные наименования:

Производные единицы СИ, имеющие собственные наименования

Единица

Выражение производной единицы

Величина

Наименование

Обозначение

Через другие единицы СИ

Через основные и дополнительные единицы СИ

Давление

м -1 ЧкгЧс -2

Энергия, работа, количество теплоты

м 2 ЧкгЧс -2

Мощность, поток энергии

м 2 ЧкгЧс -3

Количество электричества, электрическийзаряд

Электрическое напряжение, электрическийпотенциал

м 2 ЧкгЧс -3 ЧА -1

Электрическая емкость

м -2 Чкг -1 Чс 4 ЧА 2

Электрическое сопротивление

м 2 ЧкгЧс -3 ЧА -2

Электрическая проводимость

м -2 Чкг -1 Чс 3 ЧА 2

Поток магнитной индукции

м 2 ЧкгЧс -2 ЧА -1

Магнитная индукция

кгЧс -2 ЧА -1

Индуктивность

м 2 ЧкгЧс -2 ЧА -2

Световой поток

Освещенность

м 2 ЧкдЧср

Активность радиоактивного источника

беккерель

Поглощенная доза излучения

И змерения . Для получения точного, объективного и легко воспроизводимого описания физической величины используют измерения. Без измерений физическую величину нельзя охарактеризовать количественно. Такие определения, как «низкое» или «высокое» давление, «низкая» или «высокая» температура отражают лищь субъективные мнения и не содержат сравнения с эталонными величинами. При измерении физической величины ей приписывают некоторое численное значение.

Измерения осуществляются с помощью измерительных приборов. Существует довольно большое количество измерительных приборов и приспособлений, от самых простых до сложных. Например, длину измеряют линейкой или рулеткой, температуру - термометром, ширину - кронциркулем.

Измерительные приборы классифицируются: по способу представления информации (показывающие или регистрирующие), по методу измерений (прямого действия и сравнения), по форме представлений показаний (аналоговый и цифровой), и др.

Для измерительных приборов характерны следующие параметры:

Диапазон измерений - область значений измеряемой величины, на которой рассчитан прибор при его нормальном функционировании (с заданной точностью измерения).

Порог чувствительности - минимальное (пороговое) значение измеряемой величины, различаемое прибором.

Чувствительность - связывает значение измеряемого параметра и соответствующее ему изменение показаний прибора.

Точность - способность прибора указывать истинное значение измеряемого показателя.

Стабильность - способность прибора поддерживать заданную точность измерений в течение определенного времени после калибровки.

Физическая величина

Физи́ческая величина́ - физическое свойство материального объекта, физического явления , процесса, которое может быть охарактеризовано количественно.

Значение физической величины - одно или несколько (в случае тензорной физической величины) чисел, характеризующих эту физическую величину, с указанием единицы измерения , на основе которой они были получены.

Размер физической величины - значения чисел, фигурирующих в значении физической величины .

Например, автомобиль может быть охарактеризован с помощью такой физической величины , как масса. При этом, значением этой физической величины будет, например, 1 тонна, а размером - число 1, или же значением будет 1000 килограмм, а размером - число 1000. Этот же автомобиль может быть охарактеризован с помощью другой физической величины - скорости. При этом, значением этой физической величины будет, например, вектор определённого направления 100 км/ч, а размером - число 100.

Размерность физической величины - единица измерения , фигурирующая в значении физической величины . Как правило, у физической величины много различных размерностей: например, у длины - нанометр, миллиметр, сантиметр, метр, километр, миля, дюйм, парсек, световой год и т. д. Часть таких единиц измерения (без учёта своих десятичных множителей) могут входить в различные системы физических единиц - СИ , СГС и др.

Часто физическая величина может быть выражена через другие, более основополагающие физические величины. (Например, сила может быть выражена через массу тела и его ускорение). А значит, соответственно, и размерность такой физической величины может быть выражена через размерности этих более общих величин. (Размерность силы может быть выражена через размерности массы и ускорения). (Часто такое представление размерности некоторой физической величины через размерности других физических величин является самостоятельной задачей, которая в некоторых случаях имеет свой смысл и назначение.) Размерности таких более общих величин часто уже являются основными единицами той или другой системы физических единиц, то есть такими, которые сами уже не выражаются через другие, ещё более общие величины.

Пример.
Если физическая величина мощность записывается как

P = 42,3 × 10³ Вт = 42,3 кВт, Р - это общепринятое литерное обозначение этой физической величины, 42,3 × 10³ Вт - значение этой физической величины, 42,3 × 10³ - размер этой физической величины.

Вт - это сокращённое обозначение одной из единиц измерения этой физической величины (ватт). Литера к является обозначением десятичного множителя «кило » Международной системы единиц (СИ) .

Размерные и безразмерные физические величины

  • Размерная физическая величина - физическая величина, для определения значения которой нужно применить какую-то единицу измерения этой физической величины. Подавляющее большинство физических величин являются размерными.
  • Безразмерная физическая величина - физическая величина, для определения значения которой достаточно только указания её размера. Например, относительная диэлектрическая проницаемость - это безразмерная физическая величина.

Аддитивные и неаддитивные физические величины

  • Аддитивная физическая величина - физическая величина, разные значения которой могут быть суммированы, умножены на числовой коэффициент, разделены друг на друга. Например, физическая величина масса - аддитивная физическая величина.
  • Неаддитивная физическая величина - физическая величина, для которой суммирование, умножение на числовой коэффициент или деление друг на друга её значений не имеет физического смысла. Например, физическая величина температура - неаддитивная физическая величина.

Экстенсивные и интенсивные физические величины

Физическая величина называется

  • экстенсивной, если величина её значения складывается из величин значений этой физической величины для подсистем, из которых состоит система (например, объём , вес);
  • интенсивной , если величина её значения не зависит от размера системы (например, температура , давление).

Некоторые физические величины, такие как момент импульса , площадь , сила , длина , время , не относятся ни к экстенсивным, ни к интенсивным.

От некоторых экстенсивных величин образуются производные величины:

  • удельная величина - это величина, делённая на массу (например, удельный объём);
  • молярная величина - это величина, делённая на количество вещества (например, молярный объём).

Скалярные, векторные, тензорные величины

В самом общем случае можно сказать, что физическая величина может быть представлена посредством тензора определённого ранга (валентности) .

Система единиц физических величин

Система единиц физических величин - совокупность единиц измерений физических величин, в которой существует некоторое число так называемых основных единиц измерений, а остальные единицы измерения могут быть выражены через эти основные единицы. Примеры систем физических единиц - Международная система единиц (СИ) , СГС .

Символы физических величин

Литература

  • РМГ 29-99 Метрология. Основные термины и определения.
  • Бурдун Г. Д., Базакуца В. А. Единицы физических величин . - Харьков : Вища школа, .